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A focal question in the study of cognition is how people 
learn and apply categories in order to understand and or-
ganize their experience. Despite considerable advances, 
there is no clear consensus among researchers on the 
psychological nature of categories—that is, how they are 
structured, how they function, and how they are acquired 
(Murphy, 2002). Theorists have variously proposed that 
categories are best understood as all-or-none rules, or as 
fuzzy resemblances; as abstracted associations from fea-
tures to categories, or as stored individual exemplars; as 
descriptive relationships grounded in data, or as explana-
tory relationships grounded in theory-like knowledge 
(for reviews, see Goldstone & Kersten, 2003; Murphy, 
2002). Models of category learning have gravitated to-
ward the use of hybrid mechanisms in order to success-
fully accommodate a wide range of behavioral findings 
(for a proposed taxonomy of formal accounts of category 
learning, see Kruschke, 2005). The goal of this article is 
to introduce a novel theoretical framework and a process-
level computational model that can capture key aspects of 
human category learning in a parsimonious fashion. The 
guiding notion is that categories are represented in terms 
of sophisticated yet economical task-constrained models 
of the statistical properties of their members.

Background on Human Category Learning
In currently favored accounts in the field, category 

representations consist of one or more reference points 
(Matsuka, 2004) that take the form of stored exemplars, 
summaries of the central tendency of a set of exemplars, 
or rule-like definitions. A reference point is a stored set 
of values for some or all of the features used to encode 
stimuli. An exemplar is a reference point because it is the 
set of feature values for one particular example; a proto-
type is a reference point because it is a summary of central 

feature values across a set of examples; and a rule can be 
a reference point if it specifies one or more feature val-
ues required for membership. These knowledge structures 
have in common their status as reference points because 
(1) they explicitly encode a set of feature values against 
which incoming stimuli are evaluated and (2) the inputs 
and the knowledge structures are encoded using the same 
feature vocabulary. The process of categorizing consists 
of activating or selecting reference points similar to the 
input. The reference points are directly or indirectly asso-
ciated with categories, so that the relationship of a stimu-
lus to the reference points determines the relationship of 
the stimulus to the categories.

In the rule-based, or classical, view (Smith & Medin, 
1981), categories are definitions or sets of necessary 
and sufficient features that must be matched by poten-
tial members. The classical view is now largely historical 
(Medin, 1989; Murphy, 2002), but various contemporary 
approaches use logical rules (Erickson & Kruschke, 1998; 
Nosofsky, Palmeri, & McKinley, 1994), causal properties 
(Ahn, Kim, Lassaline, & Dennis, 2000; Rehder, 2003), 
or multivariate decision boundaries (Ashby & Maddox, 
1993) to offer compelling accounts of selected category 
learning phenomena.

According to the probabilistic view, inputs are com-
pared with either stored exemplars (Brooks, 1978; Medin 
& Schaffer, 1978; Nosofsky, 1986) or prototypes that 
capture the central tendency or feature likelihoods across 
category members (Hampton, 1979; Minda & J. D. Smith, 
2001, 2002; Posner & Keele, 1968; Reed, 1972; Rosch 
& Mervis, 1975; J. D. Smith & Minda, 2000). The core 
mechanism is an evaluation of the match between an 
input and acquired reference points associated with cat-
egory labels. Adaptive network models have been used to 
implement the probabilistic view of categorization at the 
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process level. These models operate by activating internal 
nodes that code for individual exemplars (or sets of exem-
plars) in accord with their attentionally weighted similar-
ity to the input. The best-known reference point models 
use quasilocal internal nodes that operate as a specialized 
type of radial basis function (Kruschke, 1993; Poggio & 
Girosi, 1990). Other related accounts include the config-
ural cue model (Gluck & Bower, 1988)—an error-driven, 
two-layer neural network that learns by directly associ-
ating input features and precomputed pairwise correla-
tions of input features to category labels—and Anderson’s 
(1991) rational model, which uses Bayesian optimization 
to establish an underlying clustering of examples that best 
predicts unobserved feature values. Models with local-
ist internal nodes and dimensional selective attention 
have produced superior fits to human learning data (e.g., 
Kruschke, 1992; Nosofsky, Gluck, Palmeri, & Glauthier, 
1994; Palmeri, 1999).

The best known reference point model is ALCOVE 
(Kruschke, 1992), a process-level implementation of 
the exemplar-based generalized context model (GCM—
Nosofsky, 1986). ALCOVE extends the exemplar-based 
account by showing how dimensional attention strengths 
can be derived using an incremental learning procedure 
rather than post hoc parameter fitting. ALCOVE employs 
error-driven learning to update the dimensional selective 
attention weights and the association weights between the 
internal nodes (exemplars) and output nodes (categories). 
The success of ALCOVE in modeling the course of human 
learning has given considerable support to the point of 
view that attentionally weighted similarity to item-specific 
representations is the best available account (Kruschke, 
2005). One criticism of ALCOVE is its demanding storage 
requirement of a dedicated hidden node for every input 
example. In addition, the modeler must create the inter-
nal representational space using advance knowledge of the 
details of the training set, or by implementing a covering 
map that explodes exponentially in size with increasing 
stimulus dimensionality (Kruschke, 1993).

Another reference point model, SUSTAIN (Love, 
Medin, & Gureckis, 2004), makes substantial advances in 
the explanatory range of the approach. While maintaining 
quasilocal encoding, dimensional selective attention, and 
error-driven learning, SUSTAIN addresses the need for 
flexibility in the structural and functional aspects of catego-
ries. The flexibility of SUSTAIN to accommodate a range 
of different learning modes derives from the use of a net-
work architecture designed with the capacity to learn from 
and predict both features and categories. The structural 
clusters formed by SUSTAIN are dynamically constructed 
configurations that constitute a mix of specific and general 
forms of representation. SUSTAIN employs competitive 
reference point nodes that can code for prototypes, sub-
prototypes, rules, or individual exemplars. The particular 
representational configurations that emerge are the result 
of online increases in structural complexity via recruitment 
of new internal nodes in response to trial failures.

