

City, University of London Institutional Repository

Citation: Fairbank, M. & Alonso, E. (2012). The divergence of reinforcement learning

algorithms with value-iteration and function approximation. Paper presented at the The 2012
International Joint Conference on Neural Networks (IJCNN), 10-06-2012 - 15-06-2012,
Brisbane, Australia. doi: 10.1109/IJCNN.2012.6252792

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5203/

Link to published version: https://doi.org/10.1109/IJCNN.2012.6252792

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

3070

The Divergence of Reinforcement Learning
Algorithms with Value-Iteration and Function

Approximation
Michael Fairbank, Student Member, IEEE and Eduardo Alonso

Cite as: Michael Fairbank and Eduardo Alonso, The Divergence of Reinforcement Learning Algorithms with Value-Iteration and Function
Approximation, In Proceedings of the IEEE International Joint Conference on Neural Networks, June 2012, Brisbane (IEEE IJCNN 2012),
pp. 3070–3077.
Errata: See footnote 2, plus note in Fig.3

Abstract—This paper gives specific divergence examples of
value-iteration for several major Reinforcement Learning and
Adaptive Dynamic Programming algorithms, when using a func-
tion approximator for the value function. These divergence exam-
ples differ from previous divergence examples in the literature,
in that they are applicable for a greedy policy, i.e. in a “value
iteration” scenario. Perhaps surprisingly, with a greedy policy,
it is also possible to get divergence for the algorithms TD(1)
and Sarsa(1). In addition to these divergences, we also achieve
divergence for the Adaptive Dynamic Programming algorithms
HDP, DHP and GDHP.

Index Terms—Adaptive Dynamic Programming, Reinforce-
ment Learning, Greedy Policy, Value Iteration, Divergence

I. INTRODUCTION

Adaptive Dynamic Programming (ADP) [1] and Reinforce-
ment Learning (RL) [2] are similar fields of study that aim
to make an agent learn actions that maximise a long-term
reward function. These algorithms often rely on learning a
“value function” that is defined in Bellman’s Principle of
Optimality [3]. When an algorithm attempts to learn this value
function by a general smooth function approximator, while
the agent is being controlled by a “greedy policy” on that
approximated value function, then ensuring convergence of
the learning algorithm is difficult.

It has so far been an open question as to whether divergence
can occur under these conditions and for which algorithms. In
this paper we present a simple artificial test problem which
we use to make many RL and ADP algorithms diverge with a
greedy policy. The value function learning algorithms that we
consider are Sarsa(λ) [4], TD(λ) [5], and the ADP algorithms
Heuristic Dynamic Programming (HDP), Dual Heuristic Dy-
namic Programming (DHP), Globalized Dual Heuristic Dy-
namic Programming (GDHP) [6], [7], [8] and Value-Gradient
Learning (VGL(λ)) [9], [10]. We prove divergence of all
of these algorithms (including VGL(0), VGL(1), Sarsa(0),
Sarsa(1), TD(0), TD(1), DHP and GDHP), all when operating
with greedy policies, i.e. in a “value-iteration” setting.

Some of these algorithms have convergence proofs when a
fixed policy is used. For example TD(λ) is proven to converge

M. Fairbank and E. Alonso are with the Department of Computing,
School of Informatics, City University London, London, UK (e-mail:
michael.fairbank.1@city.ac.uk; E.Alonso@city.ac.uk).

when λ = 1 since it is then (and only then) true gradient de-
scent on an error function [5]. Also for 0 ≤ λ ≤ 1, it is proven
to converge by [11] when the approximate value function is
linear in its weight vector and learning is “on-policy”. Recent
advancements in the RL literature have extended convergence
conditions of variants of TD(λ) to an “off-policy” setting
[12], and with non-linear function approximation of the value
function [13]. However, all these proofs apply to a fixed policy
instead of the greedy policy situation we consider here.

[8] show that ADP processes will converge to optimal
behaviour if the value function could be perfectly learned over
all of state space at each iteration. However in reality we must
work with a function approximator for the value function with
finite capabilities, so this assumption is not valid. Working
with a general quadratic function approximator, [14] proves
the general instability of DHP and GDHP. This analysis was
for a fixed policy, so with a greedy policy convergence would
presumably seem even less likely. This paper confirms this.

A key insight into the difficulty of understanding conver-
gence with a greedy policy is shown by lemma 7 of [9]
that the dependency of a greedy action on the approximated
value function is primarily through the value-gradient, i.e. the
gradient of the value function with respect to the state vector.
We use a value-gradient analysis in this paper to understand the
divergence of all of the algorithms being tested. [9] and [15]
recently defined a value-function learning algorithm that is
proven to converge under certain smoothness conditions, using
a greedy policy and an arbitrary smooth approximated value
function, so this contrasts greatly to the diverging algorithm
examples we give here.

In the rest of this introduction (sections I-A to I-E), we state
the general RL/ADP problem and give the necessary function
definitions. In section II we give definitions of the algorithms
that we are testing.

