THE DISTRIBUTION OF RADEMACHER SUMS

S. J. MONTGOMERY-SMITH

(Communicated by William D. Sudderth)

Abstract

We find upper and lower bounds for $\operatorname{Pr}\left(\sum \pm x_{n} \geq t\right)$, where x_{1}, x_{2}, \ldots are real numbers. We express the answer in terms of the K-interpolation norm from the theory of interpolation of Banach spaces.

Introduction

Throughout this paper, we let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be independent Bernoulli random variables (that is, $\left.\operatorname{Pr}\left(\varepsilon_{n}=1\right)=\operatorname{Pr}\left(\varepsilon_{n}=-1\right)=\frac{1}{2}\right)$. We are going to look for upper and lower bounds for $\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>t\right)$, where x_{1}, x_{2}, \ldots is a sequence of real numbers such that $x=\left(x_{n}\right)_{n=1}^{\infty} \in l_{2}$.

Our first upper bound is well known (see, for example, Chapter II, $\S 59$ of [5]):

$$
\begin{equation*}
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>t\|x\|_{2}\right) \leq e^{-t^{2} / 2} \tag{1}
\end{equation*}
$$

However, if $\|x\|_{1}<\infty$, this cannot also provide a good lower bound, because then we have another upper bound:

$$
\begin{equation*}
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>\|x\|_{1}\right)=0 \tag{2}
\end{equation*}
$$

To look for lower bounds, we might first consider using some version of the central limit theorem. For example, using Theorem 7.1.4 of [2], it can be shown that for some constant c we have

$$
\left|\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>t\|x\|_{2}\right)-\frac{1}{\sqrt{2} \pi} \int_{t}^{\infty} e^{s^{2} / 2} d s\right| \leq c\left(\frac{\|x\|_{3}}{\|x\|_{2}}\right)^{3} .
$$

Thus, for some constant c we have that if $r \leq c^{-1}\left(\log \|x\|_{3} /\|x\|_{2}\right)^{1 / 2}$, then

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>t\|x\|_{2}\right) \geq c^{-1} \int_{t}^{\infty} e^{-s^{2} / 2} d s \geq \frac{c^{-2} e^{-t^{2} / 2}}{t}
$$

Received by the editors December 22, 1988 and, in revised form, August 30, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 60C05; Secondary 60G50.
Key words and phrases. Rademacher sum, Holmstedt's formula.

However, we should hope for far more. From (1) and (2), we could conjecture something like

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>c^{-1} \inf \left\{\|x\|_{1}, t\|x\|_{2}\right\}\right) \geq c^{-1} e^{-c t^{2}}
$$

Actually such a conjecture is unreasonable-one should not take infimums of norms, but instead one should consider the following quantity:

$$
\begin{aligned}
K\left(x, t ; l_{1}, l_{2}\right) & =K_{1,2}(x, t) \\
& =\inf \left\{\left\|x^{\prime}\right\|_{1}+t\left\|x^{\prime \prime}\right\|_{2}: x^{\prime}, x^{\prime \prime} \in l_{2}, x^{\prime}+x^{\prime \prime}=x\right\} .
\end{aligned}
$$

This norm is well known to the theory of interpolation of Banach spaces (see, for example [1] or [3]). For small t, this norm looks a lot like $t\|x\|_{2}$, but as t gets much larger, it starts to look more like $\|x\|_{1}$. In fact, there is a rather nice approximate formula due to T. Holmstedt (Theorem 4.1 of [3]): if we write $\left(x_{n}^{*}\right)_{n=1}^{\infty}$ for the sequence $\left(\left|x_{n}\right|\right)_{n=1}^{\infty}$ rearranged into decreasing order, then

$$
c^{-1} K_{1,2}(x, t) \leq \sum_{n=1}^{\left\lfloor t^{2}\right\rfloor} x_{n}^{*}+t\left(\sum_{n=\left\lfloor t^{2}\right\rfloor+1}^{\infty}\left(x_{n}^{*}\right)^{2}\right)^{\frac{1}{2}} \leq K_{1,2}(x, t),
$$

where c is a universal constant.
In this paper, we will prove the following result.
Theorem. There is a constant c such that for all $x \in l_{2}$ and $t>0$ we have