SUSTAIN implements a multiplicity of representational 
constructs within a single unified mechanism. There has 
been a recent trend toward hybrid models that have a more 

stitched-together nature. ATRIUM (Erickson & Kruschke, 
1998) extends ALCOVE by combining attention- mediated 
exemplar- and rule-based representations to account for 
a wider range of empirical results. RULEX (Nosofsky, 
Palmeri, & McKinley, 1994) employs a low-complexity to 
high-complexity search of the space of possible rules plus, 
as needed, a mechanism for memorization of exceptions. 
RULEX has been extended to handle continuous-valued 
stimulus dimensions (Nosofsky & Palmeri, 1998) but is 
limited to learning mutually exclusive, two-choice clas-
sifications (Love et al., 2004).

Three process models (ALCOVE, RULEX, and SUS-
TAIN) stand out for the quality and breadth of their fits 
to behavioral benchmarks. The explanatory core shared 
across these models (and absent in less successful ones) 
is computation of similarity to reference points coding 
for specific items, dimensional selective attention, and 
learning driven by the error between a category guess 
(response) and the correct category (target). The GCM 
(Nosofsky, 1986) and ALCOVE differ primarily in im-
plementational terms, but a notable difference is that the 
GCM does not employ error-driven learning.

Despite unmatched success in fitting human data, refer-
ence point models are open to some criticism. One con-
cern is the relatively high levels of model complexity. An-
other potential criticism of the network models (ALCOVE 
and SUSTAIN) is their use of quasilocal representations 
(Kruschke, 1992), as opposed to the distributed represen-
tations central to the “brain-style” cognitive architecture 
posited in the connectionist approach (Rumelhart, 1990; 
Rumelhart & McClelland, 1986). From the point of view 
of researchers interested in natural categories and con-
cepts, reference point models may lack explanatory value 
beyond the domain of artificial classification learning 
experiments (Murphy, 2003, 2005). The theory or knowl-
edge view of categorization (Murphy & Medin, 1985) of-
fers a critique of the probabilistic view (and associated 
reference point models) as insufficiently constrained in 
its constructs and/or insufficiently powerful to account 
for a broad range of properties and uses of the conceptual 
system (see Goldstone, 1994). The claim is that concepts 
are organized, at least in part, in terms of top-down ex-
planatory knowledge of why it is appropriate to assign 
equivalence to particular sets of examples or to compute 
similarity on the basis of a particular set of respects (i.e., 
features and weights). This approach questions the as-
sumption that category representations or input represen-
tations are sufficiently constrained by the environment 
itself (Medin, 1989; Medin, Goldstone, & Gentner, 1993; 
Murphy & Medin, 1985; Wisniewski & Medin, 1994). 
Instead, categories and categorizations are considered to 
emerge not only from statistical regularities (i.e., similar-
ity in the input space), but also from constraints inherent 
in the nature of the learner and the learning task.

Along these lines, a criticism of available models is that 
the psychological representations of experienced stimuli 
are fixed and established independently of the categoriza-
tion process (Kurtz & Dietrich, 2007; Schyns, Goldstone, 
& Thibaut, 1998). An alternative idea found in the theory 
view and in perceptual learning perspectives on catego-
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rization is that learning how to encode stimuli is deeply 
integrated into learning how to categorize them. ALCOVE 
(like the GCM) approximates a psychological encoding 
of stimulus items using a multidimensional scaling pro-
cedure. This does not actually explain the psychological 
mechanism for item encoding (Goldstone & Kersten, 
2003); instead, it maintains a firm separation between 
item understanding and categorization. Addressing this 
issue, Kruschke (1992) emphasizes that ALCOVE is a 
model of classification performance, not of representation 
building, and implies that the two are incompatible. This 
separation is a potentially serious limitation because, on 
the exemplar view, concept representations consist of the 
stored instances themselves. Therefore, if the representa-
tion of the instances is unconstrained, so is the account of 
conceptual structure. The one basis for mediating stimulus 
encoding in reference point models is dimensional weight-
ing, but this mechanism cannot construct item encodings; 
it can only assign levels of importance to available fea-
tures. An alternative approach would be a mechanism that 
recodes inputs in an internal representational space as part 
of the category learning process.

A recent set of behavioral evidence presents an addi-
tional challenge to reference point models: Classification 
learning performance appears to be equally successful 
whether participants generate a classification response on 
each trial or simply study a correct category label provided 
with each stimulus presentation (observational supervised 
learning). Specifically, for unidimensional rule-based 
(Ashby, Maddox, & Bohil, 2002) and resemblance-based 
(Kurtz & Beck, 2007) categories, generating a response 
does not appear to be a consequential factor in the ease of 
category learning. On the other hand, Ashby et al. (2002) 
found that there was a difference using implicit category 
structures requiring information integration. In most ref-
erence point models, learning is driven entirely by the 
error between a response and the feedback, so if there is 
no response, there is no error signal to drive learning. An 
exception is the GCM (Nosofsky, 1986), which uses Heb-
bian rather than error-corrective learning, but does not set 
its attention weights through a learning process. In sum, a 
mechanism of error-corrective learning that generates an 
error signal based on something other than the classifica-
tion response could serve as an important advance.

A New Approach
The focal idea of this article is that categories are sophis-

ticated models of statistical regularities mediated by the 
structure of the environment and by the conditions of learn-
ing. The approach is motivated in part by a straightforward 
consideration: It would seem that recording only a sum-
mary of central tendency is too extreme in terms of infor-
mation loss, and that recording each and every individual 
example independently is too extreme in terms of informa-
tion retention. An example of an intermediate approach that 
uses a more sophisticated summary with less information 
loss is Fried and Holyoak’s (1984) category density model, 
which uses both central tendency and variability informa-
tion about category instances in order to evaluate relative 
likelihoods of category membership. The present goal is to 

develop an approach that generates sophisticated statistical 
abstractions, but does so in a manner that remains closely 
tied to specific exemplars (see Medin & Ross, 1989).

