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ABSTRACT

The study of the distribution of the elastic-strain energy density at the tip of a crack presents a special
interest for the understanding of the mechanism of fracture. In this investigation an exhaustive theoretical
analysis of the distribution of the elastic-strain energy density at the tip of a crack for cracks in isotropic
elastic media deformed under modes I and Il was developed.

This study was complemented by an experimental solution of this type of problem, based on the
method of reflected caustics. According to this method the distribution of the elastic-strain energy density
was evaluated along a circular closed curve, defining the singular core around the crack-tip, which was
dominated by the singularity at the crack tip and whose diameter is very small, not exceeding a few
millimeters. In this way the situation at the crack-tip singularity was directly depicted on the energy density
distribution. Interesting results concerning the factors influencing the mode of the strain energy distribution
around the crack and the type of the crack path were derived.

List of Symbols

W = elastic strain energy.
dW/dV = elastic strain energy density.
G, E = shear and elastic modulus of the material respectively.
v = Poisson’s ratio.
T, Oy, Txs = crack tip stresses referred to Cartesian coordinate system.
01,02 = principal stresses at crack tip.
ki = (1-»)/(1+ v) for plane stress.
k2= 1-2v for plane strain.
D(2),Q(z) = complex-stress functions of Muskhelishvili.
a = crack length.
k = ratio of stresses at infinity.
K, K = stress intensity factors for Modes I and II of loading, respectively.
r, 9 = polar coordinate system centered at crack tip.
w = angle of inclination of the crack.
p = ratio of stress intensity factors Kn/K, = tan @ for uniaxial tension.
o = stress applied at infinity along the transverse boundaries of the plate.
A =c(l—k)cos2w.

n, Y 1s = parametric equations of the reflected caustics referred to the Cartesian system 0'x’y’ on the
reference screen: (r) reflected caustics from rear face of the specimen and (f) reflected
caustics from the front face of the specimen.

ro=radius of the generatrix curve on the specimen around the crack tip (initial curve).
c.r = optical constants of the material for reflections from the rear and front faces of the
specimen respectively.
Am = magnification ratio of the optical set-up.
2o = distance between the reference-screen and the middle plane of the specimen.
zi = distance between the focus of the light beam and the middie plane of the specimen.
d = thickness of specimen.
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€ =2 for the reflected caustics from the rear face of the specimen and 1 for the reflected
caustics from the front face of the specimen.

Crj= €29 dCr,f/(Z'lT)”2
DT, DI™ = the maximum transverse and longitudinal diameters of the caustics respectively.

max

87, 8T% = the correction factors for Df** and D™ respectively.

f=@my™" (% ():\_:)ms

E\, E, = the areas of the upper and lower parts of the energy-density lobe respectively.
E=E+E,.
Omin = the position of the minimum elastic-strain energy. Direction of crack propagation.
Xi, ¥i = the coordinates of the propagating cracks tip Oi.
B = the projection of each propagation step on the transverse Ox-axis.

1. Introduction

An extensive theoretical study of the concept of the elastic-strain energy density
was made by Sih in a series of papers [I to 4]. Riedmiiller [5] has determined
experimentally the distribution of the energy density at the neighbourhood of a crack
tip for cracks submitted to modes I and II of deformation, by applying classical
photoelasticity and interferometry. These experimental methods are very convenient
for classical whole-field elasticity problems. However, they lose their potentialities
and accuracy when applied to singular stress fields, since they necessitate extrapola-
tion of data far away of the singularity in order to evaluate the singular stress field.
These inconveniences were removed by using the method of caustics, which gathers
information from the close vicinity of the singularity, where the stress field is
completely dominated by it [6, 7].

By applying the method of reflected caustics the distribution of the elastic
strain-energy density (SED) along the initial curve of the caustic can be readily
evaluated. The shape of this curve for isotropic and optically inert materials is always
a circle, whose center lies at the close vicinity of the crack tip [8]. Thus, the
elastic-strain energy density may be evaluated along the boundary of the singular core
which is the circumference of this circle and its integral gives the total elastic-strain
energy at the crack tip.

Various criteria have been introduced for the description of mode of
propagation of a crack submitted to a combined mode I and II in-plane deformations.
The most interesting criteria are the maximum-stress criterion, proposed by Erdogan
and Sih [9], the minimum strain-energy-density criterion, proposed by Sih [1, 4, 10],
and the maximum-energy-release rate criterion, proposed again by Erdogan and Sih [9].

According to the first criterion the crack is propagating at a direction normal to
the direction of maximum tangential stress. The minimum strain-energy density criterion
postulates that the crack propagates along the direction of minimum elastic-strain-
energy density, whereas the maximum-energy-release rate criterion represents a
generalization of Griffith’s original energy-release-rate concept [11, 12]. According to
this criterion the crack propagates along the maximum released strain energy.

