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The Distribution of Realized Exchange Rate Volatility 

Torben G. ANDERSEN, Francis X. DIEBOLD,Tim BOLLERSLEV, and Paul LABYS 

Using high-frequency data on deutschemark and yen returns against the dollar, we construct model-free estimates of daily exchange rate 
volatility and correlation that cover an entire decade. Our estimates, termed realized volatilities and correlations, are not only model-free, 
but also approximately free of measurement error under general conditions, which we discuss in detail. Hence, for practical purposes, 
we may treat the exchange rate volatilities and correlations as observed rather than latent. We do so, and we characterize their joint 
distribution, both unconditionally and conditionally. Noteworthy results include a simple normality-inducing volatility transformation, 
high contemporaneous correlation across volatilities, high correlation between correlation and volatilities, pronounced and persistent 
dynamics in volatilities and correlations, evidence of long-memory dynamics in volatilities and correlations, and remarkably precise 
scaling laws under temporal aggregation. 
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1. INTRODUCTION 

It is widely agreed that although daily and monthly financial 
asset returns are approximately unpredictable, return volatil-
ity is highly predictable, a phenomenon with important impli- 
cations for financial economics and risk management (e.g., 
Bollerslev, Engle, and Nelson 1994). Of course, volatility is 
inherently unobservable, and most of what we know about 
volatility has been learned either by fitting parametric econo- 
metric models such as generalized autoregressive conditional 
heteroscedasticity (GARCH), by studying volatilities implied 
by options prices in conjunction with specific option pricing 
models such as Black-Scholes, or by studying direct indicators 
of volatility such as ex post squared or absolute returns. How- 
ever, all of those approaches, valuable as they are, have distinct 
weaknesses. For example, the existence of competing paramet- 
ric volatility models with different properties (e.g., GARCH 
versus stochastic volatility) suggests misspecification; after all, 
at most one of the models could be correct, and surely, none is 
strictly correct. Similarly, the well-known smiles and smirks in 
volatilities implied by Black-Scholes prices for options writ- 
ten at different strikes provide evidence of misspecification 
of the underlying model. Finally, direct indicators, such as ex 
post squared returns, are contaminated by noise, and Andersen 
and Bollerslev (1998a) documented that the variance of the 
noise is typically very large relative to that of the signal. 
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In this article, we introduce a new and complementary 
volatility measure, termed realized volatility. The mechanics 
are simple-we compute daily realized volatility simply by 
summing intraday squared returns-but the theory is deep: 
By sampling intraday returns sufficiently frequently, the real- 
ized volatility can be made arbitrarily close to the underly- 
ing integrated volatility, the integral of instantaneous volatility 
over the interval of interest, which is a natural volatility mea- 
sure. Hence for practical purposes, we may treat volatility as 
observed, which enables us to examine its properties directly, 
using much simpler techniques than the complicated econo- 
metric models required when volatility is latent. 

Our analysis is in the spirit of and extends earlier con-
tributions of French, Schwert, and Stambaugh (1987), Hsieh 
(1991), Schwert (1989, 1990), and, more recently, Taylor and 
Xu (1997). We progress, however, in important directions. 
First, we provide rigorous theoretical underpinnings for the 
volatility measures for the general case of a special semi- 
martingale. Second, our analysis is explicitly multivariate; we 
develop and examine measures not only of return variance, 
but also of covariance. Finally, our empirical work is based 
on a unique high-frequency dataset that consists of 10 years 
of continuously recorded 5-min returns on two major curren- 
cies. The high-frequency returns allow us to examine daily 
volatilities, which are of central concern in both academia and 
industry. In particular, the persistent volatility fluctuations of 
interest in risk management, asset pricing, portfolio allocation, 
and forecasting are very much present at the daily horizon. 

We proceed as follows. In Section 2 we provide a formal 
and detailed justification for our realized volatility and cone- 
lation measures as accurate estimates of the 
quadratic variation and ~ovariation, assuming only that returns 
evolve as special semimartingales. Among other things, we 
relate our realized volatilities and correlations to the condi- 
tional variances and correlations common in the econometrics 
literature and to the notion of integrated variance common in 
the finance literature, and we show that they remain valid in 
the presence of jumps. Such background is needed for a seri- 
ous understanding of our volatility and correlation measures, 
and it is lacking in the earlier literature on which we build. 
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In Section 3, we discuss the high-frequency deutschemark- Without loss of generality, each component in Equation (1) 
U.S. dollar (DM/$) and yen-U.S. dollar (yen/$) returns that may be assumed to be cadlag (right continuous with left lim- 
provide the basis for our empirical analysis, and we also its). The corresponding caglad (left continuous with right lim- 
detail the construction of our realized daily variances and its) process is now p,-, defined as p,- (t) = ,,,,lim ,,, p, (s) 

-

covariances. In Sections 4 and 5, we characterize the uncon- 
ditional and conditional distributions of the daily volatilities, 
respectively, including long-memory features. In Section 6, we 
explore issues related to temporal aggregation, with particular 
focus on the scaling laws implied by long memory, and we 
provide concluding remarks in Section 7. 

2. VOLATILITY MEASUREMENT THEORY 

In this section we develop the foundations of our volatility 
and covariance measures. When markets are open, trades may 
occur at any instant. Therefore, returns as well as correspond- 
ing measures of volatility may, in principle, be obtained over 
arbitrarily short intervals. We, therefore, model the underlying 
price process in continuous time. We first introduce the rele- 
vant concepts, after which we show how the volatility mea- 
sures may be approximated using high-frequency data, and we 
illustrate the concrete implications of our concepts for stan- 
dard It6 and mixed jump-diffusion processes. 

2.1 Financial Returns as a Special Semimartingale 

Arbitrage-free price processes of practical relevance for 
financial economics belong to the class of special semimartin- 
gales. They allow for a unique decomposition of returns into a 
local martingale and a predictable finite variation process. The 
former represents the "unpredictable" innovation, whereas the 
latter has a locally deterministic drift that governs the instan- 
taneous mean return, as discussed in Back (1991). 