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>K_{1,2}(x, t)\right) \leq e^{-t^{2} / 2}
$$

and

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>c^{-1} K_{1,2}(x, t)\right) \geq c^{-1} e^{-c t^{2}}
$$

An interesting example is $x=\left(n^{-1}\right)_{n=1}^{\infty}$. Then $c^{-1} \log t \leq K_{1,2}(x, t) \leq$ $c \log t$, and hence

$$
c^{-1} \exp (-\exp (c t)) \leq \operatorname{Pr}\left(\sum \varepsilon_{n} n^{-1}>t\right) \leq c \exp \left(-\exp \left(c^{-1} t\right)\right)
$$

This is quite different behavior than that which we might have expected from the central limit theorem.

We might also consider $x=\left(n^{-1 / p}\right)_{n=1}^{\infty}$, where $1<p<2$. This example leads us to deduce Proposition 2.1 of [7]. More involved methods allow us to rederive the results of [8] (which include the above-mentioned result from [7]). We do not go into details.

We also deduce from the following corollary.
Corollary. There is a constant c such that for all $x \in l_{2}$ and $0<t \leq\|x\|_{2} /\|x\|_{\infty}$ we have

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>c^{-1} t\|x\|_{2}\right) \geq c^{-1} e^{-c t^{2}}
$$

Proof. It is sufficient to show that there is a constant c such that if $0<t \leq$ $\|x\|_{2} /\|x\|_{\infty}$, then

$$
K_{1,2}(x, t) \leq t\|x\|_{2} \leq c K_{1,2}(x, t)
$$

The left-hand inequality follows straight away from the definition of $K_{1,2}(x, t)$. The right-hand side follows easily from Holmstedt's formula; obviously if $t<$ 1 , and otherwise because

$$
\sum_{n=1}^{\left\lfloor t^{2}\right\rfloor} x_{n}^{*} \geq\left\lfloor t^{2}\right\rfloor \frac{\|x\|_{2}}{t} \geq \frac{t}{2}\|x\|_{2}
$$

Proof of theorem

In order to prove the theorem, we will need some new norms on l_{2}, and a few lemmas.
Definition. For $x \in l_{2}$ and $t>0$, define the norm

$$
J\left(x, t ; l_{\infty}, l_{2}\right)=J_{\infty, 2}(x, t)=\max \left\{\|x\|_{\infty}, t\|x\|_{2}\right\}
$$

Lemma 1. For $t>0$, the spaces $\left(l_{2}, K_{1,2},(\cdot, t)\right)$ and $\left(l_{2}, J_{\infty, 2}\left(\cdot, t^{-1}\right)\right)$ are dual to one another, that is, for $x \in l_{2}$ we have

$$
K_{1,2}(x, t)=\sup \left\{\sum x_{n} y_{n}: y \in l_{2}, J_{\infty, 2}\left(y, t^{-1}\right) \leq 1\right\}
$$

Proof. This is elementary (see, for example Chapter 3, Exercise 1-6 of [1]).
Definition. For $x \in l_{2}$ and $t \in \mathbf{N}$, define the norm

$$
\|x\|_{P(t)}=\sup \left\{\sum_{m=1}^{t}\left(\sum_{n \in B_{m}}\left|x_{n}\right|^{2}\right)^{1 / 2}\right\}
$$

where the supremum is taken over all disjoint subsets, $B_{1}, B_{2}, \ldots, B_{t} \subseteq \mathbf{N}$.
Lemma 2. If $x \in l_{2}$ and $t^{2} \in \mathbf{N}$, then

$$
\|x\|_{P\left(t^{2}\right)} \leq K_{1,2}(x, t) \leq \sqrt{2}\|x\|_{P\left(t^{2}\right)}
$$

