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Introduction

Species occupancy is typically measured as the number of cells occupied by

the species in a study area. Because it is easy to document and interpret and

it correlates with species abundance, occupancy is widely used for measur-

ing species rarity and for assessing extinction risk on which conservation

decisions are made (Gaston, 1994; Fagan et al., 2002; Hartley & Kunin, 2003;

Wilson et al., 2004). Ecologists and conservation practitioners, however, have

long realized that occupancy often fails to capture significant spatial features

of distribution. It is possible that two species having the same occupancy

can exhibit very different patterns (Fig. 3.1). Most species in nature are dis-

cretely distributed due to the patchiness of landscapes, or due to intrinsic

reproductive or dispersal behavior of the species. An outstanding problem

concerning species distribution in space is how to describe the patchiness of

a species and to measure the effect of changing spatial scale (cell size) on

the patchiness for the purpose of predicting distribution at fine scales from

coarse scales.

There are two primary approaches to addressing this question. The first one

is to use existing measures and methods to describe patchiness and scale

effect. Many fragmentation indices in landscape ecology can be used for this

purpose (Turner, Gardner & O’Neill, 2001; Wu et al., 2003). These include edge

length (perimeter), the number of patches, perimeter/area ratio and many

other indices to capture the spatial features of species distribution. An inter-

esting development on this front is the percolation models for edge length

and the number of patches proposed by He and Hubbell (2003). These models

unify edge length, the number of patches, spatial scale and abundance and

show that the edge length and number of patches of a distribution can accu-

rately be predicted by the abundance of the species and the degree of frag-

mentation. These models are useful for analyzing and comparing species

distributions.
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The second approach is to search for scale invariant properties of species

distributions. This includes investigating fractal distribution of species (Kunin,

1998; Kunin, Hartley & Lennon, 2000; Hartley et al., 2004) and employing the

negative binomial distribution to quantify and estimate species abundances

from coarse-scale distribution maps (He & Gaston, 2000; He, Gaston & Wu,

2002). The fractal method has been shown to be effective in quantifying distri-

bution fragmentation and useful for assessing extinction risk of species, parti-

cularly of rare species (Fagan et al., 2002; Wilson et al., 2004). However, these

methods meet with limited success in measuring species distributions and

estimating abundance, particularly for relatively abundant species (Warren,

McGeoch & Chown, 2003; Witte & Torfs, 2003; Tosh, Reyers & Jaarsveld, 2004).

More often, the negative binomial method underestimates abundances while

the fractal method overestimates (He & Gaston, 2000; Kunin et al., 2000;Warren

et al., 2003; Witte & Torfs, 2003; Tosh et al., 2004). Thus, the question about how

we may predict distributions across multiple spatial scales remains largely

unsolved. The capability to infer distributions across scales is essential for

predicting distribution at fine scales from coarse scales, for determining the

conservation status of species, and for making management plans and reserve

design (Hartley & Kunin, 2003).

The primary objective of this study is to examine the scaling of several

common occupancy–area models and thus identify models that may be inde-

pendent of scale. Scale in this study is referred to as the cell size at which a
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Figure 3.1 Two species of the same occupancy but different distributions, leading to the

difference in the occupancy in the coarse-scale maps and the slope of the occupancy–area

relationship. Note the coarse-scale maps are produced by combining four adjacent cells on

the fine-scale maps. If all the four fine-scale cells are empty, the coarse-scale cell is

designated empty, otherwise occupied.
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distribution is gridded, and occupancy the proportion of grid cells in which a

species is found (Fig. 3.1). First, we introduce several occupancy–area models,

and show that a general model unifies them all. We evaluate the scaling proper-

ties for three of the models, the power-lawmodel, the Nachmanmodel, and the

logistic model, using simulated and empirical data. We then use the three

models to estimate occupancy at a fine scale from occupancy at coarse scales,

and we compare the slope of occupancy versus area between rare and common

species. We conclude with a discussion of the use of the three occupancy–area

models for describing species distribution and for conservation practice.