The approach we make to achieve divergence is to define a
problem that is simple enough to analyse algebraically, but
flexible enough to provide a divergence example (sections
III to III-B). We then analyse a trajectory for this problem
(sections III-C to III-E), so that we can write the VGL(λ)
weight update as a single dynamic system and hence examine
what choice of parameters could be made to force this dynamic
system to diverge (section IV). The VGL(λ) weight update

3071

is easier to analyse than the TD(λ) one, since as mentioned
above the greedy policy depends on the value-gradient, so in
section V we just use the same learning parameters that caused
divergence for VGL(λ) and find empirically that they cause the
other algorithms to diverge too.

Finally, in section VI, we discuss the difficulty of ensuring
value-iteration convergence but its potential advantages com-
pared to policy-iteration.

A. RL and ADP Problem Definition and Notation

The typical RL/ADP scenario is an agent wandering around
in an environment (with state space S ⊂ <n), such that at
time t it has state vector ~xt ∈ S. At each time t the agent
chooses an action ~at (from an action space A ⊂ <n) which
takes it to the next state according to the environment’s model
function ~xt+1 = f(~xt,~at), and gives it an immediate reward,
rt, given by the function rt = r(~xt,~at). In general these
model functions f and r can be stochastic functions. The agent
keeps moving, forming a trajectory of states (~x0, ~x1, . . .),
which terminates if and when a designated terminal state is
reached. In RL/ADP, we aim to find a policy function, π(~x),
that calculates which action ~a = π(~x) to take for any given
state ~x. The objective of RL/ADP is to find a policy such that
the expectation of the total discounted reward, 〈

∑
t γ

trt〉, is
maximised for any trajectory. Here γ ∈ [0, 1] is a constant
discount factor that specifies the importance of long term
rewards over short term ones.

B. Approximate Value Function (Critic) and its Gradient

We define Ṽ (~x, ~w) to be the real-valued scalar output of a
smooth function approximator with weight vector ~w and input
vector ~x. This is the “approximate value function”, or “critic”.
We define G̃(~x, ~w) as the “approximate value gradient”, or
“critic gradient”, to be G̃(~x, ~w) ≡ ∂Ṽ (~x,~w)

∂~x .
Here and throughout this paper, a convention is used that

all defined vector quantities are columns, whether they are
coordinates, or derivatives with respect to coordinates. So, for
example, G̃, ∂Ṽ∂~x and ∂Ṽ

∂ ~w are all columns.

C. Greedy Policy

The greedy policy is the function that always chooses
actions as follows:

~a = arg max
~a∈A

(Q̃(~x,~a, ~w)) ∀~x (1)

where we define the approximate Q Value function as

Q̃(~x,~a, ~w) = r(~x,~a) + γṼ (f(~x,~a), ~w) (2)

D. Actor-critic architectures

If a non-greedy policy is used, then a separate policy
function would be used. This could be represented by a second
function approximator, known as the actor (the first function
approximator being the critic). The actor and the critic together
are known as an actor-critic architecture.

Training of the actor and critic would take place iteratively
and in alternating phases. Policy iteration is the situation

where the critic is trained to completion in between every
actor update. Value iteration is the situation where the actor
is trained to completion in between each critic update.

The intention of the actor’s training weight update is to
make the actor behave more like a greedy policy. Hence value
iteration is very much like using a greedy policy, since the
objective of training an actor to completion is to make the actor
behave just like a greedy policy. Hence the divergence results
we derive in this paper for a greedy policy are applicable to
an actor-critic architecture with value-iteration, assuming the
function approximator of the actor has sufficient flexibility to
learn the greedy policy accurately enough (which is true for
the actor we define in section III-B).

E. Trajectory Shorthand Notation

Throughout this paper, all subscripted indices are what
we call trajectory shorthand notation. These refer to the
time step of a trajectory and provide corresponding argu-
ments ~xt and ~at where appropriate; so that for example
Ṽt+1 ≡ Ṽ (~xt+1, ~w); Q̃t+1 ≡ Q̃(~xt+1,~at+1, ~w);

(
∂Q̃
∂~a

)
t

is

shorthand for ∂Q̃(~x,~a,~w)
∂~a

∣∣∣
(~xt,~at, ~w)

and
(
∂Ṽ
∂ ~w

)
t

is shorthand for

∂Ṽ (~x,~w)
∂ ~w

∣∣∣
(~xt, ~w)

.

II. LEARNING ALGORITHMS AND DEFINITIONS

A. TD(λ) Learning

The TD(λ) algorithm [5] can be defined in batch mode by
the following weight update applied to an entire trajectory:

∆~w = α
∑
t

(
∂Ṽ

∂ ~w

)
t

(Rλt − Ṽt) (3)

where λ ∈ [0, 1], and α > 0 are fixed constants. Rλ is the
(moving) target for this weight update. It is known as the “λ-
Return”, as defined by [16]. For a given trajectory, this can
be written concisely using trajectory shorthand notation by the
recursion

Rλt = rt + γ(λRλt+1 + (1− λ)Ṽt+1) (4)

with Rλt = 0 at any terminal state, as proven in Appendix
A of [9]. This equation introduces the dependency on λ into
eq. 3. Using the λ-Return enables us to write TD(λ) in this
very concise way, known as the “forwards view of TD(λ)” by
[2], however the traditional way to implement the algorithm
is using “eligibility traces”, as described by [5].

