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1. Summary. This paper deals with the problem of characterizing the
probability distribution of lengths of intervals of shade cast on a line by disks
randomly distributed in a plane with a point source of light at P. The methods
developed for this problem involve the use of certain Markoff processes and
a form of the wave equation and are extendable to a generalized version of
the problem. This generalized version is relevant to certain type II counter
problems and traffic problems. In particular, some recent results of TaxAcs
[1] for type 1T counters can be obtained easily for a special version of this general-
ized problem. We solve a traffic problem dealing with the time required to wait
to cross an intersection while the traffic flow is decreasing.

2. Introduction. Suppose that a source of light is at a point P and a worm
is crawling in a given direction along a line L which does not go through P.
Suppose also that there are many circular disks distributed randomly throughout
the plane containing P and L. These disks (which are permitted to overlap)
cast shadows upon the line. If the worm can travel only in the shade, what
can we say about the distribution of the distance that the worm can travel
from a given starting point?

A similar question may be raised for the worm that travels only in light.
To specify the question more precisely we must describe the random distribution
of disks. For the time being we shall take the case where the disks are all open
disks with the same radius r and the number of disk centers on a set of measure
A has a Poisson distribution with mean MA. Furthermore, we assume that the
number of disk centers on two non-overlapping sets is independently distributed.
This situation is a limiting case of the one where a large number of disks are
independently given positions on a large area according to a uniform distribution
on this area. Note that if a disk covers P, the whole line is in shadow. We shall
later treat the case where the radii may vary and the distribution of disk centers
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may be modified. Let d, be the perpendicular distance from P to L and let us
designate points on L by their distances from the foot of the perpendicular in
the direction traveled by the worm.

The starting point ¢, will not be shaded if and only if the set of points which
are a distance less than r from the line segment £, contains no disk centers.
Let S represent that subset of L which is in shade and S its complement. Then

¢)) Plt,e 8§} = exp {— A[20d,, + =*]}
where
(2) dto = \/dg + tg

is the length of the line segment {,P.
Similarly, we compute the probability that the interval [f, , a] is unshaded.

P{lt, ,a] C S} = exp {— M — &) do
+ rid,, + d, + (@ — L] + 1rr2}} = g vt0®

Here g(t, , a) is N times the area of G(¢, , a), the set of points within a distance
r of the triangle (P, {, , a). If X represents the first point of shade that the light-
traveling worm encounters, its c.d.f. is given by

4) PiX<al=Fa)=1—P{lt,,a] T8} =1 — ",

The problem of the shade-traveling worm is not so trivial. To treat this problem
we shall find it convenient to introduce the following definitions.

3)

3. Definitions.

Definition 3.1. Let U(}) be the first unshaded point on L greater than or equal
o 1.

We are interested in the distribution of U(t,).
Definition 3.2. If t is unshaded, let T(t) = t. Otherwise, let

5) T(t) = sup {': there is a disk which shades f and #'}.
Note that

(6 U = ling T ()

where

@) T () = T 0]

In fact, if

®) T () = T(),

then

) U@ = T™@).
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Definition 3.3. Let §{x, E} be the distance from x to the set E.
Definition 3.4. Let A{E} be the area of the set E.
Definition 3.5. Let

(10) H(t, 0) = {x: 8(x, tP) <7, 8(z,aP) <71} for t= a.
Definition 3.6. Let
(11) nt, a) = NA{H(, a)}.

4. Basic Results.
Theorem 4.1.
(@ P{T(#) £ a} =e""?

(b)y For bzt
P{T(t) £ a |T(t) = 7,} = ¢ "= D 0D f£or g > max (t, , )
P{T(t) £alT) =} =0 otherwise.

(¢) Fort, =z t,
P{T(t) £ al|T®) = (D), t S t,} = P{T@) = o] T(t) = 7(4)}
i.e., T(%) is a Markoff process.

(12)

Proof: T() £ a if and only if there are no disk centers in H(#, a). Part (a)
follows immediately.
The following relations will prove useful:

(15) H( ,t) Cleidlx, 6P) <r}l if 2624
and therefore
(16) Ht ,t) CH@G , ) f 2L,

(17) H(tl y 82) = H(t1 s sl)n H(tz s 82) if tl é 8 é S2 a:nd tl é t2 é 82,
and

(18) {x: 6z, t.P) <71, 8(x,8,P) = r}(YH(lz,8) = 0

<8, =8 and L 26 =S s,.

