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A B S T R A C T  

The s tudy of the distribution of the elastic-strain energy densi ty  at the tip of  a crack presents  a special 

interest  for the unders tanding of the mechan i sm of fracture.  In this investigation an exhaust ive  theoretical 

analysis  of  the distribution of the elastic-strain energy densi ty at the tip of  a crack for cracks in isotropic 

elastic media deformed under  modes  I and II was developed.  

This s tudy was complemented  by an experimental  solution of this type of problem, based on the 

method of reflected caustics.  According to this method the distribution of the elastic-strain energy densi ty 

was evaluated along a circular closed curve,  defining the singular core around the crack-tip, which was 

dominated by the singularity at the crack tip and whose  diameter  is very small, not exceeding a few 

millimeters. In this way the situation at the crack-tip singularity was directly depicted on the energy densi ty 

distribution. Interest ing results concerning the factors influencing the mode of the strain energy distribution 

around the crack and the type of the crack path were derived. 

List of Symbols 

W = elastic strain energy. 

dW/dV = elastic strain energy density.  

G, E = shear  and elastic modulus  of  the material respectively. 

v = Poisson ' s  ratio. 

~r~,trv~, ~y = crack tip s t resses  referred to Cartesian coordinate sys tem.  

cr~,tr2 = principal s t resses  at crack tip. 

~L = (1 - v)/(1 + v) for plane stress.  

K., = 1 - 2v for plane strain. 

cb(z),f~(z) = complex-s t ress  funct ions  of Muskhelishvili .  

a = crack length. 

k = ratio of s t resses  at infinity. 

K~,K, = stress intensity factors for Modes I and II of  loading, respectively. 

r,+9 = polar coordinate sys tem centered at crack tip. 

to = angle of  inclination of the crack. 

/z = ratio of  s t ress  intensity factors  K./K~ = tan to for uniaxial tension. 

o- = s tress  applied at infinity along the t ransverse  boundaries  of  the plate. 

)t = ~r(l - k ) cos  2~o. 

X'r,t,Y',.t = parametric  equat ions of the reflected caust ics  referred to t h e  C a r t e s i a n  s y s t e m  O'x'y' on the 

r e f e r e n c e  s c r e e n :  (r) reflected caust ics  f rom rear face of the spec imen and (f) r e f l e c t e d  

caust ics  from the front  face of the specimen.  

r0 = radius of  the generatr ix curve on the spec imen around the crack tip (initial curve).  

c,.l = optical cons tan ts  of  the material for reflections from the rear and front faces of the 
specimen respectively.  

)t~ = magnification ratio of  the optical set-up. 

zo = distance be tween the reference-screen and the middle plane of the specimen. 

z~ = dis tance between the focus  of  the light beam and the middle plane of the specimen. 
d = th ickness  of specimen.  
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E = 2 for the reflected caustics from the rear face of the specimen and 1 for the reflected 
caustics from the front face of the specimen. 

G,~ = Ez0 dcr.1/(2~r) 112 
Dmax Dmax r , c = the maximum transverse and longitudinal diameters of the caustics respectively. 

D max 8T ax, 8~ aX = the correction factors for DT ~x and L respectively. 

(2~r i/2 3 G I  -tl5 

E~, E2 = the areas of the upper and lower parts of the energy-density lobe respectively. 

E = E~ + E2. 

Omen = the position of the minimum elastic-strain energy. Direction of crack propagation. 

x~, y~ = the coordinates of the propagating cracks tip O~. 

/3 = the projection of each propagation step on the transverse Ox-axis. 

1. Introduction 

An extensive theoretical study of the concept of the elastic-strain energy density 
was made by Sih in a series of papers [1 to 4]. Riedm011er [5] has determined 
experimentally the distribution of the energy density at the neighbourhood of a crack 
tip for cracks submitted to modes I and II of deformation, by applying classical 
photoelasticity and interferometry. These experimental methods are very convenient 
for classical whole-field elasticity problems. However, they lose their potentialities 
and accuracy when applied to singular stress fields, since they necessitate extrapola- 
tion of data far away of the singularity in order to evaluate the singular stress field. 
These inconveniences were removed by using the method of caustics, which gathers 
information from the close vicinity of the singularity, where the stress field is 
completely dominated by it [6, 7]. 

By applying the method of reflected caustics the distribution of the elastic 
strain-energy density (SED) along the initial curve of the caustic can be readily 
evaluated. The shape of this curve for isotropic and optically inert materials is always 
a circle, whose center lies at the close vicinity of the crack tip [8]. Thus, the 
elastic-strain energy density may be evaluated along the boundary of the singular core 
which is the circumference of this circle and its integral gives the total elastic-strain 
energy at the crack tip. 

Various criteria have been introduced for the description of mode of 
propagation of a crack submitted to a combined mode I and II in-plane deformations. 
The most interesting criteria are the maximum-stress criterion, proposed by Erdogan 
and Sih [9], the minimum strain-energy-density criterion, proposed by Sih [1,4, 10], 
and the maximum-energy-release rate criterion, proposed again by Erdogan and Sih [9]. 

According to the first criterion the crack is propagating at a direction normal to 
the direction of maximum tangential stress. The minimum strain-energy density criterion 
postulates that the crack propagates along the direction of minimum elastic-strain- 
energy density, whereas the maximum-energy-release rate criterion represents a 
generalization of Griffith's original energy-release-rate concept [11, 12]. According to 
this criterion the crack propagates along the maximum released strain energy. 