TD(λ) is defined for the task of policy evaluation, i.e. it is
defined just for the task of learning the approximated value
function for a fixed policy. It is not usually used with a greedy
policy, which is the circumstance in which we consider it in
this paper. However we show in section V-A that the TD(λ)
weight update can be equivalent in some circumstances to the
Sarsa(λ) weight update, which is defined for a greedy policy.
Another reason to consider TD(λ) with a greedy policy is that
TD(λ) can be used in an actor-critic architecture as part of a
value-iteration scheme, which, as we described in section I-D,
is very similar to using a greedy policy.

3072

B. Sarsa(λ) Algorithm

Sarsa(λ) is an algorithm for control problems that learns
to approximate the Q̃(~x,~a, ~w) function [4]. It is designed for
policies that are dependent on the Q̃(~x,~a, ~w) function (e.g. the
greedy policy or a greedy policy with added stochastic noise),
where Q̃(~x,~a, ~w) here is defined to be the output of a given
function approximator.

The Sarsa(λ) algorithm is defined for trajectories where all
actions after the first are found by the given policy; the first
action ~a0 can be arbitrary. The function-approximator update
is defined to be:

∆~w = α
∑
t

(
∂Q̃

∂ ~w

)
t

(Qλt − Q̃t) (5)

where Qλ is the target for this weight update. This is analogous
to the λ-return, but uses the function approximator Q̃ in place
of Ṽ . We can define Qλ recursively in trajectory shorthand
notation by

Qλt = rt + γ(λQλt+1 + (1− λ)Q̃t+1) (6)

with Qλt = 0 at any terminal state.

C. The VGL(λ) Algorithm

To define the VGL(λ) algorithm, throughout this paper we
use a convention that differentiating a column vector function
by a column vector causes the vector in the numerator to
become transposed (becoming a row). For example ∂f

∂~x is
a matrix with element (i, j) equal to ∂f(~x,~a)j

∂~xi . Similarly,(
∂G̃
∂ ~w

)ij
= ∂G̃j

∂ ~wi , and
(
∂G̃
∂ ~w

)
t

is this matrix evaluated at (~xt, ~w).
Using this notation and the implied matrix products, all

VGL algorithms can be defined by a weight update of the
form:

∆~w = α
∑
t

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) (7)

where α is a small positive constant; G̃t is the approximate
value gradient; and G′t is the “target value gradient” defined
recursively by:

G′t =

(
Dr

D~x

)
t

+ γ

(
Df

D~x

)
t

(
λG′t+1 + (1− λ)G̃t+1

)
(8)

with G′t = ~0 at any terminal state; where Ωt is an arbitrary
positive definite matrix of dimension (dim ~x × dim ~x); and
where D

D~x is shorthand for

D

D~x
≡ ∂

∂~x
+
∂π

∂~x

∂

∂~a
; (9)

and where all of these derivatives are assumed to exist.
Equations 7, 8 and 9 define the VGL(λ) algorithm. [9] and
[10] give further details, and pseudocode for both on-line and
batch-mode implementations.

The Ωt matrix was introduced by Werbos for the algorithm
GDHP (e.g. see [14, eq. 32]), and can be chosen freely by the
experimenter, but it is in general difficult to decide how to do

this; so for most purposes it is just taken to be the identity
matrix. However for the special choice of

Ωt =

−
(
∂f
∂~a

)T
t−1

(
∂2Q̃
∂~a∂~a

)−1
t−1

(
∂f
∂~a

)
t−1

for t > 0

0 for t = 0
, (10)

the algorithm VGL(1) is proven to converge [9] when used in
conjunction with a greedy policy, and under certain smooth-
ness assumptions.

D. Definition of the ADP Algorithms HDP, DHP and GDHP

All of the ADP algorithms we will define here are partic-
ularly intended for the situation of actor-critic architectures.
However for our divergence examples in this paper we are
instead using the greedy policy. As detailed in section I-D,
using an actor-critic architecture with value-iteration is very
similar to using a greedy policy.

The three ADP algorithms we consider here can all be
defined in terms of the algorithms defined so far in this paper.
• The algorithm Heuristic Dynamic Programming (HDP)

uses the same weight update for its Ṽ function as TD(0).
• The algorithm Dual Heuristic Dynamic Programming

(DHP) uses the same weight update for its G̃ function
as VGL(0). In DHP, the function G̃(~x, ~w) is usually
implemented as the output of a separate vector function
approximator, but in this paper’s divergence example we
don’t do this (instead we use G̃ ≡ ∂Ṽ

∂~x).
• Globalized Dual Heuristic Programming (GDHP) uses a

linear combination of a weight update by VGL(0) and
one by TD(0).

These ADP algorithms are traditionally used with a neural
network to represent the critic. But this is not always necessar-
ily the case; any differentiable structure will suffice [7]. In this
paper we make use of simple quadratic functions to represent
the critic.

III. PROBLEM DEFINITION FOR DIVERGENCE

We define the simple RL problem domain and function
approximator suitable for providing divergence examples for
the algorithms being tested.

