
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 109, Number 2, June 1990

THE DISTRIBUTION OF RADEMACHER SUMS
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(Communicated by William D. Sudderth)

Abstract. We find upper and lower bounds for Pr(23 +-Xn > t), where x, ,

x2, ... are real numbers. We express the answer in terms of the ^-interpolation

norm from the theory of interpolation of Banach spaces.

Introduction

Throughout this paper, we let e{, e2, ... be independent Bernoulli random

variables (that is, Pr(e/J = 1) = Pr(en = -1) = \). We are going to look for

upper and lower bounds for Pr(£] enxn > t), where xx, x2, ... is a sequence

of real numbers such that x = (xn)^=x e l2.

Our first upper bound is well known (see, for example, Chapter II, §59 of

[5]):

d) pr(Ee^>'W2)<^'2/2-

However, if ||x||, < oo, this cannot also provide a good lower bound, because

then we have another upper bound:

(2) Pr(EV->IMIi)-0-

To look for lower bounds, we might first consider using some version of the

central limit theorem. For example, using Theorem 7.1.4 of [2], it can be shown

that for some constant c we have

Thus, for some constant c we have that if r < c~ (log||x||3/||x||2)     , then

/•oo 2 ~2   _'2/2

Pr(£e^>'Nl2)>^7,    e~s/2ds>C-^-t-.
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However, we should hope for far more. From (1) and (2), we could conjecture

something like

Pr(XXx« >c"'inf{IMIi >'ll*ll2}) >c~le~cl .

Actually such a conjecture is unreasonable—one should not take infimums of

norms, but instead one should consider the following quantity:

K(x,t;lx,l2) =Kx2(x,t)

= inf < \\x \   + t  x      : x , x   G L, x + x   — x } .
Ill      I 1 2 ¿ i

This norm is well known to the theory of interpolation of Banach spaces (see,

for example [1] or [3]). For small t, this norm looks a lot like /||x||2, but as /

gets much larger, it starts to look more like ||x||j . In fact, there is a rather nice

approximate formula due to T. Holmstedt (Theorem 4.1 of [3]): if we write

(x*)™=x for the sequence (|xj)^, rearranged into decreasing order, then

[>21 f      oo -\ *
c-lKX2(x,t)<^2x*n+t[    £    {<)        <KX2(x,t),

«=' l«=L'2J+i J

where c is a universal constant.

In this paper, we will prove the following result.

Theorem. There is a constant c such that for all x G l2 and t > 0 we have

P'(Evn>*i,2(*»'))^~'2/2

and

PT(J2enxn >c~iKx 2(x, o) >c~le~c  .

- K oo
An interesting example is x = (aa )n=x . Then c log? < A", 2(x, t) <

c log /, and hence

c~ exp(-exp(c7)) < Pr w2£nn~   > t) < cexp (-exp (c~ t)) .

This is quite different behavior than that which we might have expected from

the central limit theorem.

We might also consider x = (n~ )^LX , where 1 < p < 2. This example

leads us to deduce Proposition 2.1 of [7]. More involved methods allow us to

rederive the results of [8] (which include the above-mentioned result from [7]).

We do not go into details.

We also deduce from the following corollary.

Corollary. There is a constant c such that for all x G l2 and 0 < t < ||-x:||2/||_\:j|00

we have
-l   -a2

Pr(Ee«x«>c ''IMI2)^C "e~
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Proof. It is sufficient to show that there is a constant c such that if 0 < t <

Ikllj/Nloo.then

Kx 2(x,t) < t\\x\\2 < cKx 2(x, t) .

The left-hand inequality follows straight away from the definition of Kx -,(x, t).

The right-hand side follows easily from Holmstedt's formula; obviously if t <

1, and otherwise because

là
.2,   X

£*;>U2J^>5lMI2.   n
n=\

Proof of theorem

In order to prove the theorem, we will need some new norms on l2, and a

few lemmas.