Unlike accounts that rely on the memorization or induc-
tion of reference points articulated in the input feature space, 
the present proposal is to transform inputs into a reduced-
dimensionality representational space as part of learning 
statistical models of the categories. Principle component 
analysis (PCA) is a sophisticated technique for statistical 
analysis based on constructing low-dimensional recodings 
of the examples in a data set with minimal information loss 
(Joliffe, 1986). PCA offers impressive utility for data com-
pression in terms of constructed variables that account for 
a large amount of variance. PCA is often used as a prepro-
cessing stage to perform feature extraction on large inputs 
prior to applying a learning system that maps the recoded 
inputs to their class labels (Becker & Plumbley, 1996; Edel-
man & Intrator, 1997; Zhang, 2000). However, traditional 
PCA has not been seen as suitable on its own as a basis for 
classification (Duda & Hart, 1973). The problem is that the 
information maximization procedure is not constrained by 
category-level organization and can be substantially at odds 
with its preservation. Chen and Sun (2005) have suggested 
one way to address the failure of standard PCA to take ad-
vantage of class label information by adding the category 
label to the input vector for each training example.

Another approach to applying the powerful pattern 
recognition capability of PCA to classification is to build 
on the functionality of recoding and decoding examples. 
Specifically, for each trial the outcome of the recoding/
decoding procedure on a particular item can be compared 
to the original input form of the item. If an input item is 
sufficiently well recovered after recoding and decoding, it 
can be considered a good member of the category defined 
by all items in the data set. Classification tasks that take 
the form of member/nonmember judgments can be effec-
tively solved in this manner (Japkowicz, Myers, & Gluck, 
1995; Oja, 1983). Oja (1989) developed a more general 
procedure for N-way classification by applying PCA to 
each subclass of a classification problem using a set of 
independent processing modules. Classification decisions 
are generated by determining which module produces the 
most accurate projection of a test input.

This recoding/decoding mechanism of PCA holds 
promise as an account of human category learning. The 
basic claim is that people judge category membership by 
determining how well the statistical model underlying a 
category accounts for the data. For example, a dog stimulus 
will be well accounted for (i.e., recoded and decoded with 
minimal information loss) by the dog category, but not by 
the chair category. Although it is likely that the dog stimu-
lus is similar to previously experienced dogs, the degree 
of featural match is not the basis for the membership deci-
sion. Instead, the statistical model underlying the dog cat-
egory is somewhat akin to an implicit theory about dogs, 
although it is a theory expressed entirely in the language 
of data.

Medin’s (1989) framework for specifying accounts of 
categorization provides a useful way to clarify the psy-
chological nature of the proposal that categories function 
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as PCA-driven statistical models. The concept represen-
tation is a task-constrained statistical model that imple-
ments principal component analysis to optimally preserve 
the form of the data. The categorization basis is the rela-
tive degree of success in reconstructing the stimulus when 
submitted to the recoding/decoding procedure—that is, 
the ability of the model to account for the stimulus. The 
unit of analysis is the stimulus feature, although the core 
action of the categorization process is to recode the input 
in a derived multidimensional space. The weighting of 
attributes is a natural consequence of PCA, but, impor-
tantly, there is no dimensional constraint on the attentional 
mechanism. The issues of interconceptual structure and 
conceptual development are beyond the scope of the pres-
ent discussion, but extending the present approach to these 
topics is a longer term goal.

This explanatory framework is implemented within the 
connectionist tradition of brain-style computation. Brain-
style refers to the use of a collection of simple, connected, 
neuron-like nodes that encode content in a distributed 
fashion and represent knowledge in the weighted connec-
tions between nodes. Brain-style computation showed ini-
tial promise as an account of human category learning and 
associative memory (e.g., Gluck & Bower, 1988; Knapp 
& Anderson, 1984; McClelland & Rumelhart, 1985; 
Shanks, 1991), but these models have not fared well on 
benchmark tests and fail to handle nonlinearly separable 
classification problems.

Autoencoders are a class of artificial neural networks 
that function as powerful self-supervised learning devices 
(McClelland & Rumelhart, 1986). Such networks are 
trained autoassociatively (Anderson, Silverstein, Ritz, & 
Jones, 1977; Kohonen, 1977), using a bottleneck hidden 
layer with lower dimensionality than the input and output 
layers to rerepresent and then reconstruct the input infor-
mation at the output layer. Learning of this type yields 
an impressive range of psychologically relevant behav-
iors, including recognition, recall, generalization, infer-
ence, and distortion (Rumelhart, 1989). As a subclass of 
multi layer, feed-forward neural networks, autoencoders 
are trained using the backpropagation learning algorithm 
(Rumelhart, Durbin, Golden, & Chauvin, 1995; Rumel-
hart, Hinton, & Williams, 1986). Autoencoders have 
been used for data compression (e.g., Cottrell, Munro, 
& Zipser, 1988) and have been applied by psychologists 
to model correlational sensitivity (Mareschal & French, 
2000) and asymmetric sequential learning (Mareschal, 
Quinn, & French, 2002) in human infants. Several models 
exist (Gluck & Myers, 1993; Intrator & Edelman, 1997; 
Kurtz & Smith, 2007) that combine an autoencoder with 
a heteroassociative learning module that performs a map-
ping to output nodes predicting variables other than the 
input features (i.e., classes).

The autoencoder is an excellent choice for construct-
ing a statistical model of a set of training examples, such 
as the members of a single category. In specific terms, 
an autoencoder with a linear activation rule is formally 
equivalent to PCA (Baldi & Hornik, 1989). In addi-
tion to implementing PCA with trial-based learning in a 
brain-style manner, autoencoders naturally produce the 

recoding/ decoding functionality described above. The ac-
tivations at the output layer can be used to evaluate the 
goodness of fit of a test item to the collective training set. 
When the training set consists of members of a category, 
the quality of the reconstruction effectively evaluates cat-
egory membership.