First we define an environment with ~x ∈ < and ~a ∈ <, and
model functions:

f(xt, t, at) =

{
xt + at if t ∈ {0, 1}
xt if t = 2

(11a)

r(xt, t, at) =

{
−kat2 if t ∈ {0, 1}
−xt2 if t = 2

(11b)

where k > 0 is a constant. Each trajectory is defined to
terminate at time step t = 3, so that exactly three rewards are
received by the agent (rewards are given at timings as defined
in section I-A, i.e. with the final reward r2 being received on
transitioning from t = 2 to t = 3). In these model function
definitions, action a2 has no effect, so the whole trajectory is
parametrised by just x0, a0 and a1, and the total reward for
this trajectory is −k(a0

2+a1
2)−(x0+a0+a1)2. These model

functions are dependent on t, which is an abuse of notation

3073

we have adopted for brevity, but this could be legitimised by
including t into ~x.

The divergence example we derive below considers a trajec-
tory which starts at x0 = 0. From this start point, the optimal
actions are a0 = a1 = 0.

A. Critic Definition

A critic function is defined using a weight vector with just
four weights, ~w = (w1, w2, w3, w4)T :

Ṽ (xt, t, ~w) =

−c1x12 + w1x1 + w3 if t = 1

−c2x22 + w2x2 + w4 if t = 2

0 if t ∈ {0, 3}
(12)

where c1 and c2 are real positive constants.
Hence the critic gradient function, G̃ ≡ ∂Ṽ

∂x , is given by:

G̃(xt, t, ~w) =

{
−2ctxt + wt if t ∈ {1, 2}
0 if t ∈ {0, 3}

(13)

We note that this implies(
∂G̃

∂ ~wk

)
t

=

{
1 if t ∈ {1, 2} and t = k

0 otherwise
(14)

B. Actor Definition

In this problem it is possible to define a function approxi-
mator for the actor with sufficient flexibility to behave exactly
like a greedy policy, provided the actor is trained in a value-
iteration scheme. This is particularly easy to do here, since
the trajectory is defined to have a fixed start point x0 = 0.
For example, if we define the weight vector of the actor, ~z, to
have just two components, so that ~z = (z0, z1), and then define
the output of the actor to be the identity function of these two
weights, so that a0 ≡ z0 and a1 ≡ z1, then training the actor to
completion would be equivalent to solving the greedy policy’s
maximum condition. This enables the divergence results of this
paper to also apply to actor-critic architectures, as discussed
in section I-D.

C. Unrolling a greedy trajectory
Substituting the model functions (eq. 11) and the critic

definition (eq. 12) into the Q̃ function definition (eq. 2) gives,
with γ = 1,

Q̃(xt, t, at, ~w)

=

{
−k(a0)2 − c1(x0 + a0)2 + w1(x0 + a0) + w3 if t = 0

−k(a1)2 − c2(x1 + a1)2 + w2(x1 + a1) + w4 if t = 1

In order to maximise this with respect to at and get greedy
actions, we first differentiate to get,(

∂Q̃

∂a

)
t

= −2kat − 2ct+1(xt + at) + wt+1 for t ∈ {0, 1}

= −2at(ct+1 + k) + wt+1 − 2ct+1xt for t ∈ {0, 1}
(15)

Hence the greedy actions are given by

a0 ≡
w1 − 2c1x0
2(c1 + k)

(16)

a1 ≡
w2 − 2c2x1
2(c2 + k)

(17)

Following these actions along a trajectory starting at x0 =
0, and using the recursion xt+1 = f(xt, at) with the model
functions (eq. 11) gives

x1 = a0 =
w1

2(c1 + k)
(18)

and x2 = x1 + a1 =
w2(c1 + k) + kw1

2(c2 + k)(c1 + k)
(19)

Substituting x1 (eq. 18) back into the equation for a1 (eq. 17)
gives a1 purely in terms of the weights and constants:1

a1 ≡
w2(c1 + k)− c2w1

2(c2 + k)(c1 + k)
(20)

D. Evaluation of value-gradients along the greedy trajectory

We can now evaluate the G̃ values by substituting the greedy
trajectory’s state vectors (eqs. 18-19) into eq. 13, giving:

G̃1 = − c1w1

(c1 + k)
+ w1 =

w1k

(c1 + k)
(21)

and G̃2 = −w2(c1 + k)c2 + kw1c2
(c2 + k)(c1 + k)

+ w2

=
w2k(c1 + k)− kw1c2

(c2 + k)(c1 + k)
(22)

The greedy actions in equations 16 and 17 both satisfy(
∂π

∂x

)
t

=

{
−ct+1

ct+1+k
for t ∈ {0, 1}

0 otherwise
(23)

Substituting eqs. 23 and 11 into Df
Dx = ∂f

∂x + ∂π
∂x

∂f
∂a gives(

Df

Dx

)
t

=

{
1− ct+1

ct+1+k
= k

ct+1+k
if t ∈ {0, 1}

1 if t = 2
(24)

Similarly, substituting them into Dr
Dx = ∂r

∂x + ∂π
∂x

∂r
∂a gives(

Dr

Dx

)
t

=

{
0− ct+1

ct+1+k
(−2kat) =

2kct+1at
ct+1+k

if t ∈ {0, 1}
−2xt if t = 2

(25)

E. Backwards pass along trajectory
We do a backwards pass along the trajectory calculating

the target gradients using eq. 8 with γ = 1, and starting with
G̃3 = 0 (by eq. 13) and G′3 = 0 (since G′3 is at a terminal
state):

G′2 =

(
Dr

Dx

)
2

by eq. 8 and G′3 = G̃3 = 0

=− 2x2 by eq. 25

=− w2(c1 + k) + kw1

(c2 + k)(c1 + k)
by eq. 19 (26)

1We emphasise that we are doing this step for the divergence analysis, and
that this is not the way that VGL is meant to be implemented in practice.