Now let us suppose that ¢ = max (r, , £,) since the other case is trivial. The
event T(},) = 7, is that there are no disk centers in H{¢, , 7,) and, if r, > ¢, ,
there is at least one on {z:8(x, t,P) < r, 8(x, 7 P) = r}. The first of these sets
intersects H(¢, , a) in H({, , @) while the second does not intersect H(f, , a).
Part (b) follows from the assumption of independence of the number of disk
centers in non-overlapping sets.
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To prove part (c) let us assume a = max (r(t,), £,). It now suffices to note that

Hit o) N (Y 1, ) = U G, o) N HG, 0]

tstsy

= U u¢,0 = H, , a).

L2 2%

f

(19)

Equation 6 and Theorem 4.1 furnish an iterative method for computing the
distribution of U(#,). In fact, if n = 2,

P{T(")(t) é a IT(""I (t) = Tn-1 )T(n—Z)(t) = Tn-—-2}

(20) — e“[h(7n—-1.d)"'h(fn—avﬂ)] fOI' a g Tuot g Tueg s

=0 otherwise.
If we regard (20) as giving the joint distribution of 7%
T and T"® and define

and T™" for given

1) ®.(a, b) = P{T"() £ o, T™(1) £ b},
we have

Theorem 4.2.
(22) ®,(a, b) = e ¥ for t=a=<b
(23) 3.0, 0) = [ DD g (o, y).

{tsSzsysa}

Using this theorem, we may compute
(29) P{T™(t) = b} = ., b)
and
(25) P{U@) £ b} = lim &,(b, b)

n—0

Another approach to the problem of characterizing the distribution of U(f)
involves the wave equation. Select a number b which will remain fixed throughout
the discussion. Forf £ rand ¢ £ b

(26) I(t, vy = P{UW £ b |T@®) = 7}.

We shall devote our attention to I(¢, 7) because of its relation to the distribution

of U(). That is given by

P{U®) < b} = f 1, 7) dP{T() < 1)

(27) rzt
= I(t, ©) dle™™ 1 4 I(t, e,

>t

Theorem 4.3. Fort < 7 = b the function I(t, 7) satisfies the following relations:
(28) I(t, ©) = —K(De"""” where K(v) = 0
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and
(29) I..(t, v = h({¢, nI(, 7).
The function K(x) is determined by

(30) fb K(z)e"* dy = 1 — "Dl
¢
and I is determined by K and the fact that I(t, t) = 1. That is to say,
@31) 16,9 = 1= [ K@ ay.
Proof: Since T is a Markoff process, we havefort <, £r < b

(32) 14, 1) = f

v

G, y) dP{T@) = y [TQ) = 7).

In the appendix rigorous proofs are given for a generalization of this problem
to show that I(#, 7) is increasing in #, decreasing in =, left continuous in both,
and that a generalized form of Theorem 4.3 applies (see Lemmas 8.5 and 8.6
of the appendix). We prefer to give a rather formal proof here, assuming con-
tinuity and differentiability where needed. Equation (32) is equivalent to

(3 100 = [ T, dle 0T 4 I e e,
y>r

Differentiating formally,
(34) Ir(tr 7’) = I-r(tl » T)e-[h(hﬂ)_hu‘r)]

and equations (28) and (29) follow. It is interesting that equation (29) is a form
of the wave equation. (The fact that K is positive follows from the monotonicity
proved in the appendix.) The boundary conditions which determine the solution
of the wave equation are the values of I along { = 7 and along r = b. These are

35) It =1 for t£b
and
(36) I(t, ) = P{T(b) = b |T(t) = b} = ¢ HD-re.0)1

Equation (31) follows from (28) and (35). The boundary condition (36) now
yields equation (30) which determines K.
Theorem 4.4 furnishes an expression for P{U({) = b} in terms of K(z).

Theorem 4.4.

@7 P{UW < b} = e + [ " K(2) dr.



572 H. CHERNOFF & J. F. DALY

Proof: Formally we may integrate one of the integrals of (27) by parts and
apply (36). (See Lemma 8.7 of the appendix.)