The applied utility of this approach has been demon-
strated using a two-choice supervised classification task. 
Japkowicz (2001) trained an autoencoder network on in-
stances of a single category. Inputs were classified by evalu-
ating the reconstructive success of the autoencoder: Suc-
cessful reconstructions were classified as members of the 
training category, whereas poor reconstructions were desig-
nated as members of the alternative category. The success of 
Japkowicz’s approach in a machine learning context is en-
couraging, but the following problems exist in applying this 
formulation to cognitive modeling: (1) It is not extensible 
to N-way classification; (2) it requires mutual exclusivity of 
classes; (3) it is not clear how to decide which category to 
define positively and which negatively (nor whether this is 
psychologically appropriate); and (4) it assumes indepen-
dent rather than interdependent categorization. To amplify 
this last point, a standard autoencoder will learn exactly 
the same representation of the positively defined category, 
regardless of the nature of the contrast category.

Until now, the autoencoder has not been theoretically 
related to human category learning. This is likely a con-
sequence of the seeming mismatch between the tasks of 
feature prediction and category prediction. Traditionally, 
self-supervised autoassociative learning architectures are 
used to construct statistical models of a training set; by 
contrast, externally supervised, heteroassociative learning 
architectures are used to perform classification and regres-
sion tasks that predict a variable outside of the input fea-
ture space. However, this distinction begins to break down 
under the view of categories as statistical models and the 
idea that an autoencoder naturally evaluates the goodness 
of fit of an input relative to the category it represents.

An additional factor in considering the autoencoder as 
an account of human category learning is the use of the 
backpropagation learning algorithm. Backpropagation 
networks have shown an impressive range of explanatory 
power in cognitive psychology (Ellis & Humphreys, 1999; 
McClelland & Rumelhart, 1986; Rogers &  McClelland, 
2004). The algorithm consists of a generalized delta rule 
that solves the credit-assignment problem with multi-
layer architectures. Output error is propagated backward 
through the network to incrementally adjust weights and 
perform gradient descent through error space. The es-
sential feature of the learning algorithm is the construc-
tion of internal representations—task-driven recodings 
of inputs—that allow backpropagation networks to act 
as universal function approximators. A widely raised cri-
tique of backpropagation is biological implausibility. Al-
though this has not traditionally been a priority in formal 
modeling, it is likely to be increasingly considered (e.g., 
Ashby & Maddox, 2005). It is therefore worth noting that 
functional equivalents to backpropagation have been de-
veloped which do not contradict current neurobiological 
understanding (O’Reilly, 1998; Xie & Seung, 2003).
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A more focal concern is that backpropagation has, to 
this point, given an extremely poor account of human cat-
egory learning (Kruschke, 1992, 1993; Love et al., 2004; 
Palmeri & Noelle, 2002). Although ALCOVE and SUS-
TAIN also perform error reduction using the delta rule 
and a feedforward network architecture, these models are 
pointedly distinguished from backpropagation, primarily 
in terms of the activation function of the hidden nodes. 
As will be seen below, the psychologically implausible 
computational properties of backpropagation turn out to 
be confined to its use within the traditional multilayer 
perceptron (MLP) architecture, in which classification is 
implemented as the heteroassociative learning of a map-
ping from input features to category outputs. The term 
standard backpropagation will be used in the following 
to refer specifically to networks with an MLP architecture 
and linear-logistic hidden nodes.

Architecture and Design Principles of DIVA
DIVA (Kurtz, 2005) is a process model of human cat-

egory learning that uses the core innovation of divergent 
autoencoding as a basis for applying reconstructive learn-
ing to any classification problem.1 The theoretical claim 
that categories are task-constrained statistical models is 
implemented in DIVA. Although the theoretical frame-
work is not inextricably tied to the specific implementa-
tion, they are tightly linked in the present discussion. It is 
possible that the computational level of the account can 
be effectively realized in alternate terms at the algorithmic 
level (Marr, 1982).

DIVA is a fully connected, feed-forward connectionist 
model that uses backpropagation to perform error-driven 
learning. As an extension of the standard autoencoder, 
DIVA includes an input layer for stimulus features, a lower 
dimensional hidden layer, and an output layer at which the 
input is reconstructed on the basis of a target signal identi-
cal to the input. The computational advance in DIVA is a 
way of addressing any supervised classification problem 
in terms of reconstructive learning, and of doing so under 
the mediation of task constraints. Modeling categories as 
independent autoencoders (along the lines of Oja, 1989) 
will not account for human learning. The form of a cat-
egory representation must be mediated by the conditions of 
learning—that is, the task, the learning mode, and the na-
ture and number of contrasting categories. This is accom-
plished using multitask learning with a single shared hid-
den layer (Ben-David & Schuller, 2003; Caruana, 1995). 
In divergent autoencoding, one reconstructive learning 
channel is dedicated to each category in an N-way classi-
fication problem. The category channels are integrated by 
a shared hidden layer for recoding the input. Accordingly, 
the architecture of a DIVA network (see Figure 1) consists 
of a single input layer, a single shared hidden layer, and 
a set of N autoassociative output banks. The coordinated 
process of conducting PCA in parallel on each category 
with a shared recoding space means that an additional set 
of constraints is enforced during the computation; that is, 
DIVA does not identify principle components for all of the 
training examples as if they were in a single category, nor 
does DIVA find the principle components for each category 

separately. Instead, DIVA finds a set of weights to recode 
all members of the training set (across all categories) in a 
form that can be decoded by category- specific channels 
realized at the hidden-to-output connections. The quality 
of the reconstruction (the recoding and decoding) serves as 
the basis for error-driven learning and for making a clas-
sification choice. As a result, the error signal that drives 
learning is not dependent on the classification choice. The 
error is based on the quality of the feature reconstruction 
on the correct category channel, not on the difference be-
tween the guessed category and the correct category.