Formally, for a positive integer T and t G [0, TI, let q be 
the a field that reflects the information at time t, so that FS 
3,for 0 5 s 5 t 5 T, and let P denote a probability measure on 
( R ,  P, F ) ,  where R represents the possible states of the world 
and F = FTis the set of events that are distinguishable at 
time T. Also assume that the information filtration (q),,[,, 
satisfies the usual conditions of P completeness and right con- 
tinuity. The evolution of any arbitrage-free logarithmic price 
process, p,, and the associated continuously compounded 
return over [0, t] may then be represented as 

where M,(O) = A,(O) = 0, M, is a local martingale, and A, 
is a locally integrable and predictable process of finite varia- 
tion. For full generality, we define p, to be inclusive of any 
cash receipts such as dividends and coupons, but exclusive of 
required cash payouts associated with, for example, margin 
calls. 

The formulation (1) is very general and includes all speci- 
fications used in standard asset pricing theory. It includes, for 
example, It6, jump, and mixed jump-diffusion processes, and 
it does not require a Markov assumption. It can also accom- 
modate long memory, either in returns or in return volatility, 
as long as care is taken to eliminate the possibility of arbi- 
trage first noted by Meheswaran and Sims (1993), using, for 
example, the methods of Rogers (1997) or Comte and Renault 
(1998). 

for each t E [0, TI, and the jumps are Ap, =p, -p k  or 

By no arbitrage, the occurrence and size of jumps are unpre- 
dictable, so M, contains the (compensated) jump part of p, 
along with any infinite variation components, whereas A, has 
continuous paths. We may further decompose Mk into a pair 
of local martingales, one with continuous and infinite variation 
paths, Mc,  and another of finite variation, AM, representing 
the compensated jump component so that M, = M; + AM,. 
Equation (1) becomes 

Finally, we introduce some formal notation for the returns. For 
concreteness, we normalize the unit interval to be one trading 
day. For m . T a positive integer, indicating the number of 
return observations obtained by sampling prices m times per 
day, the return on asset k over [t - l l m ,  t] is 

Hence, m > 1 corresponds to high-frequency intraday returns, 
whereas m < 1 indicates interdaily returns. 

2.2 Quadratic Variation and Covariation 

Development of formal volatility measures requires a bit of 
notation. For any semimartingale X and predictable integrand 
H, the stochastic integral / H d X  = {/,' H(s)d~(s)}, ,[ , ,  
is well defined, and for two semimartingales X and Y, 
the quadratic variation and covariation processes, [X, X] = 

(LX> XI)te[O, TI and L X >  (LX> YI)t~[O, Yl = T I ,  are given 

where the notation X- means the process whose value at s 
is lim ,,,,,,,,, X,,; see Protter (1990, sections 2.4-2.6). These 
processes are semimartingales of finite variation on [0, TI. 
The following properties are important for our interpretation 
of these quantities as volatility measures. For an increasing 
sequence of random partitions of [0, TI, 0 = r,,,,,5 r,,,,I 5 . . . , 
so that su~j21(rni ,  - 0 and supj,, r,,,,J+ T for j+l 7,,,,j) + 
m -+ co with probability 1, we have for t A r E min(t, r )  and 
t E [O, TI, 
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where the convergence is uniform on [0, T] in probability. In 
addition, we have that 

A[X, Y] = AXAY, 	 (7'3) 

[X, XI is an increasing process. ( 7 ~ )  

Finally, if X and Y are locally square integrable local martin- 
gales, the covariance of X and Y over [t - h, t] is given by 
the expected increment to the quadratic covariation, 

2.3 	 Quadratic Variation as a Volatility Measure 

Here we derive specific expressions for the quadratic varia- 
tion and covariation of arbitrage-free asset prices, and we dis- 
cuss their use as volatility measures in light of the properties 
(6)-(8). The additive decomposition (3) and the fact that the 
predictable components satisfy [A,, Aj] = [A,, M j ]=0, for all 
j and k ,  imply that 

We convert this cumulative volatility measure into a cor-
responding time series of incremental contributions. Letting 
the integer h 2 1 denote the number of trading days over 
which the volatility measures are computed, we define the 
time series of h-period quadratic variation and covariation, for 
t = h , 2 h  , . . . ,  T , a s  

Equation (9) implies that the quadratic variation and covari- 
ation for asset prices depend solely on the realization of the 
return innovations. In particular, the conditional mean is of no 
import. This renders these quantities model-free: regardless of 
the specific arbitrage-free price process, the quadratic varia- 
tion and covariation are obtained by cumulating the instan- 
taneous squares and cross-products of returns, as indicated 
by (6). Moreover, the measures are well defined even if the 
price paths contain jumps, as implied by (7), and the quadratic 
variation is increasing, as required of a cumulative volatility 
measure. 

Equation (8) implies that the h-period quadratic variation 
and covariation are intimately related to, but distinct from, the 
conditional return variance and covariance. Specifically, 

Hence, the conditional variance and covariance diverge from 
the quadratic variation and covariation, respectively, by a zero- 
mean error. This is natural because the conditional variance 
and covariance are ex ante concepts, whereas the quadratic 
variation and covariation are ex post concepts. One can think 
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of the quadratic variation and covariation as unbiased for the 
conditional variance and covariance, or conversely. Either way, 
the key insight is that, unlike the conditional variance and 
covariance, the quadratic variation and covariation are in prin- 
ciple observable via high-frequency returns, which facilitates 
the analysis and forecasting of volatility using standard statis- 
tical tools. Shortly we exploit this insight extensively. 