Occupancy–area models

Plotting species occupancy against spatial scale yields a monotonically increas-

ing curve whose slope is steep at first but gradually becomes flat as scale

increases (Fig. 3.2d). Some of the common occupancy–area models are given

below. In the following p is occupancy (the proportion of occupied area), a is

scale (or cell size), and c, z and k are parameters. While c and z must be positive

k can be any real number.
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Figure 3.2 (a) Distribution of 718 stems of Unonopsis pittieri in a 50ha (1000� 500m) plot

on Barro Colorado Island, Panama. Panels (b) and (c) are the occurrence maps at two

mapping scales, and (d) plots the occupancy–area curve, i.e. the relationship between the

proportion of occupied area of each map and scale (cell size).
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the power-law model (Kunin, 1998): p¼ caz,

the Poisson model (Wright, 1991): p¼1� e�a,

the negative binomial model (He & Gaston, 2000): p ¼ 1� 1þ
a

k

� ��k

,

the Nachman model (Nachman, 1981): p ¼ 1� e�caz ,

the logistic model (Hanski & Gyllenberg, 1997; Leitner & Rosenzweig, 1997):

p ¼
caz

1þ caz
.

These models were originally developed for different purposes by different

authors in the form of occupancy–abundance models. In those occupancy–

abundance models, the occupancy p is of the same interpretation as in the

above occupancy–area models. The only difference is that the scale a is replaced

by mean density � in occupancy–abundance models (see He et al., 2002, for a

detailed description of occupancy–abundance models). Although the derivation

of the above occupancy–area models is largely empirical, the replacement of � by

a is justified because abundance and area are widely found to have a simple linear

relationship (Preston, 1962). For instance, the Poisson occupancy–abundance

model, written as p¼1� e��, was first developed to describe the relationship

between occupancy and abundance (Wright, 1991), the Nachman model was

initially used for predicting agricultural pest density from incidence data

(Nachman, 1981), and the logistic model was for modeling the species–area rela-

tionship (Hanski & Gyllenberg, 1997). These models are now commonly used to

describe occupancy–abundance relationships (Gaston, 1994; He et al., 2002; Holt,

Gaston & He, 2002). Replacing abundance � in occupancy–abundance models

by scale a, we obtain the occupancy–area curves listed in the above.

Interestingly, the five models can all be written with one general form (He

et al., 2002):

p ¼ 1� 1þ
caz

k

� ��k

;

(a) when c¼ z¼1, the general model becomes the negative binomial model;

(b) when k¼�1, it is the power-law model;

(c) when k¼1, it is the logistic model;

(d) when k!�1, it is the Nachman model;

(e) when k!�1 and c¼ z¼ 1, it is the Poisson model.

The application of the power-lawmodel to describing species distribution is first

proposed by Gaston (1994) and Kunin (1998) and has since become widely used.

Beyond this power-lawmodel, however, little is known about the scale-invariant

property of other models. In the following, we examine this property for the

Nachman and the logistic models together with the power-law model because

they have similar linear forms, as given below.
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the power-law model: logðpÞ ¼ logðcÞ þ z logðaÞ, (3:1)

the Nachman model: log½�logð1� pÞ� ¼ logðcÞ þ z logðaÞ, (3:2)

the logistic model: log
p

1� p

� �

¼ logðcÞ þ z logðaÞ: (3:3)

These three models have the same right-hand terms but differ in their left-hand

term. Although the slopes of the three models are not equal, they do change in

the same direction, i.e. for a given occupancy if z value is high for the power

model, the z values for the Nachman and the logistic models are also high. For a

given occupancy at a fine scale small slopes indicate more aggregated distri-

bution, while large slopes suggest more scattered distribution, as illustrated

by Fig. 3.1.

Testing the models

Three sets of data were used to test the performance of models 3.1–3.3: simu-

lated fractal distributions, the local distributions of 301 tree populations in a

50ha stem-mapped plot from Panama, and the regional distributions of 407 rare

plant species of the United Kingdom.

Random and fractal simulations

Neutral landscape models (Gardner et al., 1987) were used to generate species

distributions in an area of size¼ 256�256 cells. The probability of being occu-

pied or empty of each cell was determined by p. The neutral distribution models

used here include simple random maps and fractal maps. In the simple random

maps occupied/empty state of a cell is independent of any other cells, while in

the fractal maps occupancy of a cell is spatially correlated with its neighboring

cells. The fractal distributions were generated using the random midpoint

displacement algorithm (Saupe, 1988). Spatial correlation of a map (i.e. the

variance between locations separated by distance x) approximately equals

x2H. VaryingH from0 to 1 corresponds to varying the distribution from extremely

scattered to highly aggregated (With, Gardner & Turner, 1997; Turner et al., 2001).