3074

Similarly,

G′1 =

(
Dr

Dx

)
1

+

(
Df

Dx

)
1

(
λG′2 + (1− λ)G̃2

)
by eq. 8

=
2kc2a1
c2 + k

+
k

c2 + k

(
λG′2 + (1− λ)G̃2

)
by eqs. 25,24

=
kc2(w2(c1 + k)− c2w1)

(c1 + k)(c2 + k)2

+
k

c2 + k

(
−λw2(c1 + k) + kw1

(c2 + k)(c1 + k)

+(1− λ)
w2k(c1 + k)− kw1c2

(c2 + k)(c1 + k)

)
by eqs.20,22,26

=
w2k(c2 − λ+ k(1− λ))

(c2 + k)2

− w1k(kλ+ (c2)2 + k(1− λ)c2)

(c1 + k)(c2 + k)2
(27)

IV. DIVERGENCE EXAMPLES FOR VGL AND DHP
ALGORITHMS

We now have the whole trajectory and the terms G̃ and G′

written algebraically, so that we can next analyse the VGL(λ)
weight update for divergence.

The VGL(λ) weight update (eq. 7) combined with Ωt=1
gives

∆wi = α
∑
t

(
∂G̃

∂wi

)
t

(G′t − G̃t) (28a)

= α(G′i − G̃i) (for i ∈ {1, 2}, by eq. 14)

⇒
(

∆w1

∆w2

)
= α

(
G′1 − G̃1

G′2 − G̃2

)

= αA

(
w1

w2

)
(28b)

where A is a 2×2 matrix with elements found by subtracting
equations 21 and 22 from equations 27 and 26, respectively,
giving,

A =

(
−k(kλ+(c2)

2+k(1−λ)c2)
(c1+k)(c2+k)2

− k
(c1+k)

k(c2+k−λ(k+1))
(c2+k)2

k(c2−1)
(c2+k)(c1+k)

−1−k
(c2+k)

)
(29)

Equation 28b is the VGL(λ) weight update written as a
single dynamic system of just two variables, i.e. a shortened
weight vector, ~w = (w1, w2)T . For this shortened weight
vector, ~w, by looking at the right-hand sides of the sequence
of equations from eq. 28a to eq. 28b, we can conclude that

∑
t

(
∂G̃

∂ ~w

)
t

(G′t − G̃t) = A~w (30)

To add further complexity to the system, in order to achieve
the desired divergence, we next define these two weights to
be a linear function of two other weights, ~p = (p1, p2)T , such
that the shortened weight vector is given by ~w = F~p, where
F is a 2× 2 constant real matrix. The VGL(λ) weight update

equation can now be recalculated for these new weights, as
follows:

∆~p = α
∑
t

(
∂G̃

∂~p

)
t

(G′t − G̃t) by eq. 7 and Ωt=1

= α
∑
t

∂ ~w

∂~p

(
∂G̃

∂ ~w

)
t

(G′t − G̃t) by chain rule

= α
∂ ~w

∂~p

∑
t

(
∂G̃

∂ ~w

)
t

(G′t − G̃t) since independent of t

= α
∂ ~w

∂~p
A~w by eq. 30

= α(FTAF)~p. by ~w = F~p and
∂ ~w

∂~p
=
∂(F~p)

∂~p
= FT

(31)

The optimal actions a0 = a1 = 0 would be achieved by
~p = ~0. To produce a divergence example, we want to ensure
that ~p does not converge to ~0.

Taking α > 0 to be sufficiently small, then the weight vector
~p evolves according to a continuous-time linear dynamic
system given by eq. 31, and this system is stable if and only
if the matrix product FTAF is “stable” (i.e. if the real part
of every eigenvalue of this matrix product is negative).

Choosing λ = 0 and c1 = c2 = k = 0.01 gives

A =

(
−0.75 0.5
−24.75 −50.5

)
(by equation 29). Choosing F =(

10 1
−1 −1

)
makes FTAF =

(
117.0 −38.25
189.0 −27.0

)
which has

eigenvalues 45 ± 45.22i. Since the real parts of these eigen-
values are positive, eq. 31 will diverge for VGL(0) (i.e. DHP).
In an extended analysis, we found that these parameters also
cause VGL(0) to diverge when the Ωt matrices are included
according to equation 10 (see the Appendix for further details).

Since GDHP is a linear combination of DHP, which we
have proven to diverge, and TD(0) (which we prove to diverge
below), it follows that GDHP can diverge with a greedy policy
too.