In keeping with traditional backpropagation networks 
(Rumelhart et al., 1986), the activation rule for the hidden 
and output nodes is a linear-logistic (sigmoid) function. 
This nonlinearity yields a useful generalization of standard 
PCA. Although Boulard and Kamp (1988) concluded that 
the use of nonlinear hidden nodes neither enhances nor 
diminishes the computational power of the autoencoder, 
Japkowicz, Hanson, and Gluck (2000) found advantages 
of nonlinear nodes relative to linear nodes (standard PCA) 
in the learning of nonlinear functions and in the degree of 
sensitivity to complex statistical regularities. Japkowicz 
et al. (2000) observed this advantage with either linear or 
nonlinear output nodes, as long as the hidden nodes were 
nonlinear. The autoencoder with nonlinear nodes is also 
related to sandglass-style autoencoders, which employ 
multiple hidden layers to formally implement the statisti-
cal technique of nonlinear PCA (NLPCA). Such systems 
have performed effectively on applied problems (Kramer, 
1991; Saegusa, Sakano, & Hashimoto, 2004).

To summarize, DIVA uses divergent autoencoding to 
extend the autoencoder implementation of PCA to the 
general form of supervised classification problems. The 
model conforms to a theoretical view of category learn-
ing as the formation of coordinated statistical models that 
operate by recoding and decoding inputs. Unlike models 
that compute average feature values for each category or 
acquire feature-to-category associations, DIVA builds a 
sophisticated statistical model of each category via recod-
ing examples in terms of principle components. Interde-
pendence arises from the coordinated statistical learning, 
because the representation of each category is mediated 
by the alternative categories in the learning task.

By way of comparison to reference point models, DIVA 
addresses category learning tasks by learning distributed 
internal representations of stimulus items and does not 
maintain a strict representational commitment to fixed, 
externally derived stimulus encodings. DIVA has the abil-
ity to weight diagnostic predictors from the input, but does 

Figure 1. The DIVA model.
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so without an explicit, dimensionally constrained mecha-
nism of selective attention. (To clarify this point, reference 
point models such as ALCOVE employ a single, shared 
attention weight for all of the outgoing connections from 
a particular input node; by contrast, the input-to-hidden 
weights in standard backpropagation and DIVA vary in-
dependently, and their function is to perform a recoding of 
the input in a constructed representational space.) DIVA 
is sensitive to specific individual exemplars, but without 
internal nodes that code for particular items in terms of 
sets of values on input features. DIVA is resemblance 
sensitive, but never performs an explicit similarity com-
putation between the input and stored reference points. 
Finally, DIVA is error driven, but the error is generated by 
comparing the reconstruction of the input to the original, 
not by comparing a category guess to the correct label.

Training and Testing DIVA
As with most network models, each stimulus is encoded 

in terms of activation levels on a set of input nodes repre-
senting feature values. The input activations can code for 
discrete or continuous-valued features, although the pres-
ent research focuses on simulating learning problems with 
binary features. In DIVA, full feed-forward connectivity 
is used, so each hidden node receives a signal from each 
input node, and each output node of each channel receives 
a signal from each hidden node. The linear-logistic activa-
tion function of the output nodes is scaled to match the 
appropriate target values for the learning task ( 1 to 1). 
The input values serve as the targets for error-driven recon-
struction, but they are applied only along the channel of the 
correct category. The correct category label (information 
included as feedback in every trial of supervised learning) 
is used to determine which category channel to update. 
This differs from the conventional feedback mechanism 
used in systems with output nodes representing categories. 
First and foremost, the error signal is computed strictly in 
terms of reconstructive success, not classification success. 
Additionally, the error at each output node is not always ap-
plied to generate weight change; this occurs only along the 
one selected channel. The weight updates incrementally 
improve the ability of the channel representing the cor-
rect category to accurately reconstruct the current training 
example. Therefore, instead of optimizing a function for 
mapping features to categories, the supervised classifica-
tion learning task is modeled by collectively (because of 
the shared hidden layer) building statistical models for 
each category. The category representations are inherent 
in the set of weights that recode and decode inputs.

Although the processing that occurs at the level of the 
individual node is exactly the same between standard 
backpropagation and DIVA, the performance character-
istics of the divergent autoencoding architecture differ 
dramatically from a traditional multilayer perceptron. 
Specifically, DIVA does not transform the inputs into a 
linearly separable space in the service of category nodes 
at the output layer. Instead, DIVA learns a set of recodings 
that are optimized for correct reconstruction of features in 
accord with each category channel. In a standard autoen-

coder, the outcome of this process is a set of recodings that 
achieve maximal interstimulus separation, or optimal dis-
criminability of each training example (Harnad, Hanson, 
& Lubin, 1995). Initial item representations cluster in the 
center of the recoding space and progressively disperse as 
singletons toward the boundaries of the representational 
space. In divergent autoencoding, a multiplicity of such 
discrimination spaces are superimposed one upon another, 
since each of the category-specific transformations is sup-
ported by the same set of input-to-hidden weights. The 
ease with which an N-way classification is learned is a di-
rect consequence of the ease of generating N satisfactory 
statistical models under these constraints. The ease with 
which particular items are learned, and the accuracy with 
which test items are classified, can be predicted by the 
degree of difficulty in accommodating the items within 
the statistical model of each category.

Backpropagation networks traditionally use a learning 
rate parameter (a multiplicative factor of 0.1, 0.01, etc.) 
to ensure the stability of gradient descent and to lower the 
risk of getting stuck in local minima (Rumelhart et al., 
1986). From the standpoint of cognitive modeling, it is 
often considered a weakness of the connectionist approach 
that a single learning trial or stimulus exposure in the real 
world is simulated in terms of many incremental training 
trials for the network. Unlike standard backpropagation 
networks, DIVA simulations are conducted (using a learn-
ing rate of 1.0), with each real-world trial corresponding 
to a single training trial for the network.