In this paper the criterion of minimum strain-energy density (MESED) was
studied. A detailed analysis of the distribution of the elastic-strain-energy density in
combination with the optical method of reflected caustics was undertaken. From the
evaluation of the distribution of the elastic-strain-energy density around the crack tip
and along the small circle surrounding the crack tip and representing the generatrix
curve of the caustic (initial curve) the total strain-energy was evaluated in terms of
the characteristics of the caustics. Finally, the path of a propagating crack was
established analytically, based on the same theory and compared with experimental
results from propagating cracks in polymers.
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2. The elastic strain energy

The elastic-strain energy dW stored in a parallelopiped of volume dV for
plane-stress conditions dominating at the strained plate is expressed by [4]:

dw_ L
dv  8GlL(+v)

where G is the shear modulus and v Poisson’s ratio of the elastic and isotropic
material of the strained plate.
For the case of plane-strain, expression (1) becomes:

aw _ 1
dv ~8G

Introducing the well known relations of elasticity:

(G + 0y (00 — 0 )+ 4&] (1)

[(1-2v)(ow + O'yy)2 +(on — o'y)')2 + 4sz] @

(O +0oy) = (o1 + o) and (o, — (_ryy)2 + 41-iy = (o, - 0.2)2
relations (1) and (2) become:

dw _ 1

H—VZS_G[KI,2(UI + 0’ + (01— )] )

where o, and o, are the principal stresses corresponding to the stress tensor o; and
k1,2 take the values:

_(-v
K= 1+ for plane stress
Kk, = (1—-2v) for plane strain 4)

For a thin elastic and isotropic plate, containing an inclined crack to the axes of
symmetry of the plate, and submitted to a biaxial tension at infinity (Fig. 1), the
complex-stress functions of Muskhelishvili [14] are given by:

_ l ~r Z . _1_ i~
and
Q2) = 2@ + 1) g Zg 4 3T 6)
2 (22—ad"” " 2
where:
%I_" _ % (1= k) 2w )
%(2r +17) = Z[{1 - 22 4 {1 + o) @)

and a is the crack length, k is the ratio of stresses at infinity. For k =0 there is
uniaxial tension at infinity with the stress o applied along the transverse boundaries of
the plate, for k = 1 there is a biaxial tension with equal stresses o along both pairs of
boundaries of the plate, whereas for k = — 1 there is a tension-compression state of
loading at infinity with both pairs of stresses absolutely equal to o and with opposite
signs.

From relations (5) and (6) the principal stresses at the vicinity of the crack tip may
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Figure 1. Geometry of cracked plate and relative position of specimen and viewing screen.

be expressed by [15]:
2 D U
(o1 +0o)= (—2"—r)m (K[ COS - K, sin 2) A
(0'1 - 0'2) = =* {m[K% Sil’l2 9+ 2K]K1[ Sin 29+ K%](4 - 3sin2 ’!9)] + /\2 +

1/2
+ W sin ﬁ[K. sin 326 +4K; + 2K cos ﬁ]}

2
where:
K= "\/"a TYTL (1 + k) + (1 - k) cos 20]
K[] = G'\/’ITC! (1 - k) sin 2w

A =0'(1—-k)cos 2w

3. The optical method of reflected caustics

X

®)

(10)

(11

(12)
(13)

Consider a monochromatic and coherent light beam, emitted from a He-Ne laser,
impinging on the thin elastic transparent plate containing an oblique internal crack and
submitted to a biaxial state of loading at infinity, as indicated in Fig. 1. The reflected
rays from the front and rear faces of the plate are received on a ground-glass
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reference-screen, placed parallel to the specimen at a distance z, from it. On this
reference screen the reflected rays from the close vicinity of either crack tip form a
caustic, whose shape is shown in Fig. 2 for uniaxial tension. The parametric equations
of this strongly illuminated curve are given by [7, 16]:

2 2 2
(14)

25
= (2cy) i+ Kifcos o+ 2 (Ki+ K (K cos 32 - Ky sin 22
f f 3

2/5
= (% C,,f) (Ki+ K%;)”s{sin 9+ %—(K% + K%l)”/z(KI sin 3—212+ Ky cos 3—212)}
while the radius r = ry of the generatrix curve on the specimen around the crack tip,
which is the locus of the reflected rays forming the respective caustic on the reference
plane Sc, is given by:

3 s 2 2,5\1/5
r=ro= (——2)‘ c,,f) K1+ K3) a15)
with:
de,
Cos = Gy (16)

axis of symmetry
of caustic

Figure 2. Shape of the principal epicycloid and geometry of its formation.
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In relation (16) the quantity e takes the value € = 2 for the reflected rays from the
rear face, whereas € =1 for reflections from the front face of the specimen. The
subscripts r and f indicate reflections from either the rear, or the front faces, while d
is the thickness of the plate and c,; are the optical constants of the material of the
plate again for reflections from the rear and front faces of the specimen respectively.
It is worth noting here that the constant c¢; for front-face reflections is independent of
the optical properties of the material and equals:

Cy = E
where » is the Poisson ratio and E is the elastic modulus of the material.