Also, perhaps surprisingly, it is possible to get instability
with VGL(1). Choosing c2 = k = 0.01, c1 = 0.99 gives

A =

(
−0.2625 −24.75
−0.495 −50.5

)
. Choosing F =

(
−1 −1
.2 .02

)
makes FTAF =

(
2.7665 0.1295
4.4954 0.2222

)
which has two positive

real eigenvalues. Therefore this VGL(1) system diverges.
Diverging weights are shown for the VGL(0) and VGL(1)

algorithms in Figure 1, with a learning rate of α = 10−6.
Both experiments (and all subsequent experiments in this
paper) used a starting weight vector of (p1, p2, w3, w4) =
(5.23∗10−5, 8.53∗10−5, 0, 0), which is based upon a principal
eigenvector of the FTAF matrix found to make VGL(1)
diverge.

The divergence result for VGL(1) does not affect the
convergence result by [9] which is for VGL(1) but with the
special choice of Ωt given by eq. 10, which we will refer to as
VGLΩ(1). It was not possible to make VGLΩ(1) diverge with
the methods of this paper (see Appendix for futher details).
Figure 2 shows VGLΩ(1) converging using the same learning
parameters that made VGL(1) diverge.

3075

1e-08
1e-06

0.0001
0.01

1
100

10000

1 10 100 1000 10000 100000 1e+06 1e+07

|~p
|

Iterations

VGL(0)/DHP
VGL(1)

Fig. 1. Divergence for VGL(0) (i.e. DHP) and VGL(1) using the learning
parameters described in section IV and a learning rate of α = 10−6.

1e-10
1e-09
1e-08
1e-07
1e-06
1e-05

0.0001
0.001
0.01

0.1

1 10 100 1000 10000 100000 1e+06 1e+07

|~p
|

Iterations

VGLΩ(1)

Fig. 2. Convergence for VGLΩ(1) using the same parameters that caused
VGL(1) to diverge, and α = 10−3. This algorithm demonstrates that it is
possible to have proven convergence for a critic learning algorithm with a
greedy policy and general function approximation.

V. DIVERGENCE RESULTS FOR TD(λ), SARSA(λ) AND
HDP

To satisfy the requirement for exploration in TD(λ)-based
algorithms, we supplemented the greedy policies (eqs. 16 &
17) with a small amount of stochastic Gaussian noise with zero
mean and variance 0.0001. This Gaussian noise was necessary,
since it is well known that these classic RL algorithms must
be supplemented with some form of exploration. This is the
classic “exploration versus exploitation” dilemma. Without
exploration, these algorithms do not converge to an optimal
policy, in general. Specific examples of converging to the
wrong policy without exploration are given by [17, sec. IV.H]
and [15, appendix B].

To achieve divergence of these algorithms with the noisy
greedy policy, we used exactly the same learning and environ-
ment constants as used for the VGL(0) and VGL(1) divergence
experiments. These choices of parameters, with the stochastic
noise added to the greedy policy, made TD(0) and TD(1)
diverge respectively, as shown in figures 3 and 4. Hence HDP
diverges too, since this is equivalent to TD(0) with the given
policy.

Although these divergence results for the TD(λ) based algo-
rithms were only found empirically, as opposed to the results
for the previous sections which were first found analytically,
these results do still have value. Firstly, source code for the em-
pirical experiments used here is provided by [18, in ancillary
files], so the empirical results should be entirely replicable.
Secondly, an insight into why the divergence parameters for

VGL were sufficient to make the TD(λ) based algorithms
diverge too is because TD with stochastic exploration can be
understood to be an approximation to a stochastic version of
VGL(λ), so we would expect a divergence example for VGL
to cause divergence for TD(λ) too.

Without the stochastic noise added to the greedy policy,
these examples would not diverge, but instead converge to a
sub-optimal policy, which is also considered a failure.

0

0.002

0.004

0.006

0.008

0.01

0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10

|~p
|

Iterations

Divergence of TD(0)/Sarsa(0)

-0.002
-0.0015
-0.001

-0.0005
0

0.0005
0.001

0.0015
0.002

0 0.002 0.004 0.006 0.008 0.01

p
2

p1

Phase Space for Divergence of TD(0)/Sarsa(0)

Fig. 3. Divergence for TD(0) and Sarsa(0) generated with the diverging
parameters described in section V, and a learning rate of α = 10−6. The
upper graph shows progress of |~p| versus iterations. The lower graph shows the
corresponding evolution of the weight vector components (p1, p2) in phase
space. This phase curve starts close to the origin (at the ‘X’), and finishes
off in a limit cycle. (Errata, 2015-09): The phase space graph is plotted incorrectly. See Fig. 9.2 of first

author’s phd thesis for a correction.

1e-08

1e-06

0.0001

0.01

1

1 100 10000 1e+06 1e+08 1e+10

|~p
|

Iterations

TD(1)/Sarsa(1)

Fig. 4. Divergence for TD(1) and Sarsa(1) generated with the diverging
parameters described in section V, and a learning rate of α = 10−6.

A. Divergence results for Sarsa(λ)

We next prove divergence for Sarsa(λ) by choosing a
function approximator for Q̃ that makes the Sarsa(λ) weight
update equivalent to the TD(λ) weight update, so that the
divergence result for TD(λ) carries over to Sarsa(λ).

