# The distribution of square-full integers

H.-Q. Liu

#### 1. Introduction

A positive integer n is called to be square-full, if p|n implies that  $p^2|n$ , here p denotes prime numbers. Let Q(x) be the number of square-full numbers not exceeding x, and

$$\Delta(x) := Q(x) - \frac{\zeta(3/2)}{\zeta(3)} x^{1/2} - \frac{\zeta(2/3)}{\zeta(2)} x^{1/3}.$$

The best unconditional upper bound estimate is given in [6], that is,

$$\Delta(x) = O(x^{1/6} \exp(-A(\log x)^{3/5} (\log \log x)^{-1/5}),$$

where A is a positive number. The above estimate cannot be improved unconditional due to our current knowledge concerning the zero-free region of the zeta-function. Assuming the Riemann hypothesis, richer information for  $\Delta(x)$  has been given in [6], in which it was shown that

(\*) 
$$\Delta(x) = O(x^{(1-\varphi)/(7-12\varphi)} \exp(A(\log x)(\log\log x)^{-1})),$$

here  $\varphi$  is a number such that

(#) 
$$\sum_{a^2b^3 \le x} 1 = \zeta(\frac{3}{2})x^{1/2} + \zeta(\frac{2}{3})x^{1/3} + O(x^{\varphi}).$$

What is the most optimal value of  $\varphi$  one can expect? It is known that (cf. (8) of Schmidt [5], or cf. [6])

(1) 
$$\sum_{x \ge a^2 b^3} 1 = \zeta(\frac{3}{2}) x^{1/2} + \zeta(\frac{2}{3}) x^{1/3} - \sum_{n \le x^{1/5}} \psi\left(\left(\frac{x}{n^3}\right)^{1/2}\right) - \sum_{n \le x^{1/5}} \psi\left(\left(\frac{x}{n^2}\right)^{1/3}\right) + O(1),$$

450 H.-Q. Liu

where  $\psi(t)=t-[t]-\frac{1}{2}$  for a real number t. Thus from §4 of [3], we see that (#) holds for  $\varphi=14/107+\varepsilon$ , where  $\varepsilon$  is a sufficiently small positive number. Here 14/107=0.1308..., and, in view of recent work of Huxley [2], it can be reduced quite satisfactory. But, unless the so-called exponent pair conjecture is true, namely,  $(\varepsilon, \frac{1}{2}+\varepsilon)$  is an exponent pair for all sufficiently small number  $\varepsilon \geq 0$ , in which case we can take  $\varphi=0.1+\varepsilon$  in (#), we can not prove that  $\Delta(x)=O(x^{9/58+\varepsilon})$  in (\*). But in this paper we can really prove the following.

**Theorem.** Assuming the Riemann hypothesis, then

$$\Delta(x) = O(x^{9/58 + \varepsilon})$$

for any  $\varepsilon > 0$ .

#### 2. Reduction

Taking an idea from Montgomery–Vaughan [4], we first give a reduction of our problem. Throughout the arguments we assume the Riemann hypothesis for the zeta-function.

**Lemma 1.** Let 
$$Y = integer + \frac{1}{2}$$
,  $x^{2/15+\varepsilon} \le Y \le x^{1/6-\varepsilon}$ , then 
$$\Delta(x) = S_1 + S_2 + O(x^{1/2+\varepsilon_Y^{-5/2}} + Y),$$

where

$$-S_1 = \sum_{m^6 n^5 \le x, m \le Y} \mu(m) \psi\left(\left(\frac{x}{m^6 n^3}\right)^{1/2}\right),$$
$$-S_2 = \sum_{m^6 n^5 \le x, m \le Y} \mu(m) \psi\left(\left(\frac{x}{m^6 n^2}\right)^{1/3}\right),$$

 $\mu(\cdot)$  is the Möbius function.

*Proof.* Let  $Y_1 = xY^{-6}$ , it is obvious that

$$Q(x) = \sum_{a^2b^3m^6 \le x} \mu(m) = \sum_1 + \sum_2 - \sum_3,$$

$$\sum_1 = \sum_{n \le Y_1} \tau(n) \sum_{m \le (xn^{-1})^{1/6}} \mu(m), \quad \tau(n) = \sum_{a^2b^3 = n} 1,$$

$$\sum_2 = \sum_{m \le Y} \mu(m) \sum_{n \le xm^{-6}} \tau(n),$$

$$\sum_3 = \left(\sum_{n \le Y_1} \tau(n)\right) \left(\sum_{m \le Y} \mu(m)\right).$$