Moreover, the magnification ratio A, of the optical set-up is given by:

2ot Z;

An == (17)
where z; is the distance between the focus of the light beam and the middle plane of
the specimen, while the positive sign is taken for a real image of the plate on the
screen and the negative sign for a virtual image.

The coincidence of the boundary of the singular core with the initial curve may
be explained as follows: during the loading of the cracked plate a dimple is created
surrounding the crack-tip, which has the form presented in Fig. 3, if tension is
predominant. This dimple presents a particular zone, where the slope of the thickness-
variation of the specimen presents inflection points. Outside this limit curve strict
linear elasticity is dominating, while, inside this curve, non-linear elasticity (or even
plasticity in ductile materials) is progressively intervening to reduce the continuous
increase of the gradient of the lateral deformation of the specimen as one approaches
the singularity.

This inflection zone, surrounding the crack tip, makes the impinging light rays to
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Figure 3. The shape of the inflection area surround of the crack’s tip.
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bend back, when reflected on the faces of the specimen, and this creates the caustic.
Thus, this zone coincides with the initial curve, as defined previously. Therefore, it is
reasonable to assume that the singular core extends out to this limiting curve, since
this is the boundary inside of which non-linear elasticity is dominant.

If one compares the size of the singular core as defined by previous researchers
[13] which is of the order of 0.002 in.and the radii of the initial curves of our caustics
which are usually of the order of 0.1 mm. their coincidence in size is striking.

Solving Eqs. (14) and (16) for K, for k = 0 (uniaxial tension) we obtain:

_ 2(277)”2 (D?‘?)S/Z (18)
! 3€ZodC,,f)\ ﬂi 8?,311‘
and
KI[ = K[ tan (19)

In these relations D7 and D7* are the maximum transverse- and longitudinal-
diameters of the caustic and 8§5** and §7** the correction factors for DT and D7**
respectively given by the nomogram of Fig. 4 [16] for k = 0 (uniaxial tension).

Relations (14) and (16) indicate that when both stress intensity factors are
operative (u # 0), the caustic is angularly displaced by an angle — 2w relatively to the
crack-axis, where angle o is defining the angle of inclination of the crack shown in
Fig. 2.

340

320

87, 5™ (0) —m

§

| 57 = £(1),
| |
i 13 (’) —> :
280 0 25 5 75 10 20
0 0.25 050 0.75 100
p(o) —»

Figure 4. Variation of transverse and longitudinal correction factors 87 and 7" versus M.
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4. Evaluation of the elastic-strain-energy density from the diameters of the caustic

Using relations (15) and (16), relations (9) and (10), which give the sum and
the difference of principal stresses, may be written as follows:

(U‘+UZ)=(_I(_17+-2{(-%I)—W’(K'COS%—K” sin %)—)\ (20)
and
(o1—0o2) = * {(—Ime[K% sin® 9 + 2K;Ky; sin 29 + K4(4 — 3 sin® )]+ A2+
+(_KIf+fLK%I)WT6 sin ﬂ(K[ sin 3—2‘9—+ 4K, + 2K cos 3?)}”2 @1
where
f=ame 35y 22)

Introducing relations (20) and (21) into Eq. (3) we obtain:

2 2
8G %“‘/—/‘ = (7(?'5?121)13{4'(]'2(1(1 cos g— KH sin 'g) + K% sin2 D+ 2K]K[] sin 29

. A D} .9
+ K%1(4 - 3sin’ ﬂ)] - (—I{IT‘—F_I—I:(T)UE[4KL2<K] Ccos 5— K sin 5‘)

— sin ﬂ(K. sin3—212+ 4K + 2Ky cos 3—;)] +AM(1+ Ky0) (23)
Relation (23) gives the distribution of the elastic strain energy density along a
small circle representing the singular core, coinciding with the initial curve of the
caustic and surrounding the crack tip, when the cracked plate is submitted to a biaxial
state of loading at infinity and both K; and K|; are operative. For isotropic, elastic and
optically-inert materials the initial circle has a radius ry given by relation (15).