2.4 	 Approximating the Quadratic Variation and 
Covariation 

Equation (6) implies that we may approximate the quadratic 
variation and covariation directly from high-frequency return 
data. In practice, we fix an appropriately high sampling fre- 
quency and cumulate the relevant intraday return products 
over the horizon of interest. Concretely, using the notation in 
Equation (4) for prices sampled m times per day, we define 
for t = h , 2 h , .  . . ,T ,  

We call the observed measures in (12) the time-t realized 
h-period volatility and covariance. Note that for any fixed 
sampling frequency m, the realized volatility and covari-
ance are directly observable, in contrast to their underlying 
theoretical counterparts, the quadratic variation and covaria- 
tion processes. For sufficiently large m, however, the realized 
volatility and covariance provide arbitrarily good approxima- 
tions to the quadratic variation and covariation, because for all 
t = Iz ,  2 h , .  . . ,T we have 

plim var,, ,,(t; m) =Qvar,, ,,(t), (13a) 
rl i+cc  

plim covkj, ,,( t ;  m) =Qcovkj,,,(t). (13b) 
111'Cx 

Note that the realized volatility measures var, ,,(t; m)  and 
cov,,, ,,( t ;  m)  converge as m -+ oo to Qvar,, ,,(t) and 
Qcov,,,,,(t), but generally do not converge to the corre-
sponding time t - h conditional return volatility or covari-
ance, E[Qvar,, , ( t ) lq - , ]  and E[Qcov,,, ,,(t)/3;_,,]. Standard 
volatility models focus on the latter, which require a model 
for the return generating process. Our realized volatility and 
covariance, in contrast, provide unbiased estimators of the 
conditional variance and covariance, without taking a stand on 
any underlying model. 

2.5 	 Integrated Volatility for It6 Processes 

Much theoretical work assumes that logarithmic asset prices 
follow a univariate diffusion. Letting W be a standard Wiener 
process, we write dp, = p,dt  +a,dW or, more formally, 
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For notational convenience, we suppress the subscript m or 
h when we consider variables measured over the daily inter- 
val (h = 1). For example, we have rk(t) = r,,(,)(t) and 
Qcovkj,I (t) =Qcovkj (t). 

Our volatility measure is the associated quadratic variation 
process. Standard calculations yield 

The expression J', u2(s)ds defines the so-called integrated 
volatility, which is central to the option pricing theory of 
Hull and White (1987) and further discussed in Andersen 
and Bollerslev (1998a) and Barndorff-Nielsen and Shephard 
(1998). They note that, under the pure diffusion assumption, 
r, (t) conditional on Qvar, (t) is normally distributed with vari- 
ance St:, a2(s)ds. 

These results extend to the multivariate setting. If W = 
(W,, . . . ,W,) is a d-dimensional standard Brownian motion 
and (q),,,,, ,,denotes its completed natural filtration. Then, 
by martingale representation, any locally square integrable 
price process of the It6 form can be written as (Protter 1990, 
theorem 4.42), 

This result is related to the fact that any continuous local 
martingale, H ,  can be represented as a time change of a 
Brownian motion, that is, H( t )  = B([H, HI,), a.s. (Protter 
1990, theorem 2.41). That flexibility allows this particular 
specification to cover a large set of applications. Specifically, 
we obtain 

x(1 

[
t 

Qc0vkj(t) = i(')vj, i(s)ds. 
i=, 1-1 

The Qvar,(t) expression provides a natural multivariate con- 
cept of integrated volatility, and we may correspondingly 
denote Qcovkj(t) as the integrated covariance. As a special 
case of this framework, we may assign a few of the orthogo- 
nal Wiener components to be common factors and the remain- 
ing components to be pure idiosyncratic error terms. This 
produces a continuous-time analog to the discrete-time factor 
volatility models of Diebold and Nerlove (1989) and King, 
Sentana, and Wadhwani (1994). 

Within this pure diffusion setting, stronger results may be 
obtained. Foster and Nelson (1996) constructed a volatility fil- 
ter based On a weighted average of past 'quared returns that 
extracts the instantaneous volatility perfectly in the contin- 
uous record limit. There are two main differences between 
their approach and ours. From a theoretical perspective, their 
methods rely critically on the diffusion assumption and extract 
instantaneous volatility, whereas ours are valid for the entire 
class of arbitrage-free models, but extract only cumulative 
volatility over an interval. Second, from an empirical per- 
spective, various market microstructure features limit the fre- 
quency at which returns can be productively sampled, which 

renders infeasible a Foster-Nelson inspired strategy of extract- 
ing instantaneous volatility estimates for a large number of 
time points within each trading day. Consistent with this view, 
Foster and Nelson applied their theoretical insights only to the 
study of volatility filters based on daily data. 

The distribution of integrated volatility also has been stud- 
ied by previous authors, notably, Gallant, Hsu, and Tauchen 
(1999), who proposed an intriguing reprojection method for 
direct estimation of the relevant distribution given a specific 
parametric form for the underlying diffusion, whereas Chernov 
and Ghysels (2000) applied similar techniques, exploiting 
options data as well. Our high-frequency return methodology, 
in contrast, is simpler and more generally applicable, requir- 
ing only the special semi-Martingale assumption. 

2.6 	 Volatility Measures for Pure Jump and 
Mixed Jump-Diffusion Processes 

Jump processes have particularly simple quadratic covari- 
ation measures. The fundamental semimartingale decomposi- 
tion (1) reduces to a compensated jump component and a finite 
variation term, 

where , u k ( t ) denotes the instantaneous mean and the innova- 
tions in M,(t) are pure jumps. The specification covers a vari- 
ety of scenarios in which the jump process is generated by 
distinct components, 

where AN,, ,(t) is an indicator function for the occurrence of 
a jump in the ith component at time t, while the (random) 
K ~ ,,(t) term determines the jump size. From property (7), 

J 

Qcovkj (t) =x x K, ( s ) ~ ,(s) A N, (s) A N, (s) . (20) 
i= l  t-15s5t 

Andersen, Benzoni, and Lund (2000), among others, argued 
the importance of including both time-varying volatility and 
jumps when modeling speculative returns over short horizons, 
which can be accomplished by combining It6 and jump pro- 
cesses into a general jump-diffusion 

pk( r )  -pk(0) =f p, (s)ds + ak (s)d w ( ~ )  
o 

+ x kk(s)ANk(s). (21) 
OSSSI 

The jump-diffusion allows for a predictable stochastic volatil- 
ity process u,(t) and a jump processes, k,(t)Nk(t) with a 
finite conditional mean. The quadratic covariation follows 
directly from Equations (9) and (10): 

Qcovkj(t) = / ok(s)oj(s)ds 
1-1 

+ kk(s)kJ(s)ANk(s)ANj(s). (22) 
1-15~5t 
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It is straightforward to allow for a d-dimensional Brownian 
motion, resulting in modifications along the lines of Equations 
(13)-(IS), and the formulation readily accommodates multiple 
jump components, as in (19) and (20). 