To illustrate scale effect on distribution, we used a random (lattice) map and a

fractal (lattice)mapwithH¼0.1 and calculated occupancy using a pixel size of 1,

2, 4, 8, . . ., up to 256 (Fig. 3.3). The relationship between occupancy and scale is

shown in Fig. 3.3 for each of themodels. Although the power-law occupancy–area

curve is linear at small scales, there is apparent curvature when a map

approaches saturation (Fig. 3.3a). This curvature has traditionally been explained

by the process of space filling near saturation due to finite study area. This

concave-down curvature suggests that coarse-scale maps are not useful for esti-

mating occupancy at fine scales. The departure from linearity will overestimate

occupancywhen extrapolating to smaller scales. The approximate linearity of the
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Nachman model (Fig. 3.3b) suggests it is a better model for describing the scale

dependence, and the linearity seems to hold reasonably well even at near satu-

ration of distribution. The logistic model (Fig. 3.3c) shows concave-up, meaning it

will underestimate occupancy if used to extrapolate to smaller scales. The relative
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Figure 3.3 Two simulated distributions at extent 256� 256 cells and their occupancy–area

curves. (1) First row shows the simple random maps at three scales: cell size¼ 2� 2, 4� 4

and 8� 8. Coarse-scale maps are aggregated from fine-scale maps. The second row shows

occupancy–area curves corresponding to the power-law model (a), the Nachman model

(b), and the logisticmodel (c). (2) The fractal distribution simulated withH¼ 0.1 and its three

corresponding occupancy–area curves.
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performances of the three models remain the same for fractal maps simulated

using other H values (results are not shown).

Species distributions at the local scale

We now test the performance of models (3.1–3.3) using real distributions of tree

species in a tropical rain forest on Barro Colorado Island (BCI) of Panama

(Hubbell & Foster, 1983; Condit, Hubbell & Foster, 1996; also see http://

ctfs.si.edu/datasets). In 1981 a 50ha (1000�500m) forest plot on BCI was estab-

lished. In the plot, all free-standing trees and shrubs �1 cm diameter at breast

height were enumerated, individually located on a reference map, and identi-

fied to species. Five field censuses have so far been surveyed. The data from the

1990 census are used in this study where there are 229 048 stems belonging to

301 species with the most abundant species having 36 060 stems.

We converted the distribution of each of the 301 species into an occurrence

map for a given scale as for Unonopsis pittieri shown in Fig. 3.2. Occurrence maps

at eight spatial scales, a¼2� 2, 5�5, 10�10, 20� 20, 25� 25, 50� 50,

100� 100 and 250� 250m, were produced. Models (3.1–3.3) were then fitted

to the occupancy data for each of the 301 species. Note that although there are

eight occurrence maps (at the eight scales) for each species, coarse-scale maps,

e.g. at 100�100 and 250�250m, may be saturated. Saturated maps contain no

effective information on species distribution and are thus excluded in the

analysis.

Two criteria were used tomeasure the goodness-of-fit of amodel. The first one

is the R2 of the log-transformed linear models. The second criterion is the mean

squared errors between the log-transformed observed and predicted occupied

areas, defined as MSE ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

logðxiÞ � logðx̂iÞ½ �2

s

, where n is the number of

scales, xi is observed occupied area (in m2) at the ith scale, and x̂i is the predicted

occupied area. This prediction was obtained from each of the three models

(3.1–3.3) by multiplying the predicted occupancy p̂ by 500000m2 (the total

study area).

Distributions of three species and their occupancy–area curves are shown in

Fig. 3.4. The Nachman model describes well the scale dependence of species

distribution and is clearly superior to the power and logistic models. The shapes

of the curves in Fig. 3.4 precisely reflect those simulated in Fig. 3.3: concave-

down for the power-law model, more or less linear for the Nachmanmodel, but

concave-up for the logistic model. It is worth noting that this general finding

also applies to all the BCI species except those rare species with abundance<50.