It has been shown in ref. [8], and from the previously developed theory, that the
size of this circle may be chosen as small as desirable, by decreasing the overall
optical constants C,; and increasing the magnification ratio A, This possibility allows
the evaluation of the elastic-strain-energy distribution around the crack tip along a
well defined curve, that is the initial curve which lies as close as possible to the crack
ip.

Relation (23) was used to trace on a digital computer and plotter the elastic-strain-
energy density distribution around a crack tip in a plexiglas plate with v = 0.34,
d=0.003m,c,= -33x10"m*N,2¢ =002m, 0 =1N/m% e=2,2=2m, z=05m
and A, = 5. Figs. 5(a and b) present various distributions of the elastic strain energy
density for plane-stress conditions of the cracked plate when the loading ratio k varies
between — 1 and 1 for o = 0°, 30°, 45°, (Fig 5a) and o = 60°, 70° and 80° (Fig. 5b).

The influence of the loading-ratio k, as well as the angle o on the distribution of
the elastic-strain-energy density is clear from these figures. It is worthwhile indicating
that the ESED-distribution presents always a minimum in front of the crack tip,
whose position and magnitude vary in terms of k and w. It is clear from Figs. 5(a and
b) that, while the magnitude of this minimum depends mainly on k, its position
depends exclusively on w.

The position of this minimum (&, may be defined by annulling the partial
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derivative d/39 (dW/dV). By differentiating relation (23), one obtains the relation:

o (dW 2 .
8G =5 (g‘—;) = (_K%—+f1?’ﬁ’3 {~=2k1a[(Ki - Ki)sin § + 2K Ky cos §]
+(Ki—3K}) sin 29 + 4K K cos 29} +

A " &
+ (—I(*?:_f?%ym{2m,2 (K[ sin 7 + K cos 5)

+cos I3 (KI sin 1212 + 2K cos 222 + 4K")

+3sin 9(Kicos 32 - 2Ky sin 2)}-o 24)
2 2 2
Figures 6(a and b) present the variation of 9,,, versus o for parametric values of the
loading ratio k for plane stress (Fig. 6a) or plane strain (Fig. 6b). In both cases the
values of w vary between 0° and 90°.

Figures 7(a and b) present the variations of 9., versus the loading ratio k with @
as a parameter for plane-stress (Fig. 7a) or plane-strain (Fig. 7b).

Introducing the value for &, into relation (23), one obtains the values of the

90°

/

ko ko |

11ttt

(0
45° Plane Stress (v=0.34)

=10

Inin —>>
(=]
]
=
|

-—4-—_—1—————— S ty—

L]g

-45° \\
\
-90°

0° 30° 60° 90°
w —

Figure 6a. Variation of 9min versus o for various parametric values of k for plane-stress conditions.
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Figure 6b. Variation of dmi. versus w for various parametric values of k for plane-strain conditions.

minimum of the elastic-strain-energy density (d W/d V);, given by:

2 ‘ N2
8G (%—‘g) = (IQ?—_:I(T)TB["-KLz(K] cos 19;.,. — Ky sin ﬁé’"") + K2 sin’® 9pin

+ 2K, K1 sin 28y, + K31(4 — 3sin® ﬁmin)]

A 'amin . "amin
e e (K cos 252 Ksin 252)
—sin ﬁmin<K. sin> ‘92"“" + 2Ky cos > ‘Zm‘“ + 4Kn>] +AX1 + K1) 25)

Figures 8(a and b) present the variation of the minimum of the elastic-strain-
energy density (dW/d V)., normalized to the respective minimum for « =0and k=0
(transverse crack for uniaxial tension, Ky; = 0), versus w for various parametric values
of k and for plane-stress (Fig. 8a), or plane-strain (Fig. 8b) conditions of the cracked
plate. Figs. 9(a and b) present the variation of the same minimum (dW/dV)u,
normalized to the same respective minimum for w =0 and k =0 versus the loading
ratio k for various parametric values of w and again for plane stress (Fig. 9a), or
plane-strain (Fig. 9b) conditions.
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Figure 7a. Variation of 9min versus k for various parametric values of w and for plane-stress conditions.

The distribution of the strain energy density is symmetric relatively to the crack
axis for @ =0 for every value of k, and for k = 1 for every value of w, as it has been
already indicated in Figs 5(a, b). This symmetric distribution ceases to exist as soon as
o and k takes values different than zero and 1 respectively. In these cases the lobe of
the distribution of the energy density is angularly displaced by an angle — ¥, and,
besides this rotation, there is also an asymmetric distribution of the energy density in
the two semi-lobes. Indeed, it can be readily derived from Figs. 5(a, b) that the size of
the lobe representing the distribution of the elastic energy density depends on both
quantities @ and k.