One may be interested in the distribution of shade given the starting point
of an interval of shade. Here we are interested in

P*= limP{Ut+ SbITW = ¢, T4+ > { + ¢,

e—0+

b

lim It+ ey dP{TC+ o Sy |[TH=1,

>0+ Ji+

P*

I

T+ e >t + €},
PiT4+ e fy|T@W) =, T(t+ ¢ > t+ ¢

(38) _ 6—[h(l+e,y)—h(t,y)] — e-[h(t+e,t+e)—h(t,t+s)]
- 1 — e Ure v =Rt tra) ’
h(t, 3)

PIT(t+ 9 SylT() = 4, T+ 9 > L+ ef =1 — 7=,

p* = f‘b 1(t, y) d[l - hﬁ%%]

- I, b)[l — ’;;t((‘t’, ’3] + [ b [1 - %%%]e“"”l{(y) dy,

and we have

Theorem 4.5.

TP h(t b)] fb [ h(t y)] :
R A RURIEE YEN Y _ ) _ y Y) L rce,w
(39) P e l:l h( D) + t 1 Bt 1) e K(y) dy.
A generalization of this result is given in Lemima 8.8 of the appendix.

Because of the relatively complicated form of A(f, 7) no effort will be made
here for a more specific evaluation in this problem where the shade is cast by

disks.

5. Extensions of the Problem and Applications. The characterization of
the distribution of U(f) in Section 4 depends on the applicability of Theorem
4.1. In turn, Theorem 4.1 depends on the assumption that given two non-
overlapping sets, the events that there are no disk centers in these sets are
independent events.

Suppose now that the disk radii are not constant but have a distribution
given by the density f(r). Disk radii are assumed independent of the location
of the center. Intuitively, we know that two disks of equal radii cast different
size shadows depending on the location of their centers. It would be surprising
if the assumption of fixed radius were basic to our approach. In fact, let us
represent a disk by a point in three-dimensional space, where the first two
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coordinates of the point are the location x of the center of the disk and the
third is the radius r. Then the event that { is unshaded is the event that no disk
centers are in

R = {(z,n): 8z, tP) <r}.

The numbers of disk centers in non-overlapping three-dimensional sets B; and
R, are independent Poisson variables with means given by

A S da dr, 1= 1,2.
RB;

Hence
P{te8) = exp {— xf () da dr}.
Similarly,
(40) P{[t,a] C 8} =¢*"?
where
(41) ﬂg@::xj‘ 1) da dr
G(t,a)
and
(42) G, a) = {(z,n): 8(z, AtPa) < r}.

We may also extend Definitions 3.5 and 3.6 to

Definition 5.1.
(43) H(t, 0) = {(z,7): 8(x, tP) < r,8(z,aP) <r} for t=Za
and

Definition 5.2.

(44) h(t, @) = A f,m ) do dr.

In fact, our methods and results would still be valid if we applied

Definition 5.3.

(45) i, a) = )\f dulz, 1)
H({t,a)
where p represents a measure on (x, r)-space which yields the expected number of

disk centers corresponding to sets in the (x, r)-space.

This permits us to treat, among others, the case where the distribution of
disk centers may be confined to a region between L and a paralle]l line L’. This
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latter case is of special interest if we wish to let P go to «. In fact, if P goes
to « and disks are randomly distributed between L and L’,the U and T processes
become stationary.

Another case of interest is that where the disks are replaced by line segments
of length 2r parallel to L. While there is positive probability that P is covered
by a disk (in the original problem) and the line L is completely shaded, this
is not the case for the problem with disks replaced by line segments. In fact,
this latter problem with the point P at « is equivalent to those which arise in
certain counter and traffic problems. In this problem the definition of § must
be modified so that é(x, E) represents the horizontal distance from z to E.

To be more specific, let us state several problems and elaborate on them
somewhat.

Problem I: (Type II Counter)

Several types of counters are used to count the rate at which particles are
emitted by a specimen of radioactive material. A type II counter is one where
each particle gives rise to a dead time which begins at the emission and during
which no other particles will be counted. However, a particle will give rise to
the dead time whether it is or is not counted. We assume that the lengths of
dead times are random variables distributed independently of time of emission
or of the state of the counter (dead or otherwise) at the time of emission. We
are interested in the distribution of the number of counts in a given period of
time.