3. VOLATILITY MEASUREMENT: DATA 

Our empirical analysis focuses on the bilateral DM/$ and 
yen/$ spot exchange rates, which are attractive candidates 
for examination because they represent the two main axes of 
the international financial system. We first discuss our choice 
of 5-min returns to construct realized volatilities, and then 
explain how we handle weekends and holidays. Finally, we 
detail the actual construction of the volatility measures. 

3.1 	 On the Use of 5-Min Returns 

In practice, the discreteness of actual securities prices can 
render continuous-time models poor approximations at very 
high sampling frequencies. Furthermore, tick-by-tick prices 
are generally only available at unevenly spaced time points, so 
the calculation of evenly spaced high-frequency returns nec- 
essarily relies on some form of interpolation among prices 
recorded around the endpoints of the given sampling intervals. 
It is well known that this nonsynchronous trading or quota- 
tion effect may induce negative autocorrelation in the inter- 
polated return series. Moreover, such market microstructure 
biases may be exacerbated in the multivariate context if vary- 
ing degrees of interpolation are employed in the calculation of 
the different returns. 

Hence a tension arises in the calculation of realized 
volatility. On the one hand, the theory of quadratic variation 
of special semimartingales suggests the desirability of sam-
pling at very high frequencies, striving to match the ideal of 
continuously observed frictionless prices. On the other hand, 
the reality of market microstructure suggests not sampling too 
frequently. Hence a good choice of sampling frequency must 
balance two competing factors; ultimately it is an empirical 
issue that hinges on market liquidity. Fortunately, the markets 
studied in this article are among the most active and liquid in 
the world, permitting high-frequency sampling without con- 
tamination by microstructure effects. We use a sampling fre- 
quency of 288 times per day ( m = 288, or 5-min returns), 
which is high enough such that our daily realized volatilities 
are largely free of measurement error (see the calculations in 
Andersen and Bollerslev 1998a), yet low enough such that 
microstructure biases are not a major concern. 
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at each 5-min mark is obtained by linearly interpolating from 
the average of the log bid and the log ask for the two clos- 
est ticks. The continuously compounded returns are then sim- 
ply the change in these 5-min average log bid and ask prices. 
Goodhart, Ito, and Payne (1996) and Danielsson and Payne 
(1999) found that the basic characteristics of 5-min FX returns 
constructed from quotes closely match those calculated from 
transactions prices, which are only available on a very limited 
basis. 

It is well known that the activity in the foreign exchange 
market slows decidedly over the weekend and certain holiday 
periods; see, for example, Andersen and Bollerslev (1998b) 
and Miiller et al. (1990). So as not to confound the dis- 
tributional characteristics of the various volatility measures 
by these largely deterministic calendar effects, we explicitly 
excluded a number of days from the raw 5-min return series. 
Whenever we did so, we always cut from 21:05 GMT on one 
night to 21:00 GMT the next evening, to keep the daily peri- 
odicity intact. This definition of a "day" is motivated by the 
daily ebb and flow in the FX activity patterns documented 
by Bollerslev and Domowitz (1993). In addition to the thin 
trading period from Friday 21 :05 GMT until Sunday 21 :00 
GMT, we removed several fixed holidays, including Christ- 
mas (December 24-26), New Year's (December 31-January 
2), and July Fourth. We also cut the moving holidays of Good 
Friday, Easter Monday, Memorial Day, July Fourth (when it 
falls officially on July 3), and Labor day, as well as Thanks- 
giving and the day after. Although our cuts do not capture all 
the holiday market slowdowns, they do succeed in eliminating 
the most important such daily calendar effects. 

Finally, we deleted some returns contaminated by brief 
lapses in the Reuter's data feed. This problem manifests itself 
in long sequences of zero or constant 5-min returns in places 
where the missing quotes have been interpolated. To remedy 
this, we simply removed the days containing the 15 longest 
DM/$ zero runs, the 15 longest DM/$ constant runs, the 15 
longest yen/$ zero runs, and the 15 longest yen/$ constant 
runs. Because of the overlap among the four different sets of 
days defined by these criteria, we actually removed only 51 
days. All in all, we were left with 2,449 complete days, or 
2,449 x 288 =705,312 5-min return observations, for the con- 
struction of our daily realized volatilities and covariances. 

3.3 	 Construction of DM/$ and 
Yen/$ Daily Realized Volatilities 

We denote the time series of 5-min DM/$ and yen/$ 

3.2 Construction of 5-Min DM/$ and Yen/$ Returns returns by (,,,) r,, (t) and r,., (t), respectively, where 
t = 11288,21288, . . . ,2,449: We then form the corre-

The two raw 5-min DM/$ and yen/$ return series were 
obtained from Olsen and Associates. The full sample consists 
of 5-min returns covering December 1, 1986, through Novem- 
ber 30, 1996, or 3,653 days, for a total of 3,653 x 288 = 

1,052,064 high-frequency return observations. As in Muller 
et al. (1990) and Dacorogna, Muller, Nagler, Olsen, and Pictet 
(1993), the construction of the returns utilizes the interbank 
FX quotes that appeared on Reuter's FXFX page during the 
sample period. Each quote consists of a bid and an ask price 
together with a "time stamp" to the nearest even second. After 
filtering the data for outliers and other anomalies, the price 

sponding 5-min squared return and cross-product series 

('D. (288)(t))2, (ry, (288)(t))2, and r ~ .(888(ft)' '?, ( 2~8) (~) .The 
tistical properties of the squared return series closely resem- 
ble those found by Andersen and Bollerslev (1997a,b) with a 
much shorter 1-year sample of 5-min DM/$ returns. Interest- 
ingly, the basic properties of the 5-min cross-product series, 
rD, (t) . ry,(288) (t), are similar. In particular, all three series 
are highly 'persistent and display strong intraday calendar 
effects, the shape of which is driven by the opening and clos- 
ing of the different financial markets around the globe during 
the 24-hour trading cycle. 