The three models work approximately equally well to those rare species.

To provide an overall judgment on howwell the threemodels fit the BCI data,

the histograms of the R2 and MSE for the log-log linear models (3.1–3.3) are
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plotted in Fig. 3.5. It is clear that the Nachman model has the largest overall R2

and lowestMSE. The second best model is the logistic model and the power-law

model is least satisfactory.

Species distributions at the regional scale

The performance of models (3.1–3.3) was also tested and compared using 407

rare plant species from the UK (Kunin, 1998; Hartley et al., 2004). Each species

was mapped at seven scales with cell size¼1� 1, 2� 2, 5� 5, 10� 10, 20�20,

50� 50 and 100�100km. The occupancy–area curves for three of the species

are shown in Fig. 3.6; most of the curves show a slight concave-down shape,

which differs from the simulations (Fig. 3.3) and the local-scale BCI data (Fig. 3.4).

Previous studies have shown that these UK plant species could be adequately

modeled by the power model (Kunin, 1998; Hartley et al., 2004). Our results in

Fig. 3.7 support this conclusion. As judged by R2 and the MSE, all the three

models describe the occupancy–area curves sufficiently well. There is no defi-

nite superior model although the Nachman seems to perform slightly better

than the other twomodels. The indistinguishable results are probably due to the

fact that the UK plants are rare species.
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Figure 3.4 Distributions of three BCI species and their occupancy–area curves. The shape of the

power model is typically concave-up, while the logistic model concave-down. The Nachman

model seems to be approximately linear. The x-axis of the occupancy–area curves is log(scale),

the y-axis is log(p) for the powermodel (second column), log[�log(1� p)] for theNachmanmodel

(third column), and log[p/(1�p)] for the logistic model (fourth column). Here p is occupancy.
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Estimating occupancy at fine scales from the occupancy

at coarse scales

We now turn to use models (3.1–3.3) to estimate occupancy at fine scales from

the occupancy at coarse scales for both the BCI and UK data. Two predictions are

made here. The first prediction uses the two maps at the coarsest unsaturated

scales to predict occupancy at a very fine scale. For most BCI species, this means

to use maps at 50�50 and 100�100m to predict occupancy at 2�2m. For

highly abundant species (>3000 trees) the coarsest unsaturated maps are at

25� 25 and 50�50m. For the UK rare species, the coarsest unsaturated maps

are 50�50 and 100�100km. They were used to estimate occupancy at

1� 1km. We also repeated the estimation but used the three (instead of two)

coarsest maps to estimate occupancy at 2� 2m in the case of the BCI species

and occupancy at 1�1km in the case of the UK species.

The power-law model predicts occupancy well for rare BCI species at 2� 2m

(Fig. 3.8), but overestimates for abundant species because of the curvature in the
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Figure 3.5 Histograms of R2 and MSE (mean squared errors) indicating the goodness-of-fit

of the three models (3.1–3.3) fitting to each of the 301 species distributions. High R2 or low

MSE suggests a good fit of a model.
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occupancy–area curves (Figs. 3.3 and 3.4). In contrast, the logistic model under-

estimates due to the opposite curvature (Figs. 3.3 and 3.4). The Nachman model

lies in themiddle between the power and logisticmodels and is superior to both,

although there is some degree of overestimation. Estimation is much improved

by using three maps (Fig. 3.8, bottom row) although this does not change the

relative performance of the three models. This result suggests that we should

aggregate as many maps as possible (up to saturation) from an observed distri-

bution in order to accurately scale down occupancy at fine scales. Every map up

to saturation helps increase accuracy. The Nachman model has the smallest

deviation from the observed occupancy (Table 3.1).
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Figure 3.6. Occupancy–area curves for three plant species from the UK. The number of

occupied cells of the base map (i.e. the map at the finest scale of 1� 1km) is 39, 99 and 217

forNuphar pumila, Dryas octopetala and Thesium humifusum, respectively. The first column is the

power model, the y-axis is log(p). The second column is the Nachman model with y-axis

log[�log(1� p)]. The third column is the logistic model with y-axis log[p/(1� p)].
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Although a similar result is also observed from the UK data, the difference in

the estimation accuracy among the three models is much smaller (Table 3.1,

Fig. 3.9). None of the models satisfactorily estimates the occupancy at 1� 1km

from the two coarsest maps, although their performance is substantially

improved by using three coarsest maps (Fig. 3.9). Overall, the power model

still relatively overestimates the occupancy compared with the Nachman

model, while the logistic model underestimates it.