This problem may be phrased as a shadow problem. Let P go to «. Let
shadows be cast by line segments of length ¢ (dead time) whose centers (and
therefore whose left hand end points) are randomly distributed along a line L’
parallel to L. That is, the number of centers in an interval of length a along L’
is a Poisson variate with mean Aa. Then the dead time for a particle corresponds
to the shade cast by an interval. The number of counts between times ¢, and ¢,
would be the number of shadows between ¢, and £, (unless the point {, is shaded,
in which case we subtract one). The standard tool in finding the distribution
of this number was developed by Frrier [2] and applied by others (e.g.,
HammersLey [3],Takics [1]) and makes basic use of the distribution of the
length of shadows. TakAcs obtained the characteristic function of this distri-
bution and by a limiting argument the distribution of U() also. His approach
permits him to treat type I counters also and seems to be substantially different
from ours. We shall later indicate how his results for type II counters can be
obtained also by our methods.

Problem II: (Circular Counter Problem)

Hamversuey felt it was convenint to replace the random intervals of shade
on the line L by random intervals on a circle C. Here again the approach we
have used would be applicable. Replace L by the circle C and P by the center
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of the circle. For the counter problem the intervals which cast shade may be
assumed to lie on a concentric circle C’. The same methods apply as before.

Problem III: (Traffic Problem)

A man wishes to cross a busy highway. If there is only one lane of traffic
and it takes him ¢ seconds to cross, he must start ¢ seconds before a car reaches
the crossing point. If the traffic flow is free, the arrival times are randomly
distributed. A car arriving at time ¢ produces a shadow from ¢ — ¢ to ¢ during
which the man may not start to cross. U(f) represents the time he must wait
if he arrives at time ¢. This problem is equivalent to the type II counter problem
with fixed dead time. However, it may be modified somewhat. First, we may
introduce several lanes of traffic. This case is still equivalent to the type II
counter problem with fixed dead time. Second, we may introduce a non-station-
arity by assuming that the rate of flow changes with time. Thus the number of
cars arriving between #, and #, is a Poisson variable with mean [;* f(z)dz. This
problem does not seem to be solvable by the method of TaxAcs. Finally, we
may modify the distribution of times at which cars reach the crossing point
just so long as the probability of no car arriving in either of two non-overlapping
time intervals is the produet of the probabilities for each of the time intervals.
Thus, our method is applicable to cases where certain arrival times are known.

Problem IV: (Shadows Cast by Intervals in the Plane)

Here we return to the problem where P is a finite point and intervals of
length 2r parallel to L are randomly distributed throughout the plane, casting
shade on L. Suppose that the number of centers in a set B of points (z, r) is
given by

\ f 16 da dr

where f(r) is the density distribution of the radii of the intervals. It is interesting
that in this problem 7'(f) and U(#) have stationary distributions. The basic
“cause” of this result is the fact that the length of shade cast by an interval
depends only on (1) its length and (2) the vertical distances from the interval
to L and P, and does not depend on the horizontal distance of the interval to P.

In fact, if we assume the vertical distance from P to L is one, half the length
of shade cast by a random interval has distribution

(46 70 = 3 [ ofo) ds

and thus Problem IV is equivalent to a type Il counter problem.

6. The Type II Counter Problem. Here we shall briefly indicate how our
method yields Tar£cs’ results for type II counters. Basic to FELLER’S approach
are the probability distributions of U(f), of lim..,. U(f 4+ €) given that the
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counter was ‘“alive’”’ when a particle was emitted at time , and of their Laplace
transforms.

As indicated in the appendix, the basic expression required is h(f, 7) which
represents the expected number of particles emitted at a time before ¢ with
accompanying dead time extending past 7. If the length ¢ of dead time has
density f(c¢) and particles are emitted at a rate A, then

(47) Wt = [ Ok = (= 0lde = (s = )

48) Mo, = [ " o0 de = a

which we assume finite.

(49) h(t, ) = A fi fl©)de = AP{c > r — i} = A1 — Q(r — D]
using TakAcs’ definition of @(e.d.f. of ¢)
50 ht, 7) = h*¥(r — ) = A -+ A ‘/;f—t 1 — Q)] dx.

Since U(?) is a stationary process,
PiU® £t + 2} = P{UQ) £ =} = P{UD — ) £ b}.