47 Andersen et al.: Distribution of Realized Exchange Rate Volatility 

Now, following (12), we construct the realized h-period vari- 
ances and covariances by summing the corresponding 5-min 
observations across the h-day horizon. For notational simplicity, 
we suppress the dependence on the fixed sampling frequency 
( m = 288), and define vard,, = var,,,(t; 288), vary,, ,= 
var,,, ,(t; 288), and cov,, ,= cov,,, ,,( t ;288). Furthermore, for 
daily measures (h = I) ,  we suppress the subscript h, and sim- 
ply write vard,, vary,, and cov,. Concretely, we define for 
t = l , 2 , .  . . , [T/h], 

vard,,,= x (7,. (288)(h. (t - 1) + ~ / 2 8 8 ) ) ~ ,  (23a) 
j = 1  , . . .  288.h 

vary,,,= C (r,, (288)(h. (t - 1) +j/288)I2,  (23b) 
i=l .  . . . ,288.h 

In addition, we examine several alternative, but related, 
measures of realized volatility derived from those in (23), 
including realized standard deviations, stdd,,, - vard:,'; and 

std yt,h uar~:'~, logarithmic standard deviations$ 
lstddt, /I = ' /I) and L s t d ~ t ,  h ' 10g(var~t,/I), 
and realized conrelations, corrt .  h - cOvt,/~/(stddt,'h 

4. THE UNCONDITIONAL DISTRIBUTION OF 
DAILY REALIZED FX VOLATILITY 

The unconditional distribution of volatility captures impor- 
tant aspects of the return process, with implications for risk 
management, asset pricing, and portfolio allocation. Here we 
provide a detailed characterization. 

4.1 Univariate Unconditional Distributions 

The first two columns of the first panel of Table 1 pro- 
vide a standard menu of moments (mean, variance, skewness, 
and kurtosis) that summarizes the unconditional distributions 
of the daily realized volatility series, vard,  and vary,, and 
the top panel of Figure 1 displays kernel density estimates of 
the unconditional distributions. It is evident that the distribu- 
tions are very similar and extremely right skewed. Evidently, 
although the realized daily volatilities are constructed by sum- 
ming 288 squared 5-min returns, the pronounced heteroscedas- 
ticity in intraday returns renders the normal distribution a poor 
approximation. 

The standard deviation of returns is measured on the same 
scale as the returns, and thus provides a more readily inter- 
pretable measure of volatility. We present summary statistics 
and density estimates for the two daily realized standard devi- 
ations, stdd, and stdy,, in columns three and four of the 
first panel of Table 1 and the second panel of Figure 1, The 
mean daily realized standard deviation is about 68 basis points, 

s td~r .h) .  and although the right skewness of the distributions has been 
In Sections 4 and 5 we characterize the unconditional and con- reduced, the realized deviations clearly remain non- 
ditional distributions of the daily realized volatility measures, normallv distributed. 
c here as Section 6 details our analysis of the c o ~ e s ~ o n d i n g  Interestingly, the distributions of the two daily realized loga- 
temporally aggregated measures (h > 1). rithmic standard deviations, Lstdd, and Lstdy,, in columns five 

Table 1. Statistics That Summarize Unconditional Distributions of Realized DM/$ and Yen/$ Volatilities 

vard,,, vary,,, stdd,,, stdy,,, Istdd,,, Istdy,,, cov,,, corr,,, 

Daily, h = 1 

Mean 

Variance 

Skewness 

Kurtosis 


Weekly, h = 5 

Mean 

Variance 

Skewness 

Kurtosis 


Biweekly, h =10 

Mean 

Variance 

Skewness 

Kurtosis 


Triweekly, h = 15 

Mean 

Variance 

Skewness 

Kurtosis 


Monthly, h =20 

Mean 

Variance 

Skewness 

Kurtosis 
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Figure I .  Distribution of Daily Realized Exchange Rate Volatilities and Correlations. 

and six of the first panel of Table 1 and in the third panel of deviations, because the kurtosis coefficients are near 3. This is 

Figure 1, appear symmetric, with skewness coefficients near in accord with the findings for monthly volatility aggregates of 
zero. Moreover, normality is a much better approximation for daily equity index returns in French, Schwert, and Stambaugh 
these measures than for the realized volatilities or standard (1987), as well as evidence from Clark (1973) and Taylor (1986). 
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Finally, we characterize the distribution of the daily real- 
ized covariances and correlations, cov, and corr,, in the last 
columns of the first panel of Table 1 and the bottom panel of 
Figure 1. The basic characteristics of the unconditional distri- 
bution of the daily realized covariance are similar to those of 
the daily realized volatilities-they are extremely right skewed 
and leptokurtic. In contrast, the distribution of the realized cor- 
relation is approximately normal. The mean realized correla- 
tion is positive (.43), as expected, because both series respond 
to U.S. macroeconomic fundamentals. The standard deviation 
of the realized correlation (.17) indicates significant intertem- 
poral variation in the correlation, which may be important for 
short-term portfolio allocation and hedging decisions. 

4.2 Multivariate Unconditional Distributions 

The univariate distributions characterized in the foregoing 
text do not address relationships that may exist among the dif- 
ferent measures of variation and covariation. Key issues rele- 
vant in financial economic applications include, for example, 
whether and how lstdd,, lstdy,, and corr, move together. Such 
questions are difficult to answer using conventional volatility 
models, but they are relatively easy to address using our real- 
ized volatilities and correlations. 

The sample correlations in the first panel of Table 2, along 
with the lstdd,-lstdy, scatterplot in the top panel of Figure 2, 
clearly indicate a strong positive association between the two 
exchange rate volatilities. Thus, not only do the two exchange 
rates tend to move together, as indicated by the positive means 
for cov, and corr,, but so too do their volatilities. This sug- 
gests factor structure, as in Diebold and Nerlove (1989) and 
Bollerslev and Engle (1993). 