If E, and E, represent the areas of the upper and lower parts of the energy-
density lobe, as it has been divided by the straight line connecting the crack tip with
the point of minimum density, these areas may be calculated by evaluating the
following integrals:

_1 (m+8min) dwW 2 __1 Ormin dW 2
El B 2 J:‘)min (W) dﬁ and E2 - 2 7'rr+1‘)mi“ (dV) dﬂ (26)

The variation of the ratio E,/E, in terms of w is given in Figs. 10a for plane-stress
and 10b for plane-strain conditions of the cracked plate, for k as a parameter, while
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Figure 7b. Variation of Omin versus k for various parametric values of w and for plane-strain conditions.

the variation of the ratio E,/E; is plotted versus k in Fig. 11a for plane-stress and Fig.
11b for plane-strain conditions for w as a parameter. Furthermore, the variation of the
total area E = (E, + E,) of the lobe of distribution of energy density normalized to the
area E“*=° of the respective lobe for w =0 and k = 0 versus either the angle o, or the
loading ratio k is given in Figs. 12(a and b) and 13(a and b) respectively, again, for
plane-stress and plane-strain conditions.

5. Results

The experimental study of Sih’s criterion for the propagation of a crack and the
direction of the minimum elastic-strain energy density in a plate under plane-stress
conditions and submitted to a general biaxial-type of loading at infinity indicated that
the strain-energy density distribution depends on the angle of inclination of the crack
w, as well as on the loading ratio k (Figs. 5(a and b)). The position of the minimum
elastic-strain energy density, defined by angle ¥, and therefore the direction of
propagation of the crack depends on @ and k (as it may be concluded from Figs.
6(a, b) and Figs. 7(a, b)). For k=0 and for w varying between 0° and 90°, | &
increases and, after having passed from a maximum, it decreases and tends to 0°, for
k=1, 9m,=0. This means that for whatever angle o the crack will spread straight
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Figure 8a. Variation of the minimum of the ESED (d W/d V)min, normalized to the respective minimum for
® =0 and k = 0 (transverse crack for uniaxial tension, Ky = 0) versus o, for various parametric values of k
and for plane-stress conditions.

ahead because Ky =0. For k <0 the angle |9, increases and for values of w = 45°
there exist values of k yielding K; =0 and K # 0 (pure shear). At these positions of
pure shear a change of sign of 9., appears and then a decrease of its value tending to
0° for o tending to 90° is detected. The change of values of minimum strain-energy den-
sity, normalized to the value of minimum strain-energy density for o =0 and k =0
(uniaxial tension, Ky = 0), is shown in figures 8a, 8b, as well as in Figs 9a and 9b. For
k =0 the values of minimum strain-energy density decrease rapidly tending to 0° as @
tends to 90°. For k > 0 they continuously decrease without tending to zero because Kj;
remains always different than zero for all angles w. For k = 1 (Ky; = 0) the value of the
minimum strain-energy density remains constant. For k <0 the values decrease up to
o = 45° and after passing from a minimum, which corresponds to the positions of pure
shear (K| = 0), they increase and afterwards decrease again. Fork = — 1 a symmetrical
distribution of the energy density appears with an axis of symmetry at 45°.

A measure of the influence of » and k to the position of 8, for the minimum of
the strain-energy density for plane-stress and plane-strain is given by the distribution
of the area of the lobe defined by the curve of the distribution of the strain-energy
density around the crack tip.

Figures 10(a, b) and 11(a, b) present the variation of the ratio E,/E, of the areas of
the upper and lower semi-lobes divided by the axis of 9n,. From Figs. 10(a, b) and
11(a, b) it can be seen that for k = 1 and for all angles & the lobe-area distribution is
symmetric to the direction of minimum strain-energy density. For k =0 the ratio
E\/E, decreases and after passing from a minimum, lying in between 30° and 60°,
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Figure 8b. Variation of the minimum of the E.S.E.D (dW/d V)uin, normalized to the respective minimum for
@ =0 and k =0 (transverse crack for uniaxial tension, Kn = 0) versus o, for various parametric values of k
and for plane-strain conditions.

increases again and tends to unity for « tending to 90°. For k <0 the ratio E,/E,
decreases again up to o = 45°. For angles w = 45°, corresponding to positions of pure
shear (K;= 0) and changes of sign of 9.y, a reversion of the magnitudes of areas E,
and E, is observed and consequently the ratio E,/E; becomes greater than unity and
after passing from a maximum tends to unity as « tends to 90°.

Figures 12(a, b) and 13(a, b) yield the influence of w and k on the total area of the
surface E included in the lobe of the energy density distribution, normalized to the
area corresponding to uniaxial tension (k =0) for @ =0, for plane stress and plane
strain conditions. This influence is small for small values of w(w < 10°). Above this
region it becomes more and more important. The area E increases for k <0, while for
k >0 it diminishes, and after passing a minimum it, again, increases.