From (1) we have

$$\sum_{2} = \zeta(\frac{3}{2})x^{1/2} \left( \sum_{m \le Y} \frac{\mu(m)}{m^3} \right) + \zeta(\frac{2}{3})x^{1/3} \left( \sum_{m \le Y} \frac{\mu(m)}{m^2} \right) + S_1 + S_2 + O(Y),$$

which, in conjunction with the facts

$$\sum_{m \leq Y} \frac{\mu(m)}{m^3} = \frac{1}{\zeta(3)} + O(Y^{-5/2 + \varepsilon}) \quad \text{and} \quad \sum_{m \leq Y} \frac{\mu(m)}{m^2} = \frac{1}{\zeta(2)} + O(Y^{-3/2 + \varepsilon})$$

(both follow from partial summations and the estimate  $\sum_{m \leq Z} \mu(m) \ll Z^{1/2+\varepsilon}$  for Z > 0—a consequence of the Riemann hypothesis), gives

$$\sum_{2} = \frac{\zeta(3/2)}{\zeta(3)} x^{1/2} + \frac{\zeta(2/3)}{\zeta(2)} x^{1/3} + S_1 + S_2 + O\left(x^{1/2 + \varepsilon} Y^{-5/2} + Y\right).$$

Similarly we get  $\sum_1, \sum_3 = O(x^{1/2+\varepsilon}Y^{-5/2})$ . Lemma 1 then follows.

### 3. Proof of our Theorem

Now we choose  $\theta=9/58$ ,  $Y=x^{(1-2^{\theta})/5}$  in Lemma 1. It suffices to estimate  $S_1$  and  $S_2$ . We consider subsums of the form  $S_1(M)$  and  $S_2(M)$ , where, for  $M \leq Y$ ,

$$-S_1(M) = \sum_{m^6 n^5 < x, m \sim M, m < Y} \mu(m) \psi\left(\left(\frac{x}{m^6 n^3}\right)^{1/2}\right)$$

and

$$-S_2(M) = \sum_{m^6 n^5 \le x, m \sim M, m \le Y} \mu(m) \psi\left(\left(\frac{x}{m^6 n^3}\right)^{1/3}\right)$$

and  $m \sim M$  means  $M < m \le 2M$ . Denote  $X = xm^{-6}$ , then from §4 of [3] we get the estimates

$$\sum_{n \le x^{1/5}} \psi\left(\left(\frac{x}{n^3}\right)^{1/2}\right) \ll x^{14/107 + \varepsilon},$$

$$\sum_{n \leq x^{1/5}} \psi \left( \left( \frac{x}{n^2} \right)^{\! 1/3} \right) \ll x^{7/55 + \varepsilon},$$

thus we have

452 H.-Q. Liu

Lemma 2.

$$S_1(M) = O((x^{14}M^{23})^{1/107}x^{\varepsilon}), \quad S_2(M) = O((x^7M^{13})^{1/55}x^{\varepsilon}).$$

From Lemma 2 we deduce that, for  $M \le x^{0.098}$ ,  $S_1(M)$ ,  $S_2(M) = O(x^{9/58})$ . We thus can assume  $M > x^{0.098}$ , and we give a further splitting of the summation range by considering

$$-S_1(M,N) = \sum_{m^6 n^5 \le x, m \sim M, n \sim N, m \le Y} \mu(m) \psi\left(\left(\frac{x}{m^6 n^3}\right)^{1/2}\right),$$
$$-S_2(M,N) = \sum_{m^6 n^5 < x, m \sim M, n \sim N, m < Y} \mu(m) \psi\left(\left(\frac{x}{m^6 n^2}\right)^{1/3}\right),$$

here N is such that  $M^6N^5 \le x$  and  $MN > x^{\theta}$ . By an argument using the Fourier expansion of the function  $\psi(\cdot)$  (cf. [4]), we get, with  $H = MNx^{-\theta}$ , the following estimate

$$S_i(M,N) \ll \sum_{h=1}^{\infty} \min\left(\frac{1}{h}, \frac{H}{h^2}\right) |L_i(M,N)| + x^{\theta} \log x, \quad i = 1, 2,$$

$$L_1(M,N) = \sum_{(m,n)\in D} \mu(m)e(hx^{1/2}m^{-3}n^{-3/2}),$$
  
$$L_2(M,N) = \sum_{(m,n)\in D} \mu(m)e(hx^{1/3}m^{-2}n^{-2/3}),$$

$$D = \{(m, n) \mid m \sim M, n \sim N, m^6 n^5 \le x, m \le Y\}.$$

To estimate  $L_i(M, N)$  we appeal to the next lemmas.