Definition. For x G l2 and / > 0, define the norm

J(*> '; 'oo» li) = '».a(*• 0 = max{ll^lloo >t\\x\\2}.

Lemma 1. For t > 0, the spaces (l2, Kx 2, (•, /)) and (l2, J^ 2(-, f~ )) are

dual to one another, that is, for x e l2 we have

Kx 2(x, t) = s*v{52xnyn:y e/2, J^ 2(y, r-1) < l}.

Proof. This is elementary (see, for example Chapter 3, Exercise 1-6 of [1]).   G

Definition. For x G l2 and t € N, define the norm

WI/>(o = sup<i

1/21

E  E kl
m=\  \neBm

where the supremum is taken over all disjoint subsets, Bx, B2

Lemma 2. If x e l2 and t2 e N, then

\\x\\p{t2)<Kx2(x,t)<V2\\x\\p{t2) .

Proof. To show the first inequality, note that we have

Bt CN.

Hence

l|-*ll/>(,2)   ̂    llalli

*12(x,o = inf{|-*'|

> inf /1|jc'

< 11x11,    and    llxl
>>('2)

<rlUI 2 •

+ /

p(t>)

: x + x

+
n

>    "    \.   :x +x   = x)
') J

where the last step follows by the triangle inequality.
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For the second inequality, we start by using Lemma 1. For any ô > 0, let

y G l2 he such that

(\-ô)Kx2(x,t)<Y,xnyn   and   JO0>2(y,rl) = l.

Now pick numbers n0, nx, n2, ... , n¿ G {0,1,2,..., oo} by induction as

follows: given 0 = aa0 < aAj < • • • < nm , let

nm+x = \+suplu:    J2   \yn\2^1

Since IMI^ < 1 , we have that £"r„'m+i \y„\2 < 2. Also, as ||}>||2 < t, it follows

that aa,2 — oo . Therefore

(l-a)Kl>2(X,t)<J2xHyn

1/2 1/2

^E    E  H2        E  k

<V2\\x\\^ .

Since this is true for all ô > 0, the result follows.   D

The following lemma is due to Paley and Zygmund.

Lemma 3. If x G l2, then given 0 < X < 1 we have

rr{}Ze«xn>M\x\\2)>\(i-x2)2.

Proof. See Chapter 3, Theorem 3 of [4].   D

N. ow we proceed with the proof of the theorem. First we will show that

Pr(E£A>^,2^'0)<^'' /2

Given ô > 0, let x , x" e /-, be such that x + x" = x, and

(I +S)KX 2(x, t)> x + t

Then

Pr(Eenxn X1 +S)Kx2(x, /)) < PrQTeX > ¡x'l)

+ Pr{j2enX'ñ>t\\X"\\2)

<0 + e-,2/2,

where the last inequality follows from equations (1) and (2) above.   Letting

ö —> 0, the result follows.

Now we show that for some constant c we have

Pr(Ev«>^,*i,2(*>'))>c~Vci\
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First let us assume that t2 G N.  Given S > 0, let Bx, B2, ... , Bti ç N be

disjoint subsets such that Um=i ^m = N an<^

Mi^)<d + ¿)E   Ek
m=l   \«€£,„

v 1/2
2 '

Then

Pr (E*«*« > \Kx,i(x> O) > pr (EV, > ^ X    D/.2
/>(/)

m=l hGB,„ v m=l   \ne5,

2 /

>  í]Pr

m=\

;2

>     (i(l-i(l+(i)2)2) ,

where the last step is from Lemma 3. If we let ô —> 0, then we see that

Pr(E£«x«> 2^1,2 (*>')) > exp (-(log 12) A2) .

This proves the result for A  e N. For t > 1 , note that

Kx 2(x,t)<Kx2(x\f\)    and    M2<4/\

and hence the result follows (with c = 4 log 12). For t < 1 , the result may be

deduced straightaway from Holmstedt's formula and Lemma 3.    D
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