The correlations in the first panel of Table 2 and the corr,- 
ls tdd,  and corr,-lstdy, scatterplots in the second and third 
panels of Figure 2 also indicate positive association between 
correlation and volatility. Whereas some nonlinearity may be 
operative in the cox,-lstdd, relationship, with a flattened 
response for both very low and very high lstdd,  values, 
the corr,-lstdy, relationship appears approximately linear. To 
quantify further this volatility effect in correlation, we show 
in the top panel of Figure 3 kernel density estimates of corr, 
when both lstdd,  and lstdy, are less than -.46 (their median 
value) and when both lstdd, and lstdy, are greater than -.46. 
Similarly, we show in the bottom panel of Figure 3 the esti- 
mated corr, densities conditional on the more extreme volatil- 
ity situation in which both lstdd,  and lstdy, are less than 
-.87 (their 10th percentile) and when both lstdd,  and lstdy, 

Table 2. Correlation Matrices of Realized DM/$ and Yen/$ Volatilities 

var y,,, stdd,, stdy,,, Istdd,,, Istdyt,, covt,h corr,,h 

Daily, h = 1 
var d ,  
vary, 
std d ,  
stdyt

lstd d ,  

lstd y, 

cov, 


Weekly, h = 5 
vardt,h 

h 

stddt,h 


stdyt,h 

Istdd,,, 

Istdy,,, 

COVt. h 

Biweekly, h = 10 
vard,,h 

h 

stddt,h 

stdyt,h 
Istdd,,, 

Istdyt,h 


COVt.h 


Triweekly, h = 15 
vard,,, 

h 

stdd,,, 
StdY,,h 
Istdd,,, 

Istdy,,h 


covt,h 


Monthly, h = 20 
vardt,h 

h 

stddt,h 

s t d ~ t ,  h 
Istdd,,, 
Istdy,,, 
COVt,h 
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Yen/$ Volatility 

-2 -1 0 I 

Correlation Between DM/$ and Yen/$ 

Figure 2. Bivariate Scatterplots of Realized Volatilities and 
Correlations. 

are greater than .OO (their 90th percentile). It is clear that 
the distribution of realized correlation shifts rightward when 
volatility increases. A similar correlation effect in volatility 
was documented for international equity returns by Solnik, 
Boucrelle, and Le Fur (1996). Of course, given that the high- 
frequency returns are positively correlated, some such effect is 
to be expected, as argued by Ronn (1998), Boyer, Gibson, and 
Loretan (1999), and Forbes and Rigobon (1999). However, the 
magnitude of the effect nonetheless appears noteworthy. 

To summarize, we have documented a substantial amount 
of variation in volatilities and correlation, as well as impor- 
tant contemporaneous dependence measures. We now turn to 
dynamics and dependence, which characterize the conditional, 
as opposed to unconditional, distribution of realized volatility 
and correlation. 

5. THE CONDITIONAL DISTRIBUTION OF 
DAILY REALIZED FX VOLATILITY 

The value of financial derivatives such as options is closely 
linked to the expected volatility of the underlying asset over 
the time until expiration. Improved volatility forecasts should, 
therefore, yield more accurate derivative prices. The con-
ditional dependence in volatility forms the basis for such 
forecasts. That dependence is most easily identified in the 

Figure 3. Distributions of Realized Correlations: low volatility versus 
high volatility days. 

daily realized correlations and logarithmic standard deviations, 
which we have shown to be approximately unconditionally 
normally distributed. To conserve space, we focus our discus- 
sion on those three series. 

It is instructive first to consider the time series plots of 
the realized volatilities and correlations in Figure 4. The wide 
fluctuations and strong persistence evident in the l s t d d ,  and 
l s t d y ,  series are, of course, manifestations of the well doc- 
umented return volatility clustering. It is, therefore, striking 
that the time series plot for corr, shows equally pronounced 
persistence, with readily identifiable periods of high and low 
correlation. 

The visual impression of strong persistence in the volatil- 
ity measures is confirmed by the highly significant Ljung-Box 
tests reported in the first panel of Table 3. (The .001 critical 
value is 45.3.) The correlograms of l s tdd , ,  l s tdy, ,  and con,  in 
Figure 5 further underscore the point. The autocorrelations of 
the realized logarithmic standard deviations begin around .6 
and decay very slowly to about .1 at a displacement of 100 
days. Those of the realized correlations decay even more 
slowly, reaching just .31 at the 100-day displacement. Simi- 
lar results based on long series of daily absolute or squared 
returns from other markets have been obtained previously by 
a number of authors, including Ding, Granger, and Engle 
(1993). The slow decay in Figure 5 is particularly noteworthy, 
however, in that the two realized daily volatility series span 
"only" 10 years. 
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Figure 4. Time Series of Daily Realized Volatilities and Correlation. 
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Figure 5. Sample Autocorrelations of Realized Volatilities Correlation. 
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Table 3. Dynamic Dependence Measures for Realized DM/$ and Yen/$ Volatilities 

Daily, h = 1 
LB 
d 

Weekly, h =5 
LB 
d 

Biweekly, h = 10 
LB 
d 


Triweekly, h = 15 
LB 
d 

Monthly, h = 20 
LB 
d 

The findings of slow autocorrelation decay may seem to 
indicate the presence of a unit root, as in the integrated 
GARCH model of Engle and Bollerslev (1986). However, 
Dickey-Fuller tests with 10 augmentation lags soundly reject 
this hypothesis for all of the volatility series. (The test statis- 
tics range from -9.26 to -5.59, and the .O1 and .05 criti- 
cal values are -2.86 and -3.43.) Although unit roots may 
be formally rejected, the very slow autocorrelation decay cou- 
pled with the negative signs and slow decay of the estimated 
augmentation lag coefficients in the Dickey-Fuller regressions 
suggest that long memory of a non-unit-root variety may be 
present. Hence, we now turn to an investigation of fractional 
integration in the daily realized volatilities. 