Comparing the slope between rare and common species

If there is a difference in distribution between rare and common species, the

difference should be manifest in the slope of an occupancy–area curve. In other

words, the z values of the three models (3.1–3.3) should be correlated with

abundance. This correlation is inevitable for abundant species that cover more

than 25% of the study area (25% because four fine cells are combined into one

coarse cell when scaling up distribution). However, in BCI the most abundant
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Figure 3.7 Histograms of R2 and MSE indicating the goodness-of-fit of the three

models (3.1–3.3) fitting to each of the 407 UK plant distributions. High R2 or low MSE

means a good fit of a model.
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species Ampea appendiculata only has 22.89% occupancy at scale 2� 2m. All the

UK plants are rare species, their occupancies are much smaller. Therefore, the

slope of an occupancy–area curve for the BCI and UK species should, to a degree,

reflect the difference in distribution between rare and common species.

Because abundances for the UK species are unknown, to be consistent we use

the occupancy at the finest scale as a proxy for abundance in both data. This

means the occupancy at 2�2m for the BCI species and occupancy at 1� 1km

for the UK species. The relationships between z and abundance of the species
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Figure 3.8 Log-log plot for the estimated occupied area versus the observed area at 2� 2m

scale for the 301 BCI species. The first row is the estimation made from the two coarsest

unsaturated maps. The second row is the estimation made from the three coarsest

unsaturated maps. Each point represents a species. The crosses are the occupied area

estimated from the Nachman model, the filled dots are either from the power model or

from the logistic model. If the estimation is accurate, all the points should lie on the

diagonal line.
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show that slopes indeed differ between rare and common species (Fig. 3.10). The

figure also shows the slopes of the BCI species expected by random distribution

of the occupied cells over the 50ha plot. The power and Nachman models

consistently predict higher slopes for rare species than for common species.

The result for the logisticmodel is less consistent. For the BCI species the logistic

model shows that slopes are relatively constant for most species, but for the UK

species they decrease with abundance.

Discussion

Knowledge about spatial distribution is essential for studying macroecological

biodiversity patterns (Gaston, 1994; Gaston & Blackburn, 2000), for predicting

the distribution of species in areas where observations are not available

(Heikkinen & Högmander, 1994; MacKenzie et al., 2002; Raxworthy et al.,

2003), for understanding environmental determination of species distribution

(Currie, 1991; Lennon, Greenwoord & Turner, 2000; He, Zhou & Zhu, 2003;

Hurlbert & Haskell, 2003), for assessing the effect of landscape fragmentation

and climate change on extinction (Thomas et al., 2004; Fagan et al., 2005), and for

planning biological conservation priority (Myers et al., 2000). However, the scale

dependence of spatial distributions is sometimes considered as a statistical and

ecological nuisance that prevents the prediction of species distribution across

scales, thus hampering our ability to determine species’ conservation status

across scales.

Our study has enforced this adverse impression and found that the descrip-

tion of species distributions remains elusive and few species are scale indepen-

dent in distribution. There exists no universal, genuinely scale-independent

model applicable to all species across scales, although the Nachman model is

Table 3.1 The ‘‘goodness-of-estimation’’ of the power, Nachman, and logistic

models for estimating the occupancy at 2� 2m for the BCI and at 1� 1 km for

the UK species, estimated from two or three coarse-scaled maps

The goodness is assessed by the mean squared errors MSE ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

logðxiÞ � logð̂xiÞð Þ
2

q

,

where xi is the observed occupied area for the ith species, x̂i is the estimated area and n is the

number of species (n¼ 301 and 407 for the BCI and UK data, respectively).