Applying Theorem 4.4, it follows that the distribution of U(0) consists of the
discrete part which assumes the value 0 with probability e and the continuous

part which has density

(51) fi@) = Kb — 2).
Let

(52) fala) = "
and

(53) fol) = 1 — g7

and let their Laplace transforms be ¢, , ¢, , and ¢; , respectively. Equation
(30) states that f; is the convolution of f; and f. . Hence

_ 29
(54) ¢’1(3) = q02(8)

But the Laplace transform of dP {U(0) = x} is given by

o) = [ dP{UO) S ) = ™+ ).
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1
P ‘I‘(S) —Au
(55) B ¥ S — e
ol = + ™ y(s) s¥(s)
where
(56) Y = fw e gy

This result coincides with that of Tax4ics. Of course, the distribution of U can
be obtained by inverting ¢.
To evaluate the distribution of lengths of shadows we note that

P*z) = lim P{UD — 2+ ¢ £ 0T — 2) = b— =,
(57) T(h — x+¢ > b — 2+ ¢
— e—ku+h*(z) [Q(ac)] + ‘/: Q(x _ u)eh*(z—u)fl(u) du.
Let
(58) fd®) = Q)™

and ¢,(s) be its Laplace transform. Then the Laplace transform of P*(z) is

o*(s) = §04(3)3_M + 04()ei(s)

1
- %(s)l:e'“' + s ¢(S)j| _ e .

e Y(s) s¥(s)
But
f4(.’l)) — e)\u{e—)\u+h*(z) + %_gg [6_)‘"4—}”(1)]} ,
euls) = 6“{11/(8) + f ¥(s) — %} )
and hence
(59) o) = ATV — 1

Asy(s)

which result is the same as that of TaxAcs.
7. Traffic Problem with Decreasing Flow of Traffic. Representing each

car by an interval of shade length ¢, let us assume that the number of cars which
arrive at a point between times ¢, and #, has a Poisson distribution with mean

ta
)\f ldac = )\log(&> for 0< bt <ty.
t, & t
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Then

(60) h(t,f)=>\f idx=>\log<t+c

T

) for t=rZt+e,7v>0.

Applying Theorem 4.3, we have

b A by
/ K(x)<t-|jc> do = 1-(;’)iz> for b—c<t=<b
(61) ' ’
t+e A A
ft K(x)(t_;c>dx=1——<3—_%z> for —c<it=£b—ec
Differentiating K() = M/ + ¢)* ' forb — ¢ <t £ b,
K@ _ Kt +9 A [ _ (_b__ >] _ ~
(62) t)\ = (t + C))\ (t + C)M—l 1 b + P for e <t = b C.
In general

(63) K@) = {[1 B <b —ZI)— cy] : (t +1jc)“‘ + (¢ +1ic>“1}

for b<ti+icsb+ec, > —c¢
and we can evaluate P{U(f) < b} by integrating. That is,

64) PIUW) < b} = (b i C)x + f‘b K@) du.

8. Appendix. We shall give rigorous proofs of the results which were heuristi-
cally established in section 4. At the same time these proofs will apply to a very
general scheme of shadows. These shadows need not be cast by disks. The
distribution of shadows need not be so strongly tied in with the Poisson distri-
bution. In faect, in this general scheme, it is possible to have certain shadows
occur with certainty. While the arguments do not apply to shadows cast on a
circle, they can be modified to do so without much difficulty. It should be noted
that the shadows are open intervals and thus two abutting shadows must be
considered as separate and non-overlapping shadows. Furthermore, we shall
not assume that the shadows are bounded nor shall we assume that it is always
possible for a shadow to cover any two points ¢ and b.

There is a non-negative measure u defined on a Borel field of subsets of a
space Z of elements z. There is a function (u(z), v(2)) defined on Z to the set of
points {(u, v): 4 < v £ o }. The point (u, v) respresents the open shadow from
u to v. We say that the points of the interval (u(z), v(2)) are shaded when the
point z is “occupied”.

Definition 8.1. Let
(65) Hi, 7 ={z:u@@ <tz r<v@} for t= 7.
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Lemma 8.1.
(a) H(t, 1) is increasing' in ¢ and decreasing in r,
(b) H(, 7) is left continuous in t and right continuous in 7.

The proof is trivial and is omitted.

Assumption 1. We assume that the sets H(t, ) are measurable. (This is equiva-
lent fo the statement thatl the function (u(z), v(2)) s a Borel measurable funciion
on Z.) We also assume that the probability that there are no occupied poinis in a
measurable set A is given by e+,

Definition 8.2. Let
(66) M, 7) = plH(E, 7).

Lemma 8.2.

(a) h(, 7) is increasing in ¢ and decreasing in 7.
(b) h(¢, 7) s left continuous in ¢ and right continuous in .

The proof is trivial and will be omitted.