As noted by Granger and Joyeux (1980), the slow hyper- 
bolic decay of the long-lag autocorrelations or, equivalently, 
the log-linear explosion of the low-frequency spectrum are 
distinguishing features of a covariance stationary fractionally 
integrated, or I (d) ,  process with 0 < d < 4.The low-frequency 
spectral behavior also forms the basis for the log-periodogram 
regression estimation procedure proposed by Geweke and 
Porter-Hudak (1983) and refined by Robinson (1994, 1995), 
Hurvich and Beltrao (1994) and Hurvich, Deo, and Brodsky 
(1998). In particular, let I(wj) denote the sample periodogram 
at the jth Fourier frequency, wi =2 ~ j / T ,j = 1 , 2 ,  . . . , [T/2]. 
The log-periodogram estimator of d is then based on the least 
squares regression 

where j = 1 ,2 ,  . . . ,n, and d = -p, 12. The least squares esti- 
mator of P I ,  and hence d ,  is asymptotically normal and the 
corresponding standard error, T . (24 .n)-'I2, depends only 
on the number of periodogram ordinates used. Although the 
earlier proofs for consistency and asymptotic normality of the 
log-periodogram regression estimator rely on normality, Deo 
and Hurvich (1998) and Robinson and Henry (1999) showed 
that these properties extend to non-Gaussian, possibly het- 
eroscedastic, time series as well. Of course, the actual value of 
the estimate of d depends upon the choice of n. Although the 
formula for the theoretical standard error suggests choosing 
a large n to obtain a small standard error, doing so pro-
duces bias in the estimator, because the relationship under- 
lying (24), in general, holds only for frequencies close to 

zero. Following Taqqu and Teverovsky (1996), we therefore 
graphed and examined 2 as a function of n, looking for a flat 
region in which we are plagued by neither high variance (rz  
too small) nor high bias (n too large). Our subsequent choice 
of n = [TV5], or n = 514, is consistent with the optimal rate 
of O(T4I5) established by Hurvich, Deo, and Brodsky (1998). 

The estimates of d are given in the first panel of Table 3. 
The estimates are highly statistically significant for all eight 
volatility series, and all are fairly close to the "typical value" 
of .4. These estimates for d are also in line with the estimates 
based on longer time series of daily absolute and squared 
returns from other markets reported by Granger, Ding, and 
Spear (1997), and the findings based on a much shorter 1- 
year sample of intraday DM/$ returns reported in Andersen 
and Bollerslev (1997b). This suggests that the continuous-time 
models used in much of theoretical finance, where volatil- 
ity is assumed to follow an Ornstein-Uhlenbeck type process, 
are misspecified. Nonetheless, our results are constructive, in 
that they also indicate that parsimonious long-memory mod- 
els should be able to accommodate the long-lag autoregres- 
sive effects. 

Having characterized the distributions of the daily realized 
volatilities and correlations, we now turn to longer horizons. 

6. TEMPORAL AGGREGATION AND 
SCALING LAWS 

The analysis in the preceding sections focused on the dis- 
tributional properties of daily realized volatility measures. 
However, many practical financial problems invariably involve 
longer horizons. Here we examine the distributional aspects 
of the corresponding multiday realized variances and corre- 
lations. As before, we begin with an analysis of uncondi- 
tional distributions, followed by an analysis of dynamics and 
dependence, including a detailed examination of long memory 
as it relates to temporal aggregation. 

6.1 	 Univariate and Multivariate 
Unconditional Distributions 

In the lower panels of Table 1 we summarize the univariate 
unconditional distributions of realized volatilities and corre- 
lations at weekly, biweekly, triweekly, and monthly horizons 
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( h  = 5,  10, 15, and 20, respectively), implying samples o f  
length 489, 244, 163, and 122. Consistent with the notion o f  
efficient capital markets and serially uncorrelated returns, the 
means o f  vard ,,,,,vary,,,, and cov,,,, grow at the rate h ,  while 
the mean o f  the realized correlation, corr,,,, is largely invariant 
to the level o f  temporal aggregation. In addition, the growth o f  
the variance o f  the realized variances and covariance adheres 
closely to h2"+',where d denotes the order o f  integration o f  
the series, a phenomenon we discuss at length subsequently. 
W e  also note that even at the monthly level, the unconditional 
distributions o f  vard, ,, vary,,,,, and cov,,,, remain leptokurtic 
and highly right skewed. The basic characteristics o f  stdd,,,, 
and stdy, ,, are similar, with the means increasing at rate h'I2. 
The unconditional variances o f  lstdd,,,, and lstdjl,,,,,however, 
decrease with h,  but again at a rate linked to the fractional 
integration parameter, as we document subsequently. 

Next, turning to the multivariate unconditional distribu-
tions, we display in the lower panels o f  Table 2 the correla-
tion matrices o f  all volatility measures for h = 5 ,  10, 15, and 
20. Although the correlation between the different measures 
drops slightly under temporal aggregation, the positive associ-
ation between the volatilities, so apparent at the 1-day return 
horizon, is largely preserved under temporal aggregation. For 
instance, the correlation between lstdd,,,, and lstdy,,,, ranges 
from a high o f  ,604 at the daily horizon to a low o f  .533 at the 
monthly horizon. Meanwhile, the volatility effect in correla-
tion is somewhat reduced by temporal aggregation; the sample 
correlation between lstdd,,, and corr,,, equals ,389, whereas 
the one between lstdd,,,, and corr,,,, is .245. Similarly, the 
correlation between lstdjl,,, and corr,,,, drops from .294 for 
h = 1 to .I15 for h = 20. Thus, whereas the long-horizon cor-
relations remain positively related to the level o f  volatility, the 
lower values suggest that the benefits to international diversi-
fication may be the greatest over longer investment horizons. 

6.2 	 Conditional Distribution: Dynamic Dependence, 
Fractional Integration, and Scaling 

Andersen, Bollerslev, and Lange (1999) showed that, given 
the estimates obtained at the daily level, the integrated volatil-
ity should, in theory, remain strongly serially correlated and 
highly predictable, even at the monthly level. The Ljung-
Box statistics for the realized volatilities in the lower pan-
els o f  Table 3 provide strong empirical backing. Even at the 
monthly level, or h = 20, with only 122 observations, all o f  
the test statistics are highly significant. This contrasts with 
previous evidence that finds little evidence o f  volatility cluster-
ing for monthly returns, such as Baillie and Bollerslev (1989) 
and Christoffersenand Diebold (2000).However, the methods 
and/or data used in the earlier studies may produce tests with 
low power. 

The estimates o f  d reported in Section 4 suggest that the 
realized daily volatilities are fractionally integrated. The class 
o f  fractionally integrated models is self-similar, so that the 
degree o f  fractional integration is invariant to the sampling 
frequency (see, e.g., Beran 1994). This strong prediction is 
borne out by the estimates for d for the different levels o f  
temporal aggregation reported in the lower panels o f  Table 3. 
All o f  the estimates are within two asymptotic standard errors 
o f  the average estimate o f  .391 obtained for the daily series, 

and all are highly statistically significantly differentfrom both 
zero and unity. 