In this paper the criterion of minimum strain-energy density (MESED) was 
studied. A detailed analysis of the distribution of the elastic-strain-energy density in 
combination with the optical method of reflected caustics was undertaken. From the 
evaluation of the distribution of the elastic-strain-energy density around the crack tip 
and along the small circle surrounding the crack tip and representing the generatrix 
curve of the caustic (initial curve) the total strain-energy was evaluated in terms of 
the characteristics of the caustics. Finally, the path of a propagating crack was 
established analytically, based on the same theory and compared with experimental 
results from propagating cracks in polymers. 
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2. T h e  e la s t i c  s t r a i n  e n e r g y  

The elastic-strain energy d W  stored in a parallelopiped of volume dV for 
plane-stress condi t ions dominat ing at the strained plate is expressed by [4]: 

d W  1 [(1 - v ) ,  1 d V  - 8G [ ( ~ - - ~  t0-xx + 0-.)2 + (0-xx _ 0-.)2 + 4r  2, _ (1) 

• where G is the shear modulus  and v Poisson 's  ratio of the elastic and isotropic 

material  of  the strained plate. 
For  the case of plane-strain,  expression (1) becomes:  

dye 
d V - [(1 - 2v)(~xx + or.) 2 + (0-xx - 0-.)2 + 4.r2r] (2) 

Int roducing the well known relations of elasticity: 

(0-xx + O'yy) = (0-1 + 0"2) and (0"xx - 0".)2 + 41"~y = (0"1 - 0"2) 2 

relations (1) and (2) become:  

d W  1 
dV - 8-G [Kl'2(cq + 0"2)2 q'- (or!  - -  0"2) 2] (3) 

where 0"~ and 0"2 are the principal stresses corresponding to the stress tensor  0"ij and 
KL2 take the values: 

_ (1 - v)  
for plane stress 

K I - - ( I + v  ) 

K2 = (1 -- 2V) for plane strain (4) 

For  a thin elastic and isotropic plate, containing an inclined crack to the axes of 
symmet ry  of the plate, and submit ted to a biaxial tension at infinity (Fig. 1), the 
complex-stress  funct ions  of  Muskhelishvil i  [14] are given by: 

z 1-, 
• (z) = l (2F  + I ~') (z 2 _ a2)1/2 - ~F (5) 

and 

Z 1 -  t 
l l (z)  = ~(2F + F') (z 2 _ a~)l/2 + ~ r  (6) 

where:  

~F1 -, = - 4 (1 - k) e 2i(t~/2)-'~) (7) 

l (2F  + F') = 4[{1 - e 2i(t~n)-~)} + k{1 + e2"("n)-~)}] (8) 

and a is the crack length, k is the ratio of stresses at infinity. For  k - - 0  there is 
uniaxial tension at infinity with the stress 0- applied along the transverse boundaries of 
the plate, for  k = 1 there is a biaxial tension with equal stresses 0- along both pairs of 
boundaries of the plate, whereas for  k = - 1 there is a tension-compression state of 

loading at infinity with both pairs of stresses absolutely equal to 0- and with opposite 
signs. 

From relations (5) and (6) the principal stresses at the vicinity of the crack tip may 
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Figure 1. Geometry of cracked plate and relative position of specimen and viewing screen. 

be e x p r e s s e d  by  [15]: 

2 [ /KI cos  0 0 sin ~-) - 

-+ {~r[K~ sin20 + 2K,KHsin20 + K ~ , ( 4 -  3sin 2 O ) ] +  h2+  ( , r l -  o2) = 

+ ~ sin + 2K~I cos  

where :  

K~ - 2 [(l + k) + (1 - k) cos  2~ol 

o'x/~-d 
KII - 2 (1 - k) sin 2co 

h = o'(1 - k) cos  2oo 

(9) 

(10) 

(11) 

(12) 

(13) 

3. T h e  o p t i c a l  m e t h o d  of  r e f l e c t e d  c a u s t i c s  

Cons ide r  a m o n o c h r o m a t i c  and cohe ren t  light b e a m ,  emi t ted  f r o m  a H e - N e  laser ,  

impinging on the thin elast ic t r anspa ren t  plate  conta in ing an obl ique  internal  c r ack  and 

submi t t ed  to a biaxial  s tate of  loading at infinity, as indicated in Fig. 1. The  ref lected 

rays  f r o m  the f ron t  and rea r  f aces  of  the plate  are r ece ived  on a ground-glass  
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reference-screen, placed parallel to the specimen at a distance z0 from it. On this 
reference screen the reflected rays from the close vicinity of either crack tip form a 

caustic, whose shape is shown in Fig. 2 for uniaxial tension. The parametric equations 
of this strongly illuminated curve are given by [7, 16]: 

/3 \2,s z +~(KZ + K2)-,/Z(K, cos__~_K,,sin3_~_~)} Xtr, f : ~Cr, , )  (K, q- K~l)l/'{cos l, q 30 

(14) 

Y,.,:(~Cr.Q (K~+K~,)'/'{sinO 

while the radius r ---- r0 of the generatrix curve on the specimen around the crack tip, 
which is the locus of the reflected rays forming the respective caustic on the reference 
plane Sc, is given by: 

\2/5 2 
3 C,,I ) (Kt + K21) l/' r - r0 = ~ ( 1 5 )  

with: 

Cr4 
= (2~r)~/2 

(16) 

3' 
Y 

axis of syrnmq 
of caustic 

B. 
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I 
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I 
%1 cra'ck 

x I 
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Figure 2. Shape of the principal epicycloid and geometry of its formation. 
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In relation (16) the quantity E takes the value E = 2 for the reflected rays from the 
rear face, whereas E = 1 for reflections from the front face of the specimen. The 
subscripts r and [ indicate reflections from either the rear, or the front faces, while d 
is the thickness of the plate and Cr,i are the optical constants of the material of the 
plate again for reflections from the rear and front faces of the specimen respectively. 
It is worth noting here that the constant cl for front-face reflections is independent of 
the optical properties of the material and equals: 

V 

Q E 

where v is the Poisson ratio and E is the elastic modulus of the material. 
Moreover, the magnification ratio A,, of the optical set-up is given by: 

) .m - z0 -+ zi ( 1 7 )  

zi 

where zi is the distance between the focus of the light beam and the middle plane of 
the specimen, while the positive sign is taken for a real image of the plate on the 
screen and the negative sign for a virtual image. 