It is evident that Theorem 4.1 applies.” In fact, the argument is relatively
easy to visualize by referring to the space {(u, v): u < v}. To permit us to treat
the case where 7'(f) may be bounded, we introduce

Definition 8.3. Let
(67) p(t) = inf {z: P{T() < x} = 1}.

Then I(¢, 7) isdefined for ¢ £ 7 < p(f) and possibly for 7 = p(f). Since I{{, 7) = 0
for b < 7, we shall investigate I(¢, 7) for

t < 7 < min (p(?), b).
Lemma 8.3. I(l, 1) is increasing in ¢ and decreasing in 7.

Proof: The proof will consist of showing that if 7'(f) is increased, the con-
ditional distribution of T® is shifted to the right. Similarly, those of 7',
T, ... are shifted to the right and finally I(¢, 7) = I(¢, r + 6). If t* < ¢ and
if in two realizations of the stochastic process we have T(f*) = 7 and T(¥) = r,
respectively, then the conditional distribution of T (#*) = T(r) in the first
is to the right of 7*”(#) = T(s) in the second. The same argument as before
now gives I(¢*, ) £ I(¢, 7). More specifically,

P{TQ) = 2|T() = 7}

1 We use the term increasing to mean non-decreasing as distingushed from strictly increasing.

2In this theorem the term i(t, , a) — h(f , a) may be undefined since both i(# , @) and k(% , a)
may be . In this case we should interpret the difference as u[H (¢, a) — H{(t , a)]. Here T(2)
is defined essentially as in section 3. That is, 7'(¢) = ¢ if ¢ is unshaded. Otherwise T'(f) = sup
fr(@)u(z) <t < ve),ecZ}.
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and
P{T®(@) £ 2|T(t) = =} = P{T(s) £ |T(®) = 7} = g T it D]

are decreasing in 7. Suppose P{T‘’(}) < z |T(f) = =} is descreasing in r for
2 = n — 1 and n. Then

PO S 4T = 7} = [ PIT™0 £ 2T = 3, T0) = 1)

[AP{T™ () < y|T@) = 7}

is decreasing in 7 if P{T™*® £ z|T™@®)
y and 7. But this latter expression is equal to

y, T(}) = 7} is decreasing in

f P{T("+1)(t) § IIT(n)(t) =y, T(n—l)(t) — y*} dP{T("_l)(t) é y*IT(t) —_ 7’}

— f e—[h(v,r)—h(u*,z)] dP{T(n—l)(t) < y*lT(t) = 7'}’
A

which is decreasing in ¥ and r. Hence

(68) I(t, 7) = lim P{T™ (@) < 2|T®) = 7}

n—w®

is decreasing in 7. Now
P{T®(@) £ ¢ |T(®) = 7} = P{T(7) £ «|T(t) = 7} = ¢ 2702
is increasing in ¢. Suppose P{T"™ (1) < z|T(f) = r} is increasing in {. Then
P(T™P(1) £ «|T() = r}
= [ PII"0 s4i1() = v} aPITG) S |70 = 1)

is increasing in ¢ and hence so is I(¢, 7).

Lemma 8.4. I(, 7) is left continuous in t and .
Proof: Fort £ 1
It 7) = [ I, ) dP{T() S 4IT(0) = 7)
(69) =T
— f I(’r, y) d[e—[h(r.y)—h(t.y)]].
uzT

Since h(t, y) is left continuous in ¢ and I(r, ¥) is monotone in y and therefore
has for discontinuities a denumerable set of jumps, it follows that [ is left con-
tinuous in .
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Fori<r—6<r

O0sI(r— 08— I 7n=A,+ A, + A,
where

A= [ TG = by dlehetee
T—d<ygT

A2 — e-—[h(T—B,T—-E)—-h(t,'r—-ﬁ)] - e-—[h('r,'r)—-h(t,'r)]

A3 - f I(T —_ 5’ y) d[e—[h(r—a,y)—h(t,y)l] —_ f
y>7

u>

I(T y) d[e—lh(r.u)—h(t.u)l].

But

A < e—[h(‘r—&,f)—h(t.'r)] _ e-—[h(-r——B.‘r—S)—h(t,‘r-—B)]
1 =

lim sup (4; -+ 4,) £0

-0+

—UR(r—8,5) —h(E, —LhCrouY—ht,
A, f (7, y) dle" =80 =hED1 _ pmtemmhtenly g
y>r

and the desired result follows.
If I(¢, p(t)) is not defined, Lemma 8.4 permits us to extend the definition of
I, v) by I{t, p(£)) = lim I{¢, 7).