**Lemma 3.** Let  $M \le N < N_1 \le M_1$ ,  $a_n$  be complex numbers. Then

$$\bigg| \sum_{N < n \leq N_1} a_n \bigg| \leq \int_{-\infty}^{\infty} K(t) \bigg| \sum_{M < m \leq M_1} a_m e(tm) \bigg| \, dt,$$

with  $K(t) = \min(M_1 - M + 1, (\pi|t|)^{-1}, (\pi t)^{-2})$  and

$$\int_{-\infty}^{\infty} K(t) dt \ll 3 \log(2 + M_1 - M).$$

# Lemma 4. Let

$$\omega_{\phi\psi}(X,Y) = \sum_{r} \sum_{s} \phi_{r} \psi_{s} e(x_{r} y_{s}),$$

where  $X=(x_r)$ ,  $Y=(y_s)$  are finite sequences of real numbers with

$$|x_r| \le P$$
,  $|y_s| \le Q$ 

and  $\phi_r$ ,  $\psi_s$  are complex numbers. Then

$$|\omega_{\phi\psi}(X,Y)|^2 \le 20(1+PQ)\omega_{\phi}(X,Q)\omega_{\psi}(Y,P),$$

with

$$\omega_{\phi}(X,Q) = \sum_{|x_r - x_{r'}| < Q^{-1}} |\phi_r \phi_{r'}|,$$

and  $\omega_{\psi}(Y, P)$  being defined similarly.

Lemmas 3 and 4 are Lemma 2.2 and Lemma 2.4 (with k=1) respectively, of [1]. Using Lemma 3 to separate variables, we get

(2) 
$$(\log x)^{-1}L_1(M,N) \ll \sum_{m \in M} \left| \sum_{n \in N} e(tn)e(hx^{1/2}m^{-3}n^{-3/2}) \right|,$$

where t is a real number (independent of m and n). By Lemma 4 we derive that

$$(3) \qquad \qquad (\log x)^{-2}L_1^2(M,N) \ll hx^{1/2}M^{-3}N^{-3/2}A_1A_2,$$

here  $A_1$  is the number of lattice points  $(m, m_1)$  such that

$$|m^{-3} - m_1^{-3}| \ll N^{3/2} (hx^{1/2})^{-1},$$

hence  $A_1 \ll M(1+M^4N^{3/2}(hx^{1/2})^{-1})$ ; and  $A_2$  is the number of lattice points  $(n, n_1)$  such that

$$|n^{-3/2}-n_1^{-3/2}| \ll M^3(hx^{1/2})^{-1}$$

hence  $A_2 \ll N(1+N^{5/2}M^3(hx^{1/2})^{-1}) \ll N$ . Thus from (3) we obtain the estimate

$$(4) S_1(M,N) \ll \left(\sqrt[4]{x^{1-2\theta}M^{-2}N} + MN^{1/2} + x^{\theta}\right)x^{\varepsilon/2}.$$

By an argument analogous to that of (2) and (3), we can get

(5) 
$$S_2(M,N) \ll \left(\sqrt[6]{x^{1-2\theta}N^4} + MN^{1/2} + x^{\theta}\right)x^{\varepsilon/2}.$$

Now we have

$$\begin{split} MN^{1/2} &\leq M^{4/10} (M^6N^5)^{1/10} \ll Y^{4/10} x^{1/10} = x^{\theta}, \\ & \sqrt[4]{x^{1-2\theta}M^{-2}N} \ll \sqrt[4]{x^{1-2\theta}M^{-1}} \ll x^{\theta}, \\ & \sqrt[6]{x^{1-3\theta}N^4} \ll (x^{1-3\theta}x^{4/11})^{1/6} \ll x^{\theta}, \end{split}$$

in view of the facts that  $M > x^{0.098}$  and  $M^6N^5 \le x$  (which also imply that  $M \ge N$  and  $N \le x^{1/11}$ ). Our theorem follows from the above estimates in view of (4) and (5).

Remark 1. Clearly the limit value of the exponent can be expected from Lemma 1 to be  $1/7+\varepsilon=0.14285...+\varepsilon$ , while 9/58=0.15517....

Remark 2. It is of interest whether our result can be improved by invoking the decomposition of the Möbius function, as was carried out in [4].

## References

- 1. BOMBIERI, E. and IWANIEC, H., On the order of  $\zeta(\frac{1}{2}+it)$ , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 449–472.
- HUXLEY, M. N., Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279–301.
- Liu, H.-Q., The number of square-full numbers in an interval, Acta Arith. 64 (1993), 129–149.
- MONTGOMERY, H. L. and VAUGHAN, R. C., The distribution of squarefree numbers, in Recent Progress in Analytic Number Theory, vol. 1 (Halberstam, H. and Hooley, C., eds.), pp. 247–256, Academic Press, London, 1981.
- SCHMIDT, P. G., Zur Anzahl Abelscher Gruppen gegebener Ordnung, J. Reine Angew. Math. 229 (1968), 34–43.
- SURYANARAYANA, D. and SITARAMACHANDRA, R., The distribution of square-full integers, Ark. Mat. 11 (1973), 195–201.

Received September 6, 1993

H.-Q. Liu 206-10, Bao Guo St. Harbin, 150066 P.R. China