The coincidence of the boundary of the singular core with the initial curve may 
be explained as follows: during the loading of the cracked plate a dimple is created 
surrounding the crack-tip, which has the form presented in Fig. 3, if tension is 
predominant. This dimple presents a particular zone, where the slope of the thickness- 
variation of the specimen presents inflection points. Outside this limit curve strict 
linear elasticity is dominating, while, inside this curve, non-linear elasticity (or even 
plasticity in ductile materials) is progressively intervening to reduce the continuous 
increase of the gradient of the lateral deformation of the specimen as one approaches 
the singularity. 

This inflection zone, surrounding the crack tip, makes the impinging light rays to 

__A 

flection cu 
~ . initial curve ~ 

o 9, 

I f 
I I 
I I 
I I 
0 I _ 

s U rfclc e, i I~.~'~,~N Z inflection 
,t cracxl, Ll~t..~. / ~ points 

O \ section AA 
singular c o r e  

Figure 3. The shape of the inflection area surround of the crack's tip. 
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bend back, when reflected on the faces of the specimen, and this creates the caustic. 

Thus, this zone coincides with the initial curve, as defined previously. Therefore, it is 
reasonable to assume that the singular core extends out to this limiting curve, since 
this is the boundary inside of which non-linear elasticity is dominant. 

If one compares the size of the singular core as defined by previous researchers 
[13] which is of the order of 0.002 in.and the radii of the initial curves of our caustics 
which are usually of the order of 0.1 mm. their coincidence in size is striking. 

Solving Eqs. (14) and (16) for K~ for k = 0 (uniaxial tension) we obtain: 

2(2.tr)1/2 ,, I"~ m a x \  5/2 

KI = 3~zodc,,iA ~2 \~ ~m~xT, L /~ (18) 

and 

Kn = KI tan to (19) 

In these relations D~ ax and DT ~x are the maximum transverse- and longitudinal- 
~max diameters of the caustic and 8T ~x and L the correction factors for DT a~ and D ~  ax 

respectively given by the nomogram of Fig. 4 [16] for k = 0 (uniaxial tension). 
Relations (14) and (16) indicate that when both stress intensity factors are 

operative (Ix ~ 0), the caustic is angularly displaced by an angle - 2o) relatively to the 
crack-axis, where angle to is defining the angle of inclination of the crack shown in 
Fig. 2. 

3,o] ~ 5.0 

3.20 - -  

t \  

# 

3 . 0 0 ~  

( ' ~ "  = f (i.t) ,4.0 

(")] I k 

3.0 

2,8q 2.5 5 7.5 10 [ 2,0 
0 O. 25 0.50 0.75 1.00 

(o) 

Figure 4. Variation of transverse and longitudinal correction factors ~T ax and ~ma~L versus t~. 
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4. Evaluation of the elastic-strain-energy density from the diameters of the caustic 

Using relations (15) and (16), relations (9) and (10), which give the sum and 

the difference of principal stresses, may be written as follows: 

2f O 
(~Yl + or2) = ( K ~  + K~l)l/lo(Klcos-~-Kiisin~)-A (20) 

and 

(~r,-  0"2) = + ~ J': rK2 - / r v 2 ±  i [ 2  ~1/5 t i sin 20  + 2KIKn sin 20  + KI21(4 - 3 sin 2 0)] + h2+ 
L ~ l x  1 T IX II) 

fA O(KI sin-~- + 4Kli cos 

where 

(21) 

(3 Cri -''5 
f = (2~r)-~/2 \2 Xm / (22) 

Introducing relations (20) and (21) into Eq. (3) we obtain: 

8G ~ - (K~ K~1)115 4KI,2 KI cos ~ - -  Kll sin + K~ sin 2 O + 2K~Kn sin 20  

I , l~ l  T z'L Il l  L \ 

- s i n  O(KI s in -~ -+  4KIt + 2Ku cos 3~-)] +/~.2(1 + K1,2) (23) 

Relation (23) gives the distribution of the elastic strain energy density along a 

small circle representing the singular core, coinciding with the initial curve of the 

caustic and surrounding the crack tip, when the cracked plate is submitted to a biaxial 

state of loading at infinity and both KI and Kii are operative. For isotropic, elastic and 

optically-inert materials the initial circle has a radius r0 given by relation (15). 

It has been shown in ref. [8], and from the previously developed theory,  that the 

size of this circle may be chosen as small as desirable, by decreasing the overall 

optical constants Cr./and increasing the magnification ratio Am. This possibility allows 
the evaluation of the elastic-strain-energy distribution around the crack tip along a 

well defined curve, that is the initial curve which lies as close as possible to the crack 
tip. 

Relation (23) was used to trace on a digital computer  and plotter the elastic-strain- 

energy density distribution around a crack tip in a plexiglas plate with v = 0.34, 

d = 0.003 m, c, = - 3.3 x 10 -1° m2/N, 2a = 0.02 m, o- = 1 N/m 2, e = 2, zo = 2 m, zi = 0.5 m 
and Am = 5. Figs. 5(a and b) present various distributions of the elastic strain energy 
density for plane-stress conditions of the cracked plate when the loading ratio k varies 
between - 1 and 1 for to = 0 °, 30 °, 45 °, (Fig 5a) and to = 60 °, 70 ° and 80 ° (Fig. 5b). 