T (t)—

Lemma 8.5. Taking differentials with respect to t there is a decreasing left
continuous function A(r) such that

(70) dI(¢, 7) = "7 dA(d).2
Proof: Lett <t, S+t —8<m.

I, = [ 1,9 dPiTe) S 4170 = 7,
(71) vaT

I(t, 7_) —_ f I(tl , y) d[e—lh(h.u)—h(t,u)l] + I(tl , T)e-lh(h.f)~h(t,'r)l.
y>T

It follows that

¢, 7 — 8) — I(t, 7] = f Uty , ) — It , )] dle~ e

r=8<y<r

+ [I(tl , T — 6) _ I(tl , T)]e-—[h(h.f—-B)—h(!,r—ﬁ)l’

SU, T — 9 = 16, 9] =

O | =

U, 7 — 8 — It , D]

. [e——[h(h,'r—-)—h(t.‘r-)l + 0(1)].

3h(t, r — ) represents lim,.,,_ h{t, y).
h(t, t — ) represents lim«_, .. A(t*, t—).
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Hence
IR di(t, 7) = ghtnT) aIt, , )

and the result follows for # < 7. For { = = we need only apply the monotonicity
properties of I and the left continuity of I(¢, 7) in £.

Definition 8.3a. Let

(72) p (@) = p[p" V()]
(73) p*(®) = min (®(4), b)
(74) i* = inf {z: U(x) can exceed b}.

Since T(#*) = t*, we are not interested in A(y) for y = ¢*.

Lemma 8.6. Fori* <t b

(75) _ RICRY dAG) = 1 — o 1A D) =R E.B)]
t5y<b

where

(76) a(t7 y) = h(t7 y—) fOT y < p(t)

alt, y) = h(p” (), y=) — k(T @),y) for p7() =y < o"TV().
Proof: We shall use the facts that if = = p(¢), h(t, ) = 0 and that if U(¥)

can exceed b, p™ (t) > b for some finite n. Now
@) I, ) = P{T®) = b |T() = b} = e "ONCD1 i o) 2 b,
But

14,0 — 1= I, b) — I(t, §) = f 4 dA®)

tsy<d

which is the desired result for p(f) = b. If p(t) < b but U(?) can exceed b,

1, o) = [ 169, 1) dP{T(p()) S YIT() = p(9)

HOFETRIC)]

I(¢, p(D) = I(p(D), p*(B)e o™ — f R O
(78) Pl Sy<p * (D)

1, p(®) = T(p(0), pr@)e =0 ~ [ e dA).
p(t)su<p*(?)

Suppose p™ () < b £ p™ (£). Then

I(t, p(t) = I(e™ (1), b7 — f e dA(y)
(79) p(t)Su<b

I(t, p(t)) = e—lh(b,b)~h(1,b)] - f ea(t.u) dA(y).
p(t)Sy<b
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But

It o)) = 1= 1, o) = 16,9 = [ &% dAG),

t=u<p(t)

and the desired result follows. Now suppose * = inf {z: U(x) can exceed b}.
Then T(#*) = t*,I(f, r) = 1forallt £ ¢* and

Lemma 8.7.
(80) P{U(t) < b} — e-—h(b.b) _ f ec(t,y) dA(y)
t2y<d
where
(81) ety y) = Mt y—) — h(t,y) for t =y < p)

= a(t, y) for (1) £y
Proof: Suppose p(f) > b. Integrating

(82) PU® = b} = [ 1,9 dPTO) < 3)

by parts, we have the desired result. Now suppose o{f) = b. Our integration
yields

PUUW S b) = 10 o0) = [ & a4
tsy<p ()
Applying (79) and remembering that h(f, b) = 0, we have our result.

Lemma 8.8. The distribution of the length of a shade interval, given that ¢ is
the initial point of the inferval, is given by

(83) P* = PO ROEDT Br By — lim d.(t, y) dA(y)
€0+ t+esy<b
where
D,y = 1i§n D(t, y)
e—[h(e+e,u)—h(t.u)l . e—[h(t+e.t+e)——h(t.t+e)]
84 Dt y) = 1 — - UFetra-ht 40l
(85) dt, y) = " for y > plt+¢

Aty ) = D, ™7 for t4e <y = p(t+ 9.

The proof of this lemma, is similar to that of Lemma 8.7.
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