6. A model for the propagation mode of cracks for k = 0 (uniaxial tension).

In this section a model for the propagation mode of a crack is proposed, based on
the minimum strain-energy criterion. The validity of this model is checked with the

method of reflected caustics.
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The zig-zag path of a propagating crack in a plate under tension may be explained
by considering the advancement of a crack as consisting of distinctive steps, where
voids and other discontinuities of the material, surrounding the crack-tip, coalesce and
create each kink for the crack. In such a case it is assumed that the crack propagates
along the direction of minimum strain-energy density.

Figure 14 shows the initial crack with its tip at O; and successive kinks OO,
0,0,;, 0,0,,... Although the singularity existing at the tip of the crack for each
position dominates the stress field at the vicinity of the tip, there are also weaker
singularities existing at the successive corners O, O, O,, Os,...,each of which is
influencing the state of stress at the crack tip when this crack is still at the
neighbourhood of this corner [18, 19].

It is known that the singularity at a multiwedge, as is the case at each corner with
the branches of the crack separating the material in several wedges, diminishes as the
convex angle at the corner is diminishing and becomes equal to zero when this angle
tends to 180°. When the crack propagates along the kink after the corner O the new
crack forms an angle with the axis of the previous step lying between 220° and 255°,
depending on the value of angle w (Fig. 15). For such angles the order of singularity
lies between —0.3 and —0.4 and, therefore, it is quite large, as compared with the
singularity at the tip of the new crack, which is of the order —0.5. The singularity of
the corner interacts with the singularity at the crack tip and this results in a
progressive bending of the crack at the vicinity of each corner. Then, the real crack
path is as shown in Fig. 16 with the dotted lines indicating the transition periods at
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each corner of the zig-zag crack. This continuous bending of the crack diminishes as
the crack-tip recedes from the neighboring corner, since the influence of the sin-
gularity of the corner on the singularity of the crack tip becomes weaker with
distance.

Figure 17a presents a branched crack in a polycarbonate thick tension specimen,
where many branches and kinks present this progressive bending after their passing
from a corner. Fig. 17b presents the same crack photographed in oblique angle so that
the shape of the branches through the thickness of the specimen are more apparent.

In the next step, after the corner point O, the angle 9 is of the order of 190° and
200° and the singularity at the corner is of the order —0.1 and —0.2. Its influence,
therefore, on the mode of propagation of the next kink is smaller than in the previous
step. The next corner O; creates a multiwedge with an angle not overpassing 190° and
therefore the influence of the singularity of this corner (—0.1) on the crack-tip
singularity is further diminished and it may be neglected.

The initial bending and angular displacement of the crack axis at the various steps
of crack propagation in clearly indicated in Fig. 17 where the microbranches of the
main crack developed at various steps of its propagation are at the beginning bent
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progressively and they tend afterwards to propagate along straight lines forming
different angles with the axis of the main crack.

Figure 18 presents the details of rotation of the crack axis in a plexiglas plate
subjected to simple tension and containing an initial oblique crack of a length
a =0.010 m. at an angle w = 45°. The reflected caustics formed at each position of the
crack tip have different orientations relatively to the axis of the initial crack indicating
the zig-zag progress of the crack, as it recedes from the corner point O, corresponding
to the tip of the initial crack. As the crack tip recedes from the corner O the direction
of the crack stabilizes to a constant angle.

In the reflected caustics of this figure the external branches of each caustic
correspond to reflections from the rear face of the specimen, whereas the internal
branches to reflections from the front face. It is previously shown that the cusped
internal caustics yield immediately the direction of the crack axis by tracing the
mid-normal to the tangent of the two lobes of the cusp. In this way we may define
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rapidly and accurately the actual inclination of the crack axis and compare it with the
corresponding angle of the model.

If an edge crack of an initial length a forms an angle » with the transverse axis
(Ox-axis) of a long strip subjected to simple tension, application of a stress o at
infinity engenders a strain energy concentration at the crack tip, whose density is
given by relation (23).