In order to generate a classification response on the 
basis of the output node activations, DIVA selects the best 
reconstruction—that is, the lowest sum-squared error 
(SSE)—across the set of category channels. No threshold 
parameter is required. Luce’s (1963) choice rule is used to 
generate response probabilities with one important modi-
fication to suit the DIVA approach: Rather than using the 
activation level of the category nodes (e.g., Kruschke, 
1992), the current choice rule uses the inverse of the 
SSE on each channel. Therefore, DIVA predicts category 
membership by selecting for low reconstructive error on a 
category channel rather than for high activation on a cat-
egory node. The probability of selecting category K from 
among N choices is given by Equation 1:

 Pr ( ) [ / ( )] / [ / ( )].K SSE K SSE k
k

N

1 1
1

 (1)

To illustrate the functioning of the model, consider a 
two-choice (A/B) classification task. One channel is as-
signed to reconstruct the inputs labeled A, and a second 
channel is assigned to reconstruct the inputs labeled B. It 
is helpful in describing particular DIVA networks to use a 
summary shorthand: the designation (3 2 3 2) in-
dicates, from left to right, a DIVA network with three input 
features, two hidden nodes, and three output features (mir-
roring the inputs) reconstructed along two channels (as in 
Figure 1). As described above, the target signal (the cor-
rective category feedback in the learning task) is used to 
select which category channel to train on a particular trial. 
Weight update is driven only by the error signal gener-
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ated on the selected bank of output units. Accordingly, the 
shared input-to- hidden weights are collectively adjusted 
on every trial, whereas the hidden-to-output weights are 
adjusted independently for each category channel. Two 
implications of this design are that DIVA makes error-
driven updates along the correct category channel even 
when it has achieved the correct category response (un-
less the reconstruction was perfect), and that DIVA never 
makes a change along an incorrect category channel, even 
when an incorrect category response has been selected.

These two characteristics of the model each generate 
an interesting psychological hypothesis. First, it should 
be possible for a learner to acquire a classification scheme 
without making any classification errors along the way, 
because category formation takes place on each trial 
regardless of the response outcome. On the basis of in-
formal observation, this phenomenon is not so uncom-
mon, particularly when human learners are taught simple 
categories and make a lucky guess or two on the initial 
trials. Second, the learning that arises from an incorrect 
trial should result in greater improvement in the correct 
category than in the incorrectly guessed category. By 
contrast, traditional error-corrective models tend to make 
adjustments such that the incorrect response becomes less 
likely and the correct response more likely. These predic-
tions will be addressed in future research.

Modeling Practices and Model Complexity
In conducting simulation experiments with DIVA, the 

goals are to evaluate qualitative fit to a range of bench-
mark findings, to generate novel predictions, and to strive 
for minimalism in the use of free parameters and ad hoc 
assumptions (see Goldstone & Kersten, 2003; Love et al., 
2004; Roberts & Paschler, 2000; Rodgers & Rowe, 2002). 
There are, in fact, few choices left to the modeler in con-
ducting a DIVA simulation. The architecture of the network 
is fully determined by the task except for the number of 
hidden nodes. The number of hidden nodes does have a 
large influence on the behavior of the model; there must 
be enough hidden nodes to effectively reduce the recon-
structive error, and there must be compression at the hidden 
layer in order to implement PCA. For the type of learning 
problems nearly always used in laboratory studies (three to 
four features, 8–12 training items, and two categories), the 
use of two hidden nodes has been consistently appropriate. 
Specifically, this is the smallest number of hidden units that 
routinely allows minimization of error across the learning 
conditions of interest (without considering the fit to behav-
ioral data). Therefore, although the use of two hidden nodes 
is not strictly a fixed property of the model, the current form 
of the DIVA account is that two hidden nodes are used to 
simulate traditional category learning experiments.

For purposes of clarity, a distinction is made here be-
tween fixed parameters and free parameters. Fixed param-
eters are available to the modeler as degrees of freedom 
in the model formulation that can be called upon to ex-
tend the range or precision of model performance. The 
term free parameter is used to refer to settings with which 
the modeler can tune the quality of the data fit. The fixed 
parameters of DIVA are the number of hidden units and 

the learning rate for the weights and biases. Although 
backpropagation networks can be varied in many other 
ways (Rumelhart et al., 1995), no such architectural or 
procedural variations are presently employed in the DIVA 
framework. For present purposes, the fixed parameters 
have been assigned default values that reflect prelimi-
nary testing but not optimization. The rationale for the 
use of two hidden nodes is described above; however, for 
learning problems on a different scale than those used in 
traditional classification learning studies, this parameter 
may need to be revisited. The learning rate for all of the 
weights in the system are set to a default value of 1.

In backpropagation networks, the weights are initially 
assigned to near-zero values by applying a small amount 
of random variation away from zero. This technique is 
used to break symmetry in the initial weights (Rumel-
hart et al., 1986). A parameter is used to set the range of 
this random variation. To be clear, the initial weights are 
always randomly generated—this parameter determines 
how far the initial random weights are allowed to vary 
from zero. The random initialization range is not usually 
considered to be a critical setting, but it can have a signifi-
cant impact on network performance (Kolen & Pollack, 
1990). Since networks based on backpropagation have 
never come close to capturing the time course of human 
category learning, there is little precedent regarding the 
impact of this parameter in this domain. Sensitivity test-
ing reveals that in some cases DIVA shows qualitatively 
different performance depending on the order of magni-
tude of the range of initial weight randomization ( 0.5, 
0.05, 0.005, 0.0005). Given the observed impact on model 
performance, the range of random weight initialization 
is considered a free parameter of DIVA. In the present 
simulation experiments, the random initialization range is 
set to a commonly used default value of 0.5 (Kolen & 
Pollack, 1990). When sensitivity testing reveals a qualita-
tive impact of the random initialization range on model 
performance, it is discussed in detail.