Another implication o f  self-similarity concerns the variance 
o f  partial sums. In particular, let 

denote the h-fold partial sum process for x,, where t = 
1 , 2 , .  . . , [ T l h ] .  Then, as discussed by, Beran (1994) and 
Diebold and Lindner (1996), among others, i f  x, is fraction-
ally integrated, the partial sums obey a scaling law, 

O f  course, by definition [vard,],,= vard,,,, and [vary,],,= 
vary,,,,,so the variance o f  the realized volatilities should grow 
at rate h2d+'.This implication is remarkably consistent with 
the values for the unconditional sample (co)variancesreported 
in Table 1 and a value o f  d around .35-.40. Similar scaling 
laws for power transforms o f  absolute FX returns have been 
reported in a series o f  articles initiated by Miiller et al. (1990). 

The striking accuracy o f  our scaling laws carries over to 
the partial sums o f  the alternative volatility series. The left 
panel o f  Figure 6 plots the logarithm o f  the sample vari-
ances o f  the partial sums o f  the realized logarithmic stan-
dard deviations versus the log o f  the aggregation level; that is, 
log(Var([lstdd,],))and log(Var([lstdy,],,))against log(h) for 
h = 1,2,  . . . ,30. The linear fits implied by (26)are validated. 
Each o f  the slopes is very close to the theoretical value o f  
2d + l implied by the log-periodogram estimates for d ,  further 
solidifying the notion o f  long-memory volatility dependence. 
The estimated slopes in the top and bottom panels are 1.780 
and 1.728, respectively, corresponding to values o f  2 o f  .390 
and .364. 

Because a nonlinear function o f  a sum is not the sum o f  the 
nonlinear function, it is not clear whether lstdd,, ,and lstdy,,,, 
will follow similar scaling laws. The estimates o f  d reported 
in Table 3 suggest that they should. The corresponding plots 
for the logarithm o f  the h-day logarithmic standard deviations 
log(Var(lstdd,,,,)) and log(Var(lstdy,,,)) against log(h),  for 
h = 1,2,  . . . ,30, in the right panel o f  Figure 6 ,  lend empirical 
support to this conjecture. Interestingly, however, the lines are 
downward sloped. 

To understand why these slopes should be negative, assume 
that the returns are serially uncorrelated. The variance o f  the 
temporally aggregated return should then be proportional to 
the length o f  the return interval, that is, E(var,,,,)= b . lz, 
where var,,,, refers to the temporally aggregated variance as 
defined in the preceding text. Also, by the scaling law (26), 
Var(var,,,,) = c . h2"+'. Furthermore, assume that the corre-
sponding temporally aggregated logarithmic standard devia-
tions, lstd,,,,= 1/2.log(var,,,,), are normally distributed at all 
aggregation horizons h with mean p,, and variance a:. O f  
course, these assumptions agree closely with the actual empir-
ical distributions summarized in Table 1. It then follows from 
the properties o f  the log-normal distribution that 

-- c . h2d+1, 	 (27b) 

http:.35-.40
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Figure 6. Scaling Laws Under Temporal Aggregation. 

and solving for the variance of the log standard deviation 
yields 

With 2d - 1 slightly negative, this explains why the sample 
variances of lstd d,, ,, and lstd y,,,, reported in Table 1 decrease 
with the level of temporal aggregation, h. Furthermore, by a 
log-linear approximation, 

which explains the apparent scaling law behind the two plots 
in the right panel of Figure 6, and the negative slopes of 
approximately 2d - 1. The slopes in the top and bottom panels 
are -.222 and -.270, respectively, and the implied d values 
of .389 and .365 are almost identical to the values implied by 
the scaling law (26) and the two left panels of Figure 6. 

7. SUMMARY AND CONCLUDING REMARKS 

We first strengthened the theoretical basis for measuring and 
analyzing time series of realized volatilities constructed from 
high-frequency intraday returns, and then we put the theory to 
work, examining a unique dataset that consists of 10 years of 
5-min DM/$ and yen/$ returns. We found that the distributions 
of realized daily variances, standard deviations, and covari- 
ances are skewed to the right and leptokurtic, but that the dis- 
tributions of logarithmic standard deviations and correlations 
are approximately Gaussian. Volatility movements, moreover, 
are highly correlated across the two exchange rates. We also 
found that the correlation between the exchange rates (as 
opposed to the correlation between their volatilities) increases 
with volatility. Finally, we confirmed the wealth of existing 

evidence of strong volatility clustering effects in daily returns. 
However, in contrast to earlier work, which often indicates 
that volatility persistence decreases quickly with the horizon, 
we find that even monthly realized volatilities remain highly 
persistent. Nonetheless, realized volatilities do not have unit 
roots; instead, they appear to be fractionally integrated and, 
therefore, very slowly mean-reverting. This finding is strength- 
ened by our analysis of temporally aggregated volatility series, 
whose properties adhere closely to the scaling laws implied 
by the structure of fractional integration. 

A key conceptual distinction between this article and the 
earlier work on which we build-Andersen and Bollerslev 
(1998a), in particular-is the recognition that realized volatil- 
ity is usefully viewed as the object of intrinsic interest, rather 
than simply a postmodeling device to be used to evaluate 
parametric conditional variance models such as GARCH. As 
such, it is of interest to examine and model realized volatility 
directly. This article is a first step in that direction, providing a 
nonparametric characterization of both the unconditional and 
conditional distributions of bivariate realized exchange rate 
volatility. 

It will be of interest in future work to fit parametric models 
directly to realized volatility, and in turn to use them for fore- 
casting in specific financial contexts. In particular, our find- 
ings suggest that a multivariate linear Gaussian long-memory 
model is appropriate for daily realized logarithmic standard 
deviations and correlations. Such a model could result in 
important improvements in the accuracy of volatility and cor- 
relation forecasts and related value-at-risk type calculations. 
This idea is pursued in Andersen, Bollerslev, Diebold, and 
Labys (2000). 

[Received Febr~iclq 1999 Rev~sedOctober 2000.1 
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