Proof. To show the first inequality, note that we have

$$
\|x\|_{P\left(t^{2}\right)} \leq\|x\|_{1} \quad \text { and } \quad\|x\|_{P\left(t^{2}\right)} \leq t\|x\|_{2}
$$

Hence

$$
\begin{aligned}
K_{1,2}(x, t) & =\inf \left\{\left\|x^{\prime}\right\|_{1}+t\left\|x^{\prime \prime}\right\|_{2}: x^{\prime}+x^{\prime \prime}=x\right\} \\
& \geq \inf \left\{\left\|x^{\prime}\right\|_{P\left(t^{2}\right)}+\left\|x^{\prime \prime}\right\|_{P\left(t^{2}\right)}: x^{\prime}+x^{\prime \prime}=x\right\} \\
& \geq\|x\|_{P\left(t^{2}\right)}
\end{aligned}
$$

where the last step follows by the triangle inequality.

For the second inequality, we start by using Lemma 1 . For any $\delta>0$, let $y \in l_{2}$ be such that

$$
(1-\delta) K_{1,2}(x, t) \leq \sum x_{n} y_{n} \quad \text { and } \quad J_{\infty, 2}\left(y, t^{-1}\right)=1
$$

Now pick numbers $n_{0}, n_{1}, n_{2}, \ldots, n_{t^{2}} \in\{0,1,2, \ldots, \infty\}$ by induction as follows: given $0=n_{0}<n_{1}<\cdots<n_{m}$, let

$$
n_{m+1}=1+\sup \left\{\nu: \sum_{n=n_{m}+1}^{\nu}\left|y_{n}\right|^{2} \leq 1\right\}
$$

Since $\|y\|_{\infty} \leq 1$, we have that $\sum_{n=n_{m}+1}^{n_{m+1}}\left|y_{n}\right|^{2} \leq 2$. Also, as $\|y\|_{2} \leq t$, it follows that $n_{t^{2}}=\infty$. Therefore

$$
\begin{aligned}
(1-\delta) K_{1,2}(x, t) & \leq \sum x_{n} y_{n} \\
& \leq \sum_{m=1}^{t^{2}}\left(\sum_{n=n_{m-1}+1}^{n_{m}}\left|y_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=n_{m-1}+1}^{n_{m}}\left|x_{n}\right|^{2}\right)^{1 / 2} \\
& \leq \sqrt{2}\|x\|_{P\left(t^{2}\right)}
\end{aligned}
$$

Since this is true for all $\delta>0$, the result follows.
The following lemma is due to Paley and Zygmund.
Lemma 3. If $x \in l_{2}$, then given $0<\lambda<1$ we have

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>\lambda\|x\|_{2}\right) \geq \frac{1}{3}\left(1-\lambda^{2}\right)^{2}
$$

Proof. See Chapter 3, Theorem 3 of [4].
N. ow we proceed with the proof of the theorem. First we will show that

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>K_{1,2}(x, t)\right) \leq e^{-t^{2} / 2}
$$

Given $\delta>0$, let $x^{\prime}, x^{\prime \prime} \in l_{2}$ be such that $x^{\prime}+x^{\prime \prime}=x$, and

$$
(1+\delta) K_{1,2}(x, t)>\left\|x^{\prime}\right\|_{1}+t\left\|x^{\prime \prime}\right\|_{2}
$$

Then

$$
\begin{aligned}
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>(1+\delta) K_{1,2}(x, t)\right) \leq & \operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}^{\prime}>\left\|x^{\prime}\right\|_{1}\right) \\
& +\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}^{\prime \prime}>t\left\|x^{\prime \prime}\right\|_{2}\right) \\
\leq & 0+e^{-t^{2} / 2}
\end{aligned}
$$

where the last inequality follows from equations (1) and (2) above. Letting $\delta \rightarrow 0$, the result follows.