It is also useful to consider the range of random weight 
initialization as a psychologically meaningful variable. 
A larger range value (i.e., 0.5) means that the initial 
weights are allowed to deviate substantially from zero. 
Because of the properties of gradient descent, the initial 
location in weight space can be consequential. The initial 
weights, especially at larger values, represent a bias to-
ward particular solution paths. When the initial weights 
are tightly constrained around zero, there is less likelihood 
of converging on a suboptimal solution (i.e., a local mini-
mum). The best way to think about this may be in terms of 
the flexibility of the system to seek out the best solution, 
as opposed to maintaining a commitment to a good, but 
not optimal, solution. The degree of flexibility shown by a 
learner can be influenced by characteristics of the learning 
task and may also arise from individual differences.

SIMULATIONS OF BENCHMARK 
HUMAN LEARNING DATA

DIVA was tested on three of the best known data sets 
in the psychological literature on human category learn-
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ing. Shepard, Hovland, and Jenkins’s (1961) classic study 
of the ease of acquisition of elemental category struc-
tures, the 5–4 problem introduced by Medin and Schaffer 
(1978), and the comparison of linearly separable versus 
nonlinearly separable classification learning (Medin & 
Schwanenflugel, 1981) were chosen on the basis of their 
being highly consequential and informative results in the 
empirical literature that have been frequently used for 
model comparison.

Modeling the Ease of Acquisition of Elemental 
Category Structures

A foundational study by Shepard et al. (1961), repli-
cated by Nosofsky et al. (1994), has served as something 
of a litmus test for computational models of human cat-
egory learning. Only three models (ALCOVE, RULEX, 
and SUSTAIN) are considered to provide satisfactory fits. 
Although the articles that describe each of these models 
were published on the basis of successful accounts of mul-
tiple behavioral results, the Shepard et al. data set is the 
only simulation result common to the three models. Com-
peting models that fail to capture this particular pattern of 
results have been noticeably marginalized.

Shepard et al. (1961) compared learning performance 
on the six two-way classifications possible over a set of 
binary-valued, 3-D stimuli. The six types include three 
category structures that hold particular psychological in-
terest: Type I, a unidimensional rule (UNI); Type II, an 
 exclusive-or (XOR) rule with an added irrelevant dimen-
sion; and Type IV, which corresponds to a family resem-
blance (FR) as well as a rule-plus- exception (RULE ) 
structure. Viewed as an FR structure, there are two  inverse-
valued prototypes, and each example can be correctly cat-
egorized according to the prototype with which it shares 
more features. All of the features are partially predictive, 
but none are fully predictive. As a RULE  structure, a 
unidimensional rule successfully categorizes six out of the 
eight examples and the remaining cases must be memo-
rized as exceptions to the rule. Type III and Type V also 
conform to a RULE  structure, but these category struc-
tures do not show an FR organization.

The critical finding is the ordering of the ease of ac-
quisition of the problem types: Type I (UNI) is the easi-
est to learn; Type II (XOR) is somewhat harder; Types III, 
IV (FR/RULE ), and V are harder yet and roughly equi-
valent; and Type VI is the most difficult. It is the rapid 
learning of the nonlinear, rule-like Type II (XOR), and 
the relatively slow learning of the linearly separable 
Type IV (FR/RULE ) in human performance, that tend 
to foil models that do not conform to the reference point 
framework of localist encoding and dimensional selec-
tive attention. The backpropagation learning algorithm 
(in a standard multilayer perceptron architecture) is noted 
for performing successful nonlinear function approxima-
tion, but it acquires XOR too slowly and FR/RULE  too 
quickly (Kruschke, 1992). Localist encoding and dimen-
sional selective attention are the core design principles 
thought to contribute to the success of reference point 
models in capturing the order of acquisition.

The relative ease of acquisition of the six problem 
types was tested across 60 random initializations of a 
3 2 3 2 DIVA network (as shown in Figure 1). 
The default values of 1.0 for learning rate and 0.5 for 
random initialization range were used. The eight training 
patterns were represented using input and target values 
of 1, and the sigmoidal activation range for the output 
nodes was scaled accordingly. Weight change was per-
formed using online, trial-by-trial updating. In order to 
simulate the dependent measure of cumulative errors 
employed by Shepard et al. (1961), the model was tested 
on all eight patterns after every five passes through the 
training set. The aggregate mean probability of an error 
over a total of 10 sampling points produced the cumulative 
error. DIVA showed a good fit to the human learning data 
(see Table 1) by producing the correct ordering of ease of 
acquisition. Sensitivity testing showed qualitatively con-
sistent performance at varied learning rates. For purposes 
of direct comparison, a standard 3 2 1 backpropagation 
network was tested under matching conditions (using a 
learning rate of 0.25). As expected, Type IV (FR/RULE ) 
was learned more easily than Type II (XOR) and nearly as 
easily as Type I (UNI). Additionally, independent autoen-
coders assigned to each category failed to fit the data.

Nosofsky et al. (1994) charted the time course of human 
learning of the six types and generated a richer set of 
qualitative and quantitative results for model comparison. 
One finding was that the same general ordering occurred 
consistently from early to late in learning. DIVA was also 
fairly consistent across the time course of learning (see 
Figure 2), but some aspects of the time course fit did not 
accord completely with the aggregate human learning data. 
First, the more accurate performance for Type II relative 
to Types III–V does not emerge from the very beginning 
of learning, as it does in the human data (Nosofsky et al., 
1994). In simulations by Kruschke (1992), ALCOVE pro-
duced a similar pattern: The Type II advantage emerged 
after about 20 passes through the training set. Nosofsky 
et al. (1994) reported learning curves for ALCOVE in 
which the Type II advantage begins almost immediately, 
but under these parameter settings ALCOVE appears to 
learn Type II too easily—almost as easily as Type I.