The distribution of the elastic-strain energy along the boundary of the singular
core, which coincides with the area limited by the initial curve of the caustic (and
which is always a circle of radius r, for isotropic elastic materials and small scale
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yielding), always presents a minimum at the radius subtending an angle ( — 3i,) with
the crack-axis (Oyx-axis of Fig. 14). The position of this minimum direction is defined
by relation (24). According to the criterion of the minimum elastic strain energy
density the crack will propagate along a direction 0;0, which is subtending an angle
—Omin1 With the old crack axis (O.X)) and the crack in its new axis propagates along
the length O,0,. Now, in its new position the crack subtends an angle —|9y,, — w|
with the transverse Ox-axis of the strip.
In this new position the SIF ratio p is given by:

m= —%‘ = —tan|min: — o (27)

and this ratio implies the strain energy density lobe to be angularly displaced by an
angle +3dani: relatively to the crack-axis (0,0;-axis). Therefore according to the
density criterion the new crack path is along O,0; subtending an angle ., with the
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old crack-axis (O0;0,-axis). If along this new path the crack propagates along the
length O,0,, at the point O, the crack subtends an angle |9 min2 — Fmin1 + @| with the
initial transverse crack-axis (Ox-axis). Because of the new position and orientation of
the crack at the vicinity of its tip, the crack will propagate now along the direction
0,0; subtending a new angle —3,,,; with the previous crack-axis (0,0;-axis).

In this way the crack follows a zig-zag path and the angles subtended between
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each small step with the transverse direction (Ox-axis) are given by (Fig. 14):

l'&min,l - Q)l > 'ﬁmin,Z - ﬁmin,l + wl > |'amin,3 - 1"min,Z + 1Smin,l - 0)' >

> ... > lﬁmin,n - 0min,(n~l)+ et +(_ l)nwia n= 1, 2’ 37 S (28)

The zeroing of the slope of the crack after a number of steps indicates that the
crack after a sufficient number of zig-zag kinks tends to a horizontal axis where only
K is operative.

The assumption that the crack follows a zig-zag path is derived from the fact that
the angles — 3, at every step remain always larger than the corresponding angle of
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inclination of the crack at the previous step. This can readily be derived by observing
Figs. 6(a, b) and 7(a, b). Thus, we have:

| = Benina| > o]
l - 1‘)min,Zl > "8min,l - (DI
| - '8min,3| > |'8min,2 - 13min,l + (l)l (29)

lﬁmin‘n| > "ﬂmin,(nfl)_ amin,(rﬁZ) et ( - 1)(n_l)(l)|
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Relations (29) are valid only for w < 60° for k = 0. For w = 60° the angle of orientation
of 9min equals the angle of the crack-axis, that is:

| - 19min,nl = |'8min.(n—1) - 0min,(n—2) +eeot ( - 1)("4)(1)‘ (30)

For the cases where relation (30) is valid the crack is propagated in a straight line
along the transverse direction of the specimen.

Figure 15 presents various cases of crack propagations. Figs. 15a and b indicate the
zig-zag direction for initial cracks subtending angles « = 30° and 45° (. = 0.58 and 1.00
respectively) when the cracked plate is submitted to a uniaxial tension (k =0). The
zig-zag steps are clearly indicated and the angles subtended between them. Fig. 15¢
presents the case where relation (30) is valid in a plate with an initial-crack axis
subtending an angle o =60° with the horizontal transverse axis of the specimen
(n = 1.73, k = 0). According to this model the crack will propagate straight ahead in a
transverse direction.

For cases where w > 60° (u > 1.73) it may be observed that, for the first step of
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the crack, the distribution of the elastic strain-energy around the singular core
presents a minimum at an angle given by:

|—ﬂmin,1|<|w| (31)

while the subsequent steps are obeying relations (29). In these cases the zig-zag
procedure starts from the second step. A typical example is shown in Fig. 15d with a
crack having w = 80° (u = 5.67, k = 0).

All crack-paths in Fig. 15 were sketched for uniaxial tension (k = 0), they are
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based on the nomograms of Figs. 6a and 7a for plane-stress conditions, and the
propagation steps assumed equal to each other and arbitrary.

In this model of the propagation of the crack we assumed that the crack is
propagating by steps by a process of coalescence of voids created during fracture in
front of the crack tip and at the vicinity of the crack. The length of these steps should
be very small. According to Kfouri [17] the crack propagates by quantum steps,

Figure 17. A multibranched crack developed in a polycarbonate thick specimen (thickness d = 0.010 m)
where the phenomena of branching and rotation of the crack are clearly indicated. Fig.(a) shows the crack
path in a normal incidence of observation, whereas Fig(b) in an oblique one thus yielding the shapes of
branches through the thickness of the specimen.
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Figure 18. Mode of rotation of a subsequent kink evaluating from the corner of an oblique crack at an angle
= 45° existing in a simple tension specimen made of plexiglas as indicated by the relative rotation of the
caustics formed at the crack tip.

related to the energy per surface unit, necessary for the separation of the lips of the
crack. This assumption seems reasonable and necessitates further tests.

From the definition of the path of the propagating crack a relation may be derived
which may describe the mode of propagation of cracks.