3076

Sarsa(λ) is designed to work with an arbitrary function
approximator for Q̃(~x,~a, ~w). We will define our Q̃ function
exactly by Eq. 2. Rearranging eq. 6 gives(
Qλt − rt

γ

)
= λQλt+1 + (1− λ)Q̃t+1

= λQλt+1 + (1− λ)(rt+1 + γṼt+2) by eq. 2

= rt+1 + λ(Qλt+1 − rt+1) + (1− λ)(γṼt+2)

= rt+1 + γ

(
λ

(
Qλt+1 − rt+1

γ

)
+ (1− λ)Ṽt+2

)
(32)

From this we can see that
(
Qλt−rt

γ

)
obeys the same

recursion equation as Rλ, and they have the same endpoint
(since both are zero at a terminal state), from which we can
conclude (e.g. by comparing recursion equations 32 and 4)
that (

Qλt − rt
γ

)
≡ Rλt+1

⇒Qλt = rt + γRλt+1

Substituting this into the Sarsa(λ) weight update (eq. 5), with
eq. 2, and simplifying gives

∆~w =α
∑
t

(
∂(rt + γṼ (~xt+1, ~w))

∂ ~w

)
t

(rt

+γRλt+1 − (rt + γṼt+1)
)

=α
∑
t

γ

(
∂Ṽ

∂ ~w

)
t+1

γ(Rλt+1 − Ṽt+1)

=αγ2
∑
t>0

(
∂Ṽ

∂ ~w

)
t

(Rλt − Ṽt)

which is identical to TD(λ) but with summation over t now
excluding t = 0, and with an extra constant factor, γ2.
The divergence example we derived above used γ = 1, and
had no weight update term for t = 0, so uses an identical
weight update. Therefore this particular choice of function
approximator for Q̃ and problem definition causes divergence
for Sarsa(λ) (with both λ = 1 and λ = 0).

VI. CONCLUSIONS

We have shown that under a value-iteration scheme, i.e.
using a greedy policy, all of the RL algorithms have been
made to diverge, and all but one of the VGL algorithms have
been made to diverge. The algorithm we found that didn’t
diverge was VGLΩ(1) with Ωt as defined by eq. 10, which is
proven to converge by [9] and [15] under these conditions.

These are new divergence results for TD(0), Sarsa(0), TD(1)
and Sarsa(1), in that previous examples of divergence have
only been for TD(0) and for non-greedy policies [19], [20],
[11]. The divergences we achieved for TD(1) and Sarsa(1)
were only possible because of the use of a greedy policy (or
equivalently, value-iteration).

A conclusion of this work is that the diverging algo-
rithms considered cannot currently be reliably used for value-
iteration, and instead can only be used under some form of

policy iteration if provable convergence is required. However
there are some distinct advantages of value-iteration over
policy-iteration. Value-iteration using a greedy policy can
be faster than using an actor-critic architecture. Also policy
iteration does provably converge in some cases [21], but the
necessary conditions are thought to apply only when the
function approximator for Ṽ is linear in the same features of
the state vector that the function approximator for the policy
uses as input (see footnote 1 of [21]).

The divergence results of this paper were derived for
quadratic critic functions, as this was the situation that allowed
for easiest analysis to derive concrete divergence examples.
We assume that similar divergence results will exist for neural
network based critic functions, since neural networks are more
complex structures that should allow for more possibilities
for divergence situations similar to our simple example here.
In our experience, divergence often does occur when using a
greedy policy with a neural network critic, but these situations
are harder to analyse and make replicable. In this situation,
we speculate that a second order Taylor series expansion of
the neural network could be made about the fixed point of
the learning process, and locally this approximation could be
behaving very similarly to the quadratic functions we have
used in this paper.

It is hoped that the specific divergence examples of this
paper will provide a better understanding of how value-
iteration can diverge, and help motivate research to understand
and prevent it. We believe that the value-gradient analysis
that produced the converging algorithm of Figure 2 by [9]
could be helpful for reinforcement learning research, since
this is a critic learning algorithm that does have convergence
guarantees under a greedy policy with general function ap-
proximation.

APPENDIX

In this appendix we give the extension analysis that was
used to determine that VGLΩ(0) (i.e. VGL(0) with the Ωt
matrix of eq. 10) could be made to diverge. We also include an
analysis that shows VGLΩ(1) will converge in the experiment
of this paper for any choice of experimental constants.

To construct the Ωt matrix of eq. 10, first we note that
differentiating equation 11a gives

(
∂f
∂a

)
t

= 1, for t ∈ {0, 1}.
And differentiating equation 15 gives(

∂2Q̃

∂~a∂~a

)
t

= −2(ct+1 + k) for t ∈ {0, 1}.

Hence, by equation 10,

Ωt =

{
1/(2(ct + k)) for t ∈ {1, 2}
0 for t = 0.

The VGL(λ) weight update can be re-derived using this
new Ωt matrix. Following the method that was used to derive
equations 28a to 30, but starting with this new Ωt matrix, gives∑

t

(
∂G̃

∂ ~w

)
t

Ωt(G
′
t − G̃t) = αDA

(
w1

w2

)

3077

where D =

(
1

2(c1+k)
0

0 1
2(c2+k)

)
and A is given by equation

29. Then, defining ~w = F~p for a constant matrix F (as done in
section IV), and following the method that was used to derive
eq. 31, we would derive the VGL(λ) weight update for the
weight vector ~p as

∆~p = α(FTDAF)~p.