The influence of the loading-ratio k, as well as the angle to on the distribution of 
the elastic-strain-energy density is clear from these figures. It is worthwhile indicating 

that the ESED-distribution presents always a minimum in front of the crack tip, 
whose position and magnitude vary in terms of k and to. It is clear from Figs. 5(a and 
b) that, while the magnitude of this minimum depends mainly on k, its position 

depends exclusively on to. 
The position of this minimum (Omen) may be defined by annulling the partial 
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derivative 0/00 (dWldV). By differentiating relation (23), one obtains the relation: 

8G - ~  -d-v = (K~ + K~,) '/' { -  2K,.2[(K~ -- K~,)sin O + 2K,K, cos 0] 

+ (K~ - 3K~0 sin 20 + 4KIKH cos 20} + 

kf c°s O) + (K~ + K~,)t,,o{2K,,z(K, sin-~+ K,, 

+cos  0 (K ,  sin ~ + 2Ku cos ~-0- + 4Ku) 

+3s in  ~9(KI cos -~-30 _ 2KH sin ~ - ) }  = 0  (24) 

Figures 6(a and b) present the variation of Omi, versus co for parametric values of the 
loading ratio k for plane stress (Fig. 6a) or plane strain (Fig. 6b). In both cases the 
values of co vary between 0 ° and 90 °. 

Figures 7(a and b) present the variations of Omin versus the loading ratio k with co 
as a parameter for plane-stress (Fig. 7a) or plane-strain (Fig. 7b). 

Introducing the value for Omen into relation (23), one obtains the values of the 

90 ° 
7 

':_I...k 

ko: : ko" -0.5 

/+5° -Plone Stress Iv=0.%) ] I 

| I 
I I 

! OO.= k=l.0 [ 1 

-90 ° 
0 ° 30 ° 60 ° 90 ° 

Figure 6a. Variation of Omi. v e r s u s  co for various parametric values of k for plane-stress conditions. 
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k=l.0 Ii Ii 

' 

92 

90 ° 
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c0 -----~ 

Figure 6b. Variation of 6mi. versus (~ for various parametric values of k for plane-strain conditions. 

minimum of the elastic-strain-energy density (dW/dV)min given by: 

dW 2 
8G (~-~-)min = (K~ /K21)t/5[4KI,2(K| c°s ~-~ - KII s i n - ~ )  2+ K~ sin2 Omi, 

+ 2KIKII sin 2Omin + K~(4 - 3 sin 20mi.) 1 

xf  
- ( K ~ +  K ~ l ) l / l ° [ 4 K l ' 2 ( K l C ° S ~ - K l l s i n ~ )  

- s i n  Omi,(K. sin 3~'~" + 2KII cos ~--3"0min + 4K|I)]  + A2(1 + KI2' (25, 

Figures 8(a and b) present the variation of the minimum of the elastic-strain- 
energy density (dW[dV)min, normalized to the respective minimum for to = 0 and k = 0 
(transverse crack for uniaxial tension, Kil = 0), versus to for various parametric values 
of k and for plane-stress (Fig. 8a), or plane-strain (Fig. 8b) conditions of the cracked 
plate. Figs. 9(a and b) present the variation of the same minimum (dW/dV)mi, 
normalized to the same respective minimum for to = 0 and k = 0 versus the loading 
ratio k for various parametric values of to and again for plane stress (Fig. 9a), or 
plane-strain (Fig. 9b) conditions. 
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Figure 7a. Variation of Omi. versus k for various parametric values of co and for plane-stress conditions. 

The distribution of the strain energy density is symmetric relatively to the crack 
axis for to = 0 for every value of k, and for k = 1 for every value of to, as it has been 
already indicated in Figs 5(a, b). This symmetric distribution ceases to exist as soon as 
to and k takes values different than zero and 1 respectively. In these cases the lobe of 
the distribution of the energy density is angularly displaced by an angle - l ~ m i  n and, 
besides this rotation, there is also an asymmetric distribution of the energy density in 
the two semi-lobes. Indeed, it can be readily derived from Figs. 5(a, b) that the size of 
the lobe representing the distribution of the elastic energy density depends on both 

quantities to and k. 
If E1 and E2 represent the areas of the upper and lower parts of the energy- 

density lobe, as it has been divided by the straight line connecting the crack tip with 
the point of minimum density, these areas may be calculated by evaluating the 
following integrals: 

1 f(,~+o,.,o, (dW,]2 _ 1 fore,° (dW~2 dO (26) 
El=2ao,~. k-d--Q-] dO and E 2 - ~ r + O m i . \ d V  ] 

The variation of the ratio El/E2 in terms of to is given in Figs. 10a for plane-stress 
and 10b for plane-strain conditions of the cracked plate, for k as a parameter, while 
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Figure 7b. Variation of Omen versus k for various parametric values of to and for plane-strain conditions. 

the variation of the ratio El/E2 is plotted versus k in Fig. 1 la for  plane-stress and Fig. 

1 lb for plane-strain conditions for  to as a parameter.  Furthermore,  the variation of the 

total area E = (El + E2) of the lobe of distribution of energy density normalized to the 
area E '°'k=° of the respective lobe for to = 0 and k = 0 versus either the angle to, or the 

loading ratio k is given in Figs. 12(a and b) and 13(a and b) respectively,  again, for  

plane-stress and plane-strain conditions. 

5. Results 

The experimental study of Sih's criterion for the propagation of a crack and the 
direction of the minimum elastic-strain energy density in a plate under plane-stress 

conditions and submitted to a general biaxial-type of loading at infinity indicated that 

the strain-energy density distribution depends on the angle of inclination of the crack 

co, as well as on the loading ratio k (Figs. 5(a and b)). The position of the minimum 

elastic-strain energy density, defined by angle l~min, and therefore  the direction of 
propagation of the crack depends on to and k (as it may be concluded from Figs. 
6(a, b) and Figs. 7(a, b)). For  k > 0  and for to varying between 0 ° and 90 °, [O8[ 

increases and, after having passed from a maximum, it decreases and tends to 0 °, for 
k = 1, Omin = 0. This means that for whatever  angle to the crack will spread straight 
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Figure 8a. Variation of the minimum of the ESED (dW[dV)min, normalized to the respective minimum for 
to = 0 and k = 0 (transverse crack for uniaxial tension, Ku = 0) versus to, for various parametric values of k 
and for plane-stress conditions. 