Now we show that for some constant c we have

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>c^{-1} K_{1,2}(x, t)\right) \geq c^{-1} e^{-c t^{2}}
$$

First let us assume that $t^{2} \in \mathbf{N}$. Given $\delta>0$, let $B_{1}, B_{2}, \ldots, B_{t^{2}} \subseteq \mathbf{N}$ be disjoint subsets such that $\bigcup_{m=1}^{t^{2}} B_{m}=\mathbf{N}$ and

$$
\|x\|_{P\left(t^{2}\right)} \leq(1+\delta) \sum_{m=1}^{t^{2}}\left(\sum_{n \in B_{m}}\left|x_{n}\right|^{2}\right)^{1 / 2}
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>\frac{1}{2} K_{1,2}(x, t)\right) \geq \operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>\frac{1}{\sqrt{2}}\|x\|_{P\left(t^{2}\right)}\right) \\
& \quad \geq \operatorname{Pr}\left(\sum_{m=1}^{t^{2}} \sum_{n \in B_{m}} \varepsilon_{n} x_{n} \geq \frac{1}{\sqrt{2}}(1+\delta) \sum_{m=1}^{t^{2}}\left(\sum_{n \in B_{m}}\left|x_{n}\right|^{2}\right)^{1 / 2}\right) \\
& \quad \geq \prod_{m=1}^{t^{2}} \operatorname{Pr}\left(\sum_{n \in B_{m}} \varepsilon_{n} x_{n} \geq \frac{1}{\sqrt{2}}(1+\delta)\left(\sum_{n \in B_{m}}\left|x_{n}\right|^{2}\right)^{1 / 2}\right) \\
& \quad \geq\left(\frac{1}{3}\left(1-\frac{1}{2}(1+\delta)^{2}\right)^{2}\right)^{t^{2}},
\end{aligned}
$$

where the last step is from Lemma 3. If we let $\delta \rightarrow 0$, then we see that

$$
\operatorname{Pr}\left(\sum \varepsilon_{n} x_{n}>\frac{1}{2} K_{1,2}(x, t)\right) \geq \exp \left(-(\log 12) t^{2}\right)
$$

This proves the result for $t^{2} \in \mathbf{N}$. For $t \geq 1$, note that

$$
K_{1,2}(x, t) \leq K_{1,2}(x\lceil t\rceil) \quad \text { and } \quad\lceil t\rceil^{2} \leq 4 t^{2}
$$

and hence the result follows (with $c=4 \log 12$). For $t<1$, the result may be deduced straightaway from Holmstedt's formula and Lemma 3.

Acknowledgments

All the work in this paper appears in my Ph.D. thesis [6], taken at Cambridge University under the supervision of Dr. D. J. H. Garling, to whom I would like to express my thanks. I would also like to express my gratitude to the Science and Engineering Research Council, who financed my studies in Cambridge.

References

1. C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New York, 1988.
2. K. L. Chung, A course in probability theory, 2nd. ed., Academic Press, New York, 1974.
3. T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199.
4. J.-P. Kahane, Some random series of functions, Cambridge Stud. Adv. Math. 5, 1985.
5. P.-A. Meyer, Martingales and stochastic integrals I, Springer-Verlag, Berlin, 284, 1972.
6. S. J. Montgomery-Smith, The cotype of operators from $C(K)$, Ph.D. thesis, Cambridge, August 1988.
7. G. Pisier, De nouvelles caractérisations des ensembles de Sidon, Mathematical analysis and applications, Adv. Math. Suppl. Stud. 7B (1981), 686-725.
8. V. A. Rodin and E. M. Semyonov, Rademacher series in symmetric spaces, Analyse Math. 1 (1975), 207-222.

Department of Mathematics, University of Missouri at Columbia, Columbia, Missouri 65211