MSE (BCI species) MSE (UK species)

2 maps 3 maps 2 maps 3 maps

Power model 0.1588 0.115 0.0835 0.0484

Nachman model 0.0942 0.0629 0.0814 0.0438

Logistic model 0.201 0.113 0.109 0.0501
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most robust to scaling effect among the three models we tested. From the

practical point of view, the Nachman model is superior in two aspects. First, it

consistently shows a linear relationship between occupancy and scale up to a

certain level for almost all of the species from both the local BCI trees and the

regional UK rare plants. Simulation results shown in Fig. 3.3 also reveal the

linearity of the Nachman model even at near map saturation (compare the two

nearly perfect lines in Fig. 3.3b against the evident curvature in Fig. 3.3a and

3.3c). Second, the Nachman model is apparently the best model for estimating

occupancy at fine scales from data of coarse scales. The power-law model

log(observed occupancy) log(observed occupancy)
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Figure 3.9 Log-log plot for the estimated occupied area versus the observed area at 1� 1 km

scale for the 407 UK species. The first row is the estimation made from the two coarsest

unsaturated maps. The second row is the estimation made from the three coarsest

unsaturated maps. Each point represents a species. The crosses are the occupied area

estimated from the Nachmanmodel, the filled dots are either from the powermodel or from

the logistic model. If the estimation is perfect, all the points should lie on the diagonal line.
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substantially overestimates the occupancy at fine scales, while the logistic

model underestimates it. The Nachmanmodel lies in the middle despite notice-

able overestimation (Figs. 3.8 and 3.9). It is important to note that estimation is

significantly improved if occupancy is estimated from three or more maps (see

the bottom panels in Figs. 3.8 and 3.9) or if the maps on which the estimation is

based are relatively fine-scaled.

An interesting result of this study is that slopes of the three models (3.1–3.3)

consistently decreasewith abundance except the logistic model for abundant BCI

species (Fig. 3.10). Three implications of this result are in order. First, it suggests

that there are differences in spatial distribution between rare and common

species. Rare species show a tendency of scattered distribution, while common

species tend to be more aggregated. Second, the fact that rare species have

significantly larger slopes than the common species as predicted by the power-

law and Nachman models suggests that rare species fill up space more quickly

than common species when scaling up. As a consequence, determination of

species rarity based on occupancy at coarse scales can be substantially biased

because species of the sameoccupancy at the coarse scalemay have very different

occupancies at the fine scale (i.e. the scaling down in Fig. 3.1), conforming to the
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Figure 3.10 Slope z of the power-law, Nachman and logistic models (3.1–3.3) versus

occupancy at 2� 2m (BCI, the first row) and 1� 1 km (UK, the second row). The curves for

BCI are the slope expected from random distribution. They were calculated by: (i) randomly

allocating the same number of occupied cells at scale 2� 2m for each species over the study

area, (ii) aggregating up by combining four fine cells to form one coarse scale cell, and

(iii) fitting each occupancy–area model to the two scale occupancy–area data. Because only

the overall occupancy is known to us the same expected slope cannot be calculated for

the UK species. The open circles on the two sides are the species of the 1st and 3rd quantiles

of abundance.
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result of Hartley and Kunin (2003). Third, the dependence of the slope on abun-

dance implies that the slope of a scaling model alone is not sufficient to describe

spatial distribution. A good index of spatial pattern ought to be independent of

the abundance of species; it has been amethodological challenge to develop such

a measure in ecology, and scaling models are no exception.

Whether a species is considered fractal is debatable, depending on how fractal

is defined and measured for an empirical distribution which is always of finite

size (Cutler, 1993). An important point is that an adequate fitting of the power-

law model does not necessarily imply fractal in distribution. Our study is not

designed to test the self-similarity properties of species distribution but

to investigate the utility of the three occupancy–area models in describing

distribution. However, our results show that many species do have similar

occupancy–area shapes as those produced from fractal simulations as shown

in Fig. 3.3. The breakdown in linearity near map saturation is inevitably caused

by space filling due to finite study area. This saturated region is routinely

suggested to be excluded from the calculation of fractal dimensions (Halley et

al., 2004) although such practice is not the best interest to many applications.

From the practical point of view, it is also important tomodel the curvature as it

is an inherent component of the data (Šizling & Storch, 2004).

In summary, we have studied scale-invariant property of species distribution

for three occupancy–area models. The findings of the study should shed a light

on our understanding of species distribution and provide potentially useful

tools for determining the rarity of species for the purpose of conservation. The

main results of the study include:

1. No occupancy model is universally superior in describing occupancy data.

Among the three models intensively tested in this study, the Nachman

model appears to be most robust to scaling effect. It is superior to the

power-law and the logistic models in describing species distribution and

for predicting occupancy across scales.