ahead because  Kn = 0. For  k < 0 the angle Jlb~minJ increases and for  values of  to > 45 ° 

there exist values of  k yielding Kx = 0 and Kn ~ 0 (pure shear). At these positions of 

pure shear a change of sign of Omen appears  and then a decrease  of  its value tending to 

0 ° for to tending to 90 ° is detected.  The change of values of minimum strain-energy den- 

sity, normalized to the value of minimum strain-energy density for  to = 0 and k = 0 

(uniaxial tension, Ku = 0), is shown in figures 8a, 8b, as well as in Figs 9a and 9b. For  

k = 0 the values of  minimum strain-energy density decrease rapidly tending to 0 ° as co 

tends to 90 °. For  k > 0 they continuously decrease  without tending to zero because  Kn 

remains  always different than zero for  all angles to. For  k = 1 (K~ = 0) the value of the 

minimum strain-energy density remains constant.  For  k < 0 the values decrease up to 

co = 45 ° and af ter  passing f rom a minimum, which corresponds  to the posit ions of  pure 

shear (KI = 0), they increase and af terwards  decrease again. For  k = - 1 a symmetr ical  

distribution of the energy density appears  with an axis of  symmet ry  at 45 ° . 

A measure  of  the influence of ~ and k to the posit ion of Omin for  the minimum of 

the strain-energy density for plane-stress and plane-strain is given by  the distribution 
of the area of  the lobe defined by  the curve of the distribution of the strain-energy 
density around the crack tip. 

Figures 10(a, b) and 1 l(a, b) present  the variat ion of the ratio EdE2 of the areas of  

the upper  and lower semi-lobes divided by  the axis of  Omi,. F rom Figs. 10(a, b) and 

1 l(a, b) it can be seen that  for  k = 1 and for  all angles to the lobe-area distribution is 
symmetr ic  to the direction of minimum strain-energy density. For  k _-> 0 the ratio 

E~/E2 decreases  and af ter  passing f rom a minimum, lying in be tween 30 ° and 60 °, 
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increases again and tends to unity for co tending to 90 °. For k < 0 the ratio EI/E2 
decreases again up to co = 45 °. For angles co => 45 °, corresponding to positions of pure 

shear (KI = 0) and changes of sign of Omin, a reversion of the magnitudes of areas E~ 

and E2 is observed and consequent ly  the ratio El~E2 becoffaes greater  than unity and 

after  passing f rom a max imum tends to unity as co tends to 90 °. 

Figures 12(a, b) and 13(a, b) yield the influence of co and k on the total area of the 

surface E included in the lobe of the energy density distribution, normalized to the 

area corresponding to uniaxial tension (k = 0) for co = 0, for plane stress and plane 

strain conditions. This influence is small for small values of co(co < 10°). Above this 

region it becomes  more and more important.  The area E increases for k < 0, while for 

k > 0 it diminishes, and after  passing a minimum it, again, increases. 

6. A model for the propagation mode of cracks for k = 0 (uniaxiai tension). 

In this section a model for the propagat ion mode of a crack is proposed,  based on 
the minimum strain-energy criterion. The validity of this model is checked with the 

method of reflected caustics. 
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The zig-zag path of a propagating crack in a plate under tension may be explained 

by considering the advancement  of a crack as consisting of distinctive steps, where 

voids and other discontinuities of the material,  surrounding the crack-tip, coalesce and 

create each kink for the crack. In such a case it is assumed that the crack propagates  

along the direction of minimum strain-energy density. 

Figure 14 shows the initial crack with its tip at O~ and successive kinks O~O1, 

OIO2, 0203 . . . .  Although the singularity existing at the tip of the crack for  each 

position dominates  the stress field at the vicinity of the tip, there are also weaker  

singularities existing at the successive corners  O~, O1, 02, 03 . . . . .  each of which is 

influencing the state of stress at the crack tip when this crack is still at the 

neighbourhood of this corner [18, 19]. 

It is kriown that the singularity at a multiwedge, as is the case at each corner with 

the branches  of the crack separating the material  in several  wedges,  diminishes as the 

convex  angle at the corner  is diminishing and becomes  equal to zero when this angle 

tends to 180 °. When the crack propagates  along the kink after  the corner  O~ the new 

crack forms an angle with the axis of  the previous step lying between 220 ° and 255 ° , 

depending on the value of angle to (Fig. 15). For such angles the order of singularity 

lies be tween - 0 . 3  and - 0 . 4  and, therefore,  it is quite large, as compared  with the 

singularity at the tip of the new crack,  which is of the order - 0 . 5 .  The singularity of 

the corner interacts with the singularity at the crack tip and this results in a 

progressive bending of the crack at the vicinity of each corner.  Then, the real crack 

path is as shown in Fig. 16 with the dotted lines indicating the transition periods at 
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Figure 9b. Variation of the minimum of the ESED (dW]dV)min, normalized to the respective minimum for 
to = 0 and k = 0 (transverse crack for uniaxial tension, KH = 0) versus k, for various parametric values of to 
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each corner of the zig-zag crack. This continuous bending of the crack diminishes as 

the crack-tip recedes f rom the neighboring corner,  since the influence of the sin- 

gularity of  the corner on the singularity of the crack tip becomes  weaker  with 

distance. 

Figure 17a presents  a branched crack in a polycarbonate  thick tension specimen,  

where many  branches  and kinks present  this progressive bending after  their passing 

f rom a corner. Fig. 17b presents  the same crack photographed in oblique angle so that 

the shape of the branches  through the thickness of  the specimen are more apparent.  

In the next step, after the corner point O1, the angle O is of the order of 190 ° and 

200 ° and the singularity at the corner  is of  the order  -0 .1  and -0 .2 .  Its influence, 

therefore,  on the mode of propagat ion of the next  kink is smaller than in the previous 

step. The next  corner  02 creates a multiwedge with an angle not overpassing 190 ° and 

therefore  the influence of the singularity of  this corner  ( -0 .1)  on the crack-tip 

singularity is further  diminished and it may  be neglected. 