If xo=acosw and y,=a sin @ are the coordinates of the tip O; of the initial
crack of Iength a, then:

Yo = Xptan w

The coordinates of the tip O;, which are denoted as x, and y,, are given by:
yi = Yo— (01A) = yo — (AO)) tan(| 8 min.1| — @)

or:
y1 = Xotan o + (x; — xo) tan(w — | Fin.1])

Proceeding in the same way for all intermediate crack tips we have the relation:
¥i = Yi-n + (xi = Xg-n) tan(w + 21 (- 1)"|19min.n|) (32)

with i=1,2,3,...= the number of the zig-zag steps in the crack propagation
procedure.

In relation (32) the term (x; — x_1)) = B is the projection of each propagation step
on the transverse Ox-axis. Thus, the abscissa x; of each crack-tip O; corresponding to
the step i is given by:

Xi = B + X@i-1 (33)
Relations (32) and (33) yield the coordinates of each crack tip O; and through
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them the crack path can be defined. Relation (32) may be written as:
i 85
yi=asine+ S tan(w +3 (- 1)"|19,,,i,,,n|> (34)
5=1 n=1

with 8 =(1,2,3,...,i)and n =(1,2,3,..., 8).

Figure 19 presents the photographs of crack paths in plexiglas specimens sub-
mitted to uniaxial tension (k = 0). The initial artificial cracks were chosen to subtend
angles with the horizontal Ox-axis of the specimen equal to w =45° (Fig. 19a)
o = 60° (Fig. 19b) and » = 80° (Fig. 19¢). It may be observed from the paths of the
crack-axes that, in the first case with w = 45°, the crack is propagating with an angle
Imin1 larger than the angle of initial inclination. In the second case with w = 60° there
is a straight and transverse propagation of the crack, whereas for v = 80° 94 < .
Thus, the experimentally obtained crack paths follow exactly the paths defined by the
crack model based on the minimum elastic-strain-energy density principle.

The angular displacement of the steps following the initial crack which is not a
natural crack, but an artificial crack created by a saw-cut, is not influenced by this
fact. This becomes evident if one compares the natural cracks shown in Fig. 17,
which, at the beginning of their creations, present this continuous bending of their
axes and then stabilize to a certain angle. The behaviour of these branches emanating
from the natural main crack is identical to the behavior of the crack kinks shown in
Fig. 19 following artificial cracks. Moreover, there is also a coincidence of the
behavior indicated in Fig. 18 with the behavior of natural cracks.

In Fig. 20 the particular values for the angles dn,n, corresponding to the first step
of the crack propagation which coincide with the angles of inclination of the initial
cracks were plotted versus the loading ratio k for either plane-stress, or plane-strain
conditions in the cracked plate, as they have derived by applying the minimum elastic

Figure 19. Crack propagation in an isotropic material (plexiglas) with different angles of inclination of the
initial crack: (a) w =45° (b) = 60° (c) @ = 80° for k = 0 (uniaxial tension).
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Figure 20. Variation of @ = Omn versus k for plane-stress and plane-strain conditions.

strain energy principle. It may be observed from these plots that for uniaxial tension
(k =0) we have a straight transverse propagation of the crack (without any zig-zag)
for an initial inclination of the stationary crack o = 60° for plane stress and w = 70°
for plane-strain conditions. For biaxial equal tension at infinity (k = 1) a straight linear
propagation can be achieved for w = 0° for plane-stress and plane-strain conditions.
Finally, for a tension-compression case (k = — 1) the straight propagation appears for
w = 60° (plane-stress) and « = 61° (plane-strain).
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RESUME

L'étude de la distribution de la densité d'énergie de déformation élastique a I'extrémité d’une fissure présente
une intéret particulier pour comprendre le mécanisme de la rupture. Dans cette étude, on a développé une
analyse théorique exhaustive de la distribution de la densité d’énergie de déformation élastique a 'extrémité
d’une fissure dans le cas de fissures situées dans un milieu élastique isotrope déformé selon les models I et 11.
Cette étude a été complétée par une solution expérimentale de ce type de probleme basée sur la méthode des
caustiques réfléchies. Selon cette méthode, la distribuiton de la densité d’énergie de déformation élastique est
évaluée le long d’une courbe fermée circulaire définissant un noyau singulier autour de 'extrémité de la fissure
qui est influencé par la singularité a P'extrémité de la fissure, et dont le diametre est tres petit et n’excéde pas
quelques millimetres. Par cette voie, la situation & la singularité de lextrémité de la fissure a été dépeinte
directement sur base de la distribution de densité d’énergie. Des résultats intéressants concernant les facteurs
qui influencent le mode de distribution d’énergie de déformation au voisinage de la fissure ainsi que du type de
chemin de fissuration ont pu étre dérivés.
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