2. All empirically observed distributions share a similar occupancy–area shape

that increases linearly at small scales but saturates at coarse scales due to

space filling. Empirical occupancy–area curves have similar shapes as those

simulated from fractal distributions. However, this similarity should not

be interpreted as an implication of fractality because the occupancy–area

models alone are not appropriate for measuring self-similarity.

3. An important application of occupancy–area models is to estimate species

abundance from occupancy. The accuracy is substantially improved if three

(or more) rather than two scale maps are used to estimate occupancy at any

fine scale. In other words, every coarse-scale map up to saturation is useful

for scaling down occupancy at fine scales. The Nachman model which is

most robust to scaling effect is a best model for estimating abundance.
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4. Distributions are different between rare and common species. The slopes of

the log-log occupancy curves are significantly higher for rare than for

common species, suggesting that rare species fill up space more rapidly

than common species when scaling up. Therefore, determination of species

rarity based on occupancy at coarse scales can be substantially biased. If

rarity of a species has to be determined and coarse-scale maps are the only

data available, the Nachmanmodelmust be used to calculate the occupancy

at finer scales.

5. The difference among the power, the Nachman and the logistic models for

the UK plants seems not to be as evident as for the BCI data. This perhaps

reflects the fact that all the UK plants are rare species. Therefore, further

testing and comparison of the three models using regional distribution data

for both rare and common species are still needed in order to ensure the

superiority of the Nachman model at the regional scale.
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Heikkinen, J. & Högmander, H. (1994). Fully

Bayesian approach to image restoration

with an application in biogeography. Applied

Statistics, 43, 569–582.

Holt, A. R., Gaston, K. J. & He, F. (2002).

Occupancy-abundance relationships and

spatial distribution: a review. Basic and

Applied Ecology, 3, 1–13.

Hubbell, S. P. & Foster, R. B. (1983). Diversity of

canopy trees in a neotropical forest and

implications for conservation. In Tropical

Rain Forest: Ecology and Management, ed. S. L.

Sutton, T. C. Whitmore & A. C. Chadwick,

pp. 25–41. Oxford: Blackwell Scientific

Publications.

Hurlbert, A.H. & Haskell, J. P. (2003). The effect

of energy and seasonality on avian species

richness and community composition.

American Naturalist, 161, 83–97.

Kunin, W. E. (1998). Extrapolating species abun-

dance across spatial scales. Science,

281, 1513–1515.

Kunin, W. E., Hartley, S. & Lennon, J. J. (2000).

Scaling down: on the challenge of

estimating abundance from

occurrence patterns. American Naturalist,

156, 560–566.

Leitner, W.A. & Rosenzweig, M. L. (1997).

Nested species-area curves and

stochastic sampling: a new theory. Oikos, 79,

503–512.

Lennon, J. J., Greenwoord, J. J. D. & Turner, J. R. G.

(2000). Bird diversity and environmental

gradients in Britain: a test of the

species–energy hypothesis. Journal of

Animal Ecology, 69, 581–598.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B.,

Droege, S., Royle, J. A. & Langtimm, C. A.

(2002). Estimating site occupancy rates

when detection probabilities are less than

one. Ecology, 83, 2248–2255.

Myers, N., Mittermeier, R. A., Mittermeier,

C. G., da Fonseca, G. A. B. & Kent, J. (2000).

Biodiversity hotspots for conservation

priorities. Nature, 403, 853–858.

Nachman, G. (1981). A mathematical model of

the functional relationship between density

and spatial distribution of a population.

Journal of Animal Ecology, 50, 453–460.

Preston, F.W. (1962). The canonical distribution

of commonness and rarity: Part I. Ecology,

43, 185–215.

Raxworthy, C. J., Martinez-Meyer, E., Horning, N.

et al. (2003). Predicting distributions of

known and unknown reptile species in

Madagascar. Nature, 426, 837–841.

Saupe, D. (1988). Algorithms for random fractals.

In The Science of Fractal Images, ed. H.O.

Peitgen & D. Saupe, pp. 71–113. New York:

Springer-Verlag.
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