The initial bending and angular displacement  of the crack axis at the various steps 

of crack propagat ion in clearly indicated in Fig. 17 where the microbranches  of  the 
main crack developed at various steps of its propagat ion are at the beginning bent 
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progressively and they tend afterwards to propagate along straight lines forming 
different angles with the axis of the main crack. 

Figure 18 presents the details of rotation of the crack axis in a plexiglas plate 

subjected to simple tension and containing an initial oblique crack of a length 

a = 0.010 m. at an angle to = 45 °. The reflected caustics formed at each position of the 

crack tip have different orientations relatively to the axis of the initial crack indicating 

the zig-zag progress of the crack, as it recedes from the corner point O, corresponding 
to the tip of the initial crack. As the crack tip recedes from the corner O the direction 
of the crack stabilizes to a constant angle. 

In the reflected caustics of this figure the external branches of each caustic 
correspond to reflections from the rear face of the specimen, whereas the internal 
branches to reflections from the front face. It is previously shown that the cusped 

internal caustics yield immediately the direction of the crack axis by tracing the 

mid-normal to the tangent of the two lobes of the cusp. In this way we may define 
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rapidly and accurately the actual inclination of the crack axis and compare it with the 

corresponding angle of the model. 
If an edge crack of an initial length a forms an angle to with the transverse axis 

(Ox-axis) of a long strip subjected to simple tension, application of a stress or at 
infinity engenders a strain energy concentrat ion at the crack tip, whose density is 

given by relation (23). 
The distribution of the elastic-strain energy along the boundary of the singular 

core, which coincides with the area limited by the initial curve of the caustic (and 

which is always a circle of radius r0 for isotropic elastic materials and small scale 
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yielding), always presents a minimum at the radius subtending an angle ( -  Omen) with 
the crack-axis (O~xraxis of Fig. 14). The position of this minimum direction is defined 
by relation (24). According to the criterion of the minimum elastic strain energy 
density the crack will propagate along a direction O[O, which is subtending an angle 
-Om~,,, with the old crack axis (OzX~) and the crack in its new axis propagates along 
the length O~O,. Now, in its new position the crack subtends an angle -[Omi,.I- to] 
with the transverse Ox-axis of the strip. 

In this new position the SIF ratio ~ is given by: 

Kl__~l _-- _ tanlOmi,.1 - tol 
/x= KI 

(27) 

and this ratio implies the strain energy density lobe to be angularly displaced by an 
angle +Omi,.z relatively to the crack-axis (O~O,-axis). Therefore according to the 
density criterion the new crack path is along 0 ,02  subtending an angle Omin.2 with the 
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old crack-axis (OiOraxis).  If along this new path the crack propagates along the 

length O~O2, at the point Oz the crack subtends an angle IOmin.2-Omi.,~ + tO I with the 
initial transverse crack-axis (Ox-axis). Because of the new position and orientation of 
the crack at the vicinity of its tip, the crack will propagate now along the direction 
0203 subtending a new angle -Omin,3 with the previous crack-axis (O~O2-axis). 

In this way the crack follows a zig-zag path and the angles subtended between 
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e ach  smal l  s tep  wi th  the  t r a n s v e r s e  d i r ec t ion  (Ox-ax i s )  a re  g iven  b y  (Fig.  14): 

[Omin, I -  ('01 > ]l~min,2- 1-,%min, l Jr- wl > IOmi.,3- l~min,2 + Omin, I -  W] > 

> . .  • > [Omi.,. -- Omin,(.-S)+" " " + ( - 1)"to[, n = 1, 2, 3 . . . .  ~ (28) 

The  ze ro ing  of  the  s lope  o f  the  c r a c k  a f t e r  a n u m b e r  of  s t eps  ind ica tes  tha t  the  

c r a c k  a f t e r  a suff icient  n u m b e r  o f  z ig-zag  k inks  t ends  to a ho r i z on t a l  axis  w h e r e  on ly  

K~ is ope ra t i ve .  

The  a s s u m p t i o n  tha t  the  c r a c k  fo l lows  a z ig-zag  pa th  is d e r i v e d  f rom the  fac t  that  

the  angles  -Om~n,i at e v e r y  s tep  r e m a i n  a l w a y s  la rger  than  the  c o r r e s p o n d i n g  angle  of  
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plane-strain conditions. 

inclination of the crack at the previous step. This can readily be derived by observing 
Figs. 6(a, b) and 7(a, b). Thus, we have: 

I -  Omin ,I > I'ol 

I -  Omi.,21 > IOta,..,- ~1 
l-- l~min,3] > lOre,n,2 - Omin,, -[- (01 (29) 

]Omin..l > I'Omin,(n l ) -  "Omin,(n 2 ) ' ' "  -]- ( - -  1)("-'>¢o] 
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Relations (29) are valid only for to < 60 ° for k = 0. For  co = 60 ° the angle of orientation 

of Omia equals the angle of the crack-axis,  that is: 

[-- Omin,n[ = ]Omin,(n-1)- l~min,(n-2)q-''" q= ( -  1)<"-'>col (30) 

For the cases where relation (30) is valid the crack is propagated in a straight line 

along the t ransverse  direction of the specimen. 

Figure 15 presents  various cases of  crack propagations.  Figs. 15a and b indicate the 

zig-zag direction for  initial cracks subtending angles co = 30 ° and 45 ° (p. = 0.58 and 1.00 

respect ively)  when the cracked plate is submitted to a uniaxial tension (k = 0). The 

zig-zag steps are clearly indicated and the angles subtended between them. Fig. 15c 

presents  the case where relation (30) is valid in a plate with an initial-crack axis 

subtending an angle co = 60 ° with the horizontal t ransverse  axis of  the specimen 

(p. = 1.73, k = 0). According to this model the crack will propagate  straight ahead in a 

t ransverse  direction. 