As before, this system will converge for sufficiently small α
if and only if the product FTDAF is “stable”, i.e. if the real
parts of the eigenvalues are negative.

A. Divergence of VGLΩ(0)

Choosing the same parameters that made VGL(0) diverge,

i.e. c1 = c2 = k = 0.01, gives D =

(
25 0
0 25

)
. Since D is a

positive multiple of the identity matrix, its presence will not
affect the stability of the product FTDAF , so the system for
~p will still be unstable, and diverge, just as it did for VGL(0).

B. Convergence of VGLΩ(1)

When VGLΩ(1) is used, convergence can be proven for any
choice of parameters as follows: When λ = 1, the A matrix
of eq. 29 reduces to2

A =

(
− k(k+(c2)

2)
(c1+k)(c2+k)2

− k
(c1+k)

k(c2−1)
(c2+k)2

k(c2−1)
(c2+k)(c1+k)

−1−k
(c2+k)

)

=2

(
−k(k+(c2)

2)
(c2+k)2

− k k(c2−1)
(c2+k)

k(c2−1)
(c2+k)

−1− k

)
D

=2E

(
−k(k + (c2)2 + (c2 + k)2) k(c2 − 1)

k(c2 − 1) −1− k

)
ED

where E =

(1
(c2+k)

0

0 1

)
. Hence the matrix product

FTDAF can now be written as 2FTDEBEDF where
B =

(
−k(k + (c2)2 + (c2 + k)2) k(c2 − 1)

k(c2 − 1) −1− k

)
. This new

product is real and symmetrical (as we would expect it to
be for true gradient descent), hence it has real eigenvalues.
For any c2 > 0 and k > 0, the central matrix B has a
negative trace, and a determinant equal to k(k + 2)(k + c2)2,
which is positive. Hence B has two negative real eigenvalues.
Therefore, assuming F is a full-rank matrix, the matrix prod-
uct 2FTDEBEDF must be negative definite, and therefore
stable, and thus the dynamic system for ~p will converge.

REFERENCES

[1] F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming:
An introduction,” IEEE Computational Intelligence Magazine, vol. 4,
no. 2, pp. 39–47, 2009.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, Massachussetts, USA: The MIT Press, 1998.

[3] R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1957.

2This version of this document contains a fix to the following equations - the
constant factor 2 was missing from the version published in the proceedings
of IJCNN12.

[4] G. Rummery and M. Niranjan, “On-line q-learning using connection-
ist systems,” Tech. Rep. Technical Report CUED/F-INFENG/TR 166,
Cambridge University Engineering Department, 1994.

[5] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[6] P. J. Werbos, “Approximating dynamic programming for real-time
control and neural modeling.” in Handbook of Intelligent Control, D. A.
White and D. A. Sofge, Eds. New York: Van Nostrand Reinhold, 1992,
ch. 13, pp. 493–525.

[7] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Transac-
tions on Neural Networks, vol. 8, no. 5, pp. 997–1007, 1997.

[8] S. Ferrari and R. F. Stengel, “Model-based adaptive critic designs,” in
Handbook of learning and approximate dynamic programming, J. Si,
A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley-IEEE
Press, 2004, pp. 65–96.

[9] M. Fairbank and E. Alonso, “The local optimality of reinforcement
learning by value gradients, and its relationship to policy gradient
learning,” CoRR, vol. abs/1101.0428, 2011. [Online]. Available:
http://arxiv.org/abs/1101.0428

[10] ——, “Value-gradient learning,” in Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks 2012 (IJCNN’12). IEEE
Press, June 2012, pp. 3062–3069.

[11] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on Automatic
Control, Tech. Rep., 1996.

[12] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent methods for
temporal-difference learning with linear function approximation,” in
Proceedings of the 26th Annual International Conference on Machine
Learning, ser. ICML ’09. New York, NY, USA: ACM, 2009, pp. 993–
1000.

[13] H. Maei, C. Szepesvári, S. Bhatnager, D. Precup, D. Silver, and R. Sut-
ton, “Convergent temporal-difference learning with arbitrary smooth
function approximation,” in Advances in Neural Information Processing
Systems (NIPS’09). MIT Press, 2009.

[14] P. J. Werbos, “Stable adaptive control using new critic designs,” eprint
arXiv:adap-org/9810001, 1998.

[15] M. Fairbank, “Reinforcement learning by value gradients,” CoRR, vol.
abs/0803.3539, 2008. [Online]. Available: http://arxiv.org/abs/0803.3539

[16] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, Cambridge University, 1989.

[17] M. Fairbank and E. Alonso, “A comparison of learning speed and ability
to cope without exploration between DHP and TD(0),” in Proceedings
of the IEEE International Joint Conference on Neural Networks 2012
(IJCNN’12). IEEE Press, June 2012, pp. 1478–1485.

[18] ——, “The divergence of reinforcement learning algorithms with value-
iteration and function approximation,” eprint arXiv:1107.4606, 2011.

[19] L. C. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” in International Conference on Machine Learning,
1995, pp. 30–37.

[20] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale
dynamic programming,” Machine Learning, vol. 22, no. 1-3, pp. 59–94,
1996.

[21] R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems 12, vol. 12, 2000,
pp. 1057–1063.