For  cases where co > 60 ° (/z > 1.73) it may be observed  that, for the first step of 

Int. Joura. of Fracture, 18 (1982) 81-112 



106 P.S.  Theocar is  and G. P a p a d o p o u l o s  

3.0 
Plane strain 

(~:0.34)  

\ ° :'~f f I' , 

' 4 -  -4~ 

t 

~~1.5 

co=OOi 

0 
-1.0 -05  0 0.5 1.0 

k ----~ 

Figure 13b. Variation of the total area E = (E~ + E2) normalized to the respective area for o~ = 0 and k = 0 
(transverse crack for uniaxial tension, K~=0) versus k for various parametric values of to and for 
plane-strain conditions. 

the crack,  the d i s t r ibu t ion  of the elastic s t ra in -energy  a round  the s ingular  core 

p resen t s  a m i n i m u m  at an angle g iven by:  

l -  Omi.,ll < Itol (31) 

while the s u b s e q u e n t  steps are obey ing  re la t ions  (29). In  these  cases  the zig-zag 

p rocedure  starts  f rom the second  step. A typical  example  is show n  in Fig. 15d with a 

crack having to = 80 ° (/~ = 5.67, k = 0). 

All c rack-pa ths  in Fig. 15 were ske tched for  uniaxia l  t ens ion  (k = 0), they are 

Int. Journ. of Fracture, 18 (1982) 81-112 



The distribution of the elastic strain-energy 107 

YI K X I 

Yo 
~ cr°ik 
• ~--- xo "t 

F Xl X2 

3 % 

Figu re  14. M o d e l  of a p r o p a g a t i n g  c r a c k  c o r e s t r u c t e d  a c c o r d i n g  to  the  m i n i m u m  s t r a i n - e n e r g y - d e n s i t y  

c r i t e r ion .  

7 2  ° a 10 ° o 

/ Inihaicrack 

• ~ao • (k=0) (d) 

i crack 

(c) 

S0,S ° _____.__T_ ii,S _ _ - - - - T - -  ~, 5 ° 
~_____j__10a ~-----J__7.5o 

tia[ crack 

(k=O) (b) 

, o = o 

J Inifiat crack 
. , , ,~3¢ (k=0) (a) 

Figure  15. V a r i o u s  ca se s  of  c r a c k  p r o p a g a t i o n s  for  p l ane - s t r e s s  c o n d i t i o n s  and  for  k = 0 w h i c h  c o r r e s p o n d  

to  a un i ax i a l  t e n s i o n  (a) to = 30 ° (b) to = 45 ° (c) to = 60 ° and  (d) m = 80 °. 

Int. Journ. of Fracture, 18 (1982) 81-112 



108 P.S. Theocaris and G. Papadopoulos 

Yl 

0 

f ~ w  

x 

Figure 16. The influence of the singularities existing at the corners Oj, O,, 02, 03 etc. of a zig-zag crack on 

the subsequent propagation of its branches. 

based on the nomograms of Figs. 6a and 7a for plane-stress conditions, and the 
propagation steps assumed equal to each other and arbitrary. 

In this model of the propagation of the crack we assumed that the crack is 
propagating by steps by a process of coalescence of voids created during fracture in 
front of the crack tip and at the vicinity of the crack. The length of these steps should 
be very small. According to Kfouri [17] the crack propagates by quantum steps, 

Figure 17. A multibranched crack developed in a polycarbonate thick specimen (thickness d = 0.010 m) 
where the phenomena of branching and rotation of the crack are clearly indicated. Fig.(a) shows the crack 
path in a normal incidence of observation, whereas Fig(b) in an oblique one thus yielding the shapes of 

branches through the thickness of the specimen. 
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Figure 18. Mode of rotation of a subsequent kink evaluating from the corner of an oblique crack at an angle 
~o = 45 ° existing in a simple tension specimen made of plexiglas as indicated by the relative rotation of the 
caustics formed at the crack tip. 

r e l a t ed  to the  e n e r g y  pe r  su r f ace  unit ,  n e c e s s a r y  for  the  s e p a r a t i o n  of  the  l ips of  the  

c rack .  This  a s s u m p t i o n  s e e m s  r e a s o n a b l e  and n e c e s s i t a t e s  fu r the r  tes ts .  

F r o m  the def in i t ion  of  the  pa th  of  the  p r o p a g a t i n g  c r a c k  a r e l a t ion  m a y  be de r i ve d  

which  m a y  d e s c r i b e  the  m o d e  of  p r o p a g a t i o n  of  c r acks .  

If  x0 = a cos  co and y0 = a sin co are  the  c o o r d i n a t e s  of  the  t ip Oi of  the  init ial  

c r a c k  of  length  a, then:  

Y0 = x0 t an  co 

The  c o o r d i n a t e s  of  the  t ip Oi, wh ich  are  d e n o t e d  as x~ and y~, are  g iven  by :  

yl = y0 - (O~A) = y0 - (AO0 tan(lOmi d - co) 

o r ;  

y~ = x0 tan  co + (xl - x0) tan(co -lagmi,.ll) 

P r o c e e d i n g  in the  s ame  w a y  for  all i n t e r m e d i a t e  c r a c k  t ips  we have  the re la t ion :  

yi = y(, I)+ ( x , - x ¢ , _ , , ) t a n ( o J +  ~, (-1)nlOmin.,I) (32) 
n= l  

with  i = 1 , 2 , 3  . . . .  ~ the  n u m b e r  o f  the  z ig-zag  s t eps  in the  c r a c k  p r o p a g a t i o n  

p r o c e d u r e .  

In  r e l a t ion  (32) the  t e rm  (xi - xti 1)) = /3  is the  p r o j e c t i o n  of  e ach  p r o p a g a t i o n  s tep  

on the  t r a n s v e r s e  Ox-ax i s .  Thus ,  the  a b s c i s s a  x~ of  each  c r ack - t i p  O~ c o r r e s p o n d i n g  to 

the  s tep  i is g iven  by :  

xi =/3 + x(i 1) (33) 

Re l a t i ons  (32) and (33) y ie ld  the  c o o r d i n a t e s  of  each  c r a c k  tip Oi and th rough  

Int. Journ. of Fracture, 18 (1982) 81-112 



110 P.S. Theocaris and G. Papadopoulos 

them the crack path can be defined. Relation (32) may be written as: 

y; = a sin to +/3 ~ tan( to+  ~ ( - l ) n l O m i n . n l )  (34) 
B=I n=l 

with 8 = (1, 2, 3 . . . . .  i) and n = (1, 2, 3 . . . . .  ~). 

Figure 19 presents the photographs of crack paths in plexiglas specimens sub- 
mitted to uniaxial tension (k = 0). The initial artificial cracks were chosen to subtend 
angles with the horizontal Ox-axis of the specimen equal to to = 45 ° (Fig. 19a) 
to = 60 ° (Fig. 19b) and to = 80 ° (Fig. 19c). It may be observed from the paths of the 
crack-axes that, in the first case with to = 45 °, the crack is propagating with an angle 
Omi,,1 larger than the angle of initial inclination. In the second case with to = 60 ° there 
is a straight and transverse propagation of the crack, whereas for to = 80 ° Omin, m < to. 
Thus, the experimentally obtained crack paths follow exactly the paths defined by the 
crack model based on the minimum elastic-strain-energy density principle. 

The angular displacement of the steps following the initial crack which is not a 
natural crack, but an artificial crack created by a saw-cut, is not influenced by this 
fact. This becomes evident if one compares the natural cracks shown in Fig. 17, 
which, at the beginning of their creations, present this continuous bending of their 
axes and then stabilize to a certain angle. The behaviour of these branches emanating 
from the natural main crack is identical to the behavior of the crack kinks shown in 
Fig. 19 following artificial cracks. Moreover, there is also a coincidence of the 
behavior indicated in Fig. 18 with the behavior of natural cracks. 

In Fig. 20 the particular values for the angles Om~,,~ corresponding to the first step 
of the crack propagation which coincide with the angles of inclination of the initial 
cracks were plotted versus the loading ratio k for either plane-stress, or plane-strain 
conditions in the cracked plate, as they have derived by applying the minimum elastic 

Figure 19. Crack propagat ion  in an isotropic material  (plexiglas) with different angles of  inclination of  the 

initial crack: (a) o~ = 45 ° (b) ¢o = 60 ° (c) co = 80 ° for  k = 0 (uniaxial tension).  
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Figure 20. Variation of to -=  1.,qmin versus k for plane-stress and plane-strain conditions. 

s t ra in  e n e r g y  pr inc ip le .  I t  m a y  be  o b s e r v e d  f rom these  p lo t s  tha t  for  un iax ia l  t ens ion  

(k = 0) we  have  a s t ra igh t  t r a n s v e r s e  p r o p a g a t i o n  of  the  c r a c k  (wi thou t  any  z ig-zag)  

for  an ini t ial  inc l ina t ion  of  the  s t a t i ona ry  c r a c k  to - - 6 0  ° fo r  p lane  s t ress  and  to = 70 ° 

for  p l ane - s t r a i n  cond i t ions .  F o r  b iax ia l  equa l  t ens ion  at  infini ty (k -- l)  a s t ra ight  l inear  

p r o p a g a t i o n  can  be a c h i e v e d  for  to = 0 ° for  p l a n e - s t r e s s  and  p l a ne - s t r a in  cond i t ions .  

F ina l ly ,  for  a t e n s i o n - c o m p r e s s i o n  case  (k = - l )  the  s t ra igh t  p r o p a g a t i o n  a p p e a r s  for  

to = 60 ° (p l ane - s t r e s s )  and  to = 61 ° (p lane-s t ra in) .  

A c k n o w l e d g e m e n t  

The  r e s e a r c h  w o r k  c o n t a i n e d  in this  p a p e r  is a pa r t  of  the  D o c t o r  o f  S c i e n c e s  

thes i s  of  the  s e c o n d  au thor .  The  r e s e a r c h  p r o g r a m m e  was  pa r t l y  s u p p o r t e d  b y  funds  

of  the  R e s e a r c h  C o m m i t t e e  of  the  U n i v e r s i t y  and pa r t l y  b y  the He l l en i c  A l u m i n i u m  

Co. The  au tho r s  e x p r e s s  the i r  g ra t i t ude  for  this  f inancia l  help.  
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RI~.SU ME 

L'+tude de la distribution de la densit6 d'6nergie de d6formation +lastique 5. l'extrdmit6 d'une fissure pr+sente 
une int6ret particulier pour comprendre le mhcanisme de la rupture. Dans cette +tude, on a d6velopp6 une 
analyse th6orique exhaustive de la distribution de la densit6 d'6nergie de deformation 61astique 5. l'extr6mite 
d'une fissure dans le cas de fissures situ+es dans un milieu 61astique isotrope d6form6 selon les models Ie t  II. 
Cette +tude a 6re compl6t~e par une solution exp+rimentale de ce type de probl6me bas+e sur la m6thode des 
caustiques r6fl6chies. Selon cette m6thode, la distribuiton de la densit6 d'+nergie de d6formation +lastique est 
6valu6e le long d'une courbe ferm6e circulaire d6finissant un noyau singulier autour de l'extr6mit6 de la fissure 
qui est influenc6 par la singularite/t l'extr6mit6 de la fissure, et dont le diam~tre est tres petit et n'excbde pas 
quelques millim~tres. Par cette voie, la situation /~ la singularit6 de lextr6mit+ de la fissure a 6t6 d+peinte 
directement sur base de la distribution de densit~ d'bnergie. Des r6sultats int~ressants concernant les facteurs 
qui influencent le mode de distribution d'6nergie de d+formation au voisinage de la fissure ainsi que du type de 
chemin de fissuration ont pu 6tre dbriv6s. 
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