The time course data for DIVA reveals a deep curvature 
in Type V learning. This results in a brief period during 
which Type V performance is closer to that of Type II than 

Table 1 
Fitting DIVA to Shepard et al. (1961)

DIVA Cumulative Human Cumulative
 Type  Error Rate*  Error Rate  

 I 0.53 lowest
 II 0.95 low
 III 1.22 intermediate
 IV 1.25 intermediate
 V 1.17 intermediate
 VI 4.38 highest

*Cumulative error rate measured as the sum of the average probability 
of an error across 10 sampling points (every five passes through the 
training set).
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it is to those of Types III and V. This slight inconsistency 
relative to human learning turns out to be an indicator of 
an interesting pattern. Sensitivity testing on the range of 
random weight initialization showed little effect on the 
relative status of the six types, except for Type V. Specifi-
cally, Type V was learned at the same rate as Types III and 
IV (matching human learning) at less restrictive ranges, 
but showed faster acquisition under smaller, more restric-
tive ranges. There are no prior examples of Type V being 
learned faster than Types III and IV, but there have been no 
prior attempts to manipulate the extent to which a learner 
seeks an optimal solution (or is encouraged to resist mak-
ing an early commitment to a suboptimal solution). The 
influence of the range of random weight initialization on 
Type V will be revisited in the discussion below.

The largest departure from the human learning data is 
the minimal progress shown by DIVA on Type VI. Pre-
vious modeling efforts have, in fact, shown the opposite 
problem: reaching criterion in Type VI learning too easily. 
Shepard et al. (1961) and Nosofsky et al. (1994) found a 
dramatic gap in human performance separating Type VI 
from the other five types. Specifically, Type VI learners 
still made errors more than 10% of the time after 32 train-
ing passes (Nosofsky et al., 1994); at this point, the learn-

ing of the other five category structures was essentially 
perfect. This is not surprising, because there is nothing 
at the category level to learn in Type VI. Given that no 
rules or resemblances characterize the categories, the only 
way to succeed is to memorize the eight individual as-
sociations. Such exemplar memorization comes naturally 
within the reference point framework, and the reported 
best fits for ALCOVE and SUSTAIN reach asymptote 
on Type VI learning shortly after Types III–V. DIVA ef-
fectively captures the qualitative segregation of Type VI 
as markedly more difficult than the other types, but the 
model errs in the opposite direction and seriously overes-
timates the difficulty of Type VI relative to human perfor-
mance. DIVA is capable of achieving successful learning 
of Type VI with lower learning rates or more hidden units, 
but it remains a goal for future work to provide a full ac-
count of how human learners eventually reach criterion 
when there are no statistical regularities underlying the 
category structure.

In further research based on Shepard et al.’s (1961) 
six types, Nosofsky and Palmeri (1996) found a shift in 
the order of acquisition using integral-dimension, as op-
posed to separable-dimension, stimuli (see also Shepard 
& Chang, 1963). The key finding was that Type II was 
the second most difficult category structure to learn, as 
opposed to being the second easiest. Nosofsky and Pal-
meri (1996) offered an elegant explanation based on the 
idea that dimensional selective attention is much harder 
to apply to integral-dimension stimuli. Without selective 
attention, ALCOVE captures the reversal by showing in-
creased difficulty in the acquisition of Type II (see also 
Kruschke, 1992). For DIVA, there is no obvious reason for 
the network to run any differently under these two cases. 
A speculative account of the phenomenon is that integral-
 dimension stimuli may be encoded in an impoverished 
fashion as the learner attempts to extract the underlying 
integral dimensions or construct ad hoc features. Accord-
ingly, Type II becomes harder to learn, because it is impos-
sible to make even partial progress in learning the XOR 
structure without having two fully realized features (a sin-
gle feature is highly predictive for Types I, III, IV, and V).

Returning now to the larger picture, DIVA is the first 
model to produce a successful qualitative fit to the bench-
mark data of Shepard et al. (1961) without the use of 
quasilocalist encoding and a mechanism of dimensional 
selective attention. The Shepard et al. results have been 
considered to arise largely on the basis of the number of 
relevant features (i.e., the number of features requiring 
attention): Type I requires only one feature to specify the 
classification basis; Type II requires two features; and the 
remaining types require all three features (e.g., Kruschke, 
1992). DIVA offers an alternative account in which learn-
ing by backpropagation, specifically in a divergent auto-
encoder architecture, accords with human performance. 
DIVA shows the correct ordering among the six types as a 
result of its learning process of extracting principle com-
ponents that minimize the loss of information across the 
memberships of the two categories.

According to Kruschke (1992, 1993), standard back-
propagation fails to capture key patterns of human learn-

Figure 2. Time course of classification learning by DIVA on the 
six types of problems (Shepard et al., 1961). Each learning epoch 
consists of one pass through the training set.
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ing because of the flexibility inherent in the algorithm. 
Backpropagation learning operates by performing weight 
adjustments to establish a multidimensional recoding 
space in which the members of each category are situated 
on opposite sides of a hyperplane (i.e., linearly separable). 
This hyperplane can pass through the recoding space at 
any orientation. By contrast, ALCOVE can only stretch 
or shrink the original representational space along the di-
mensional axes. Kruschke (1992, 1993) argued that this 
limitation is a psychologically valid constraint. The use of 
backpropagation within the DIVA architecture produces 
a different outcome. The output nodes of DIVA code for 
features (in accord with PCA) rather than for categories 
(in accord with multiple regression). This alters the learn-
ing dynamics and removes the division of the recoding 
space into category-based regions. In DIVA, learning is 
directed toward collectively approximating a set of func-
tions, each of which characterizes the membership of a 
single category, as opposed to approximating a single 
function directed toward finding a way of distinguishing 
the categories.

A set of hidden node activations was recorded after train-
ing a 3 2 3 2 DIVA network on each of the six types 
(see Table 2; note that for ease of viewing, the stimulus 
items are displayed using 0/1 values, although 1 values 
were used in the simulations). Each cell in the table shows 
the activations of the two hidden nodes. These particular 
solutions do not always occur, but they are representa-
tive. The solutions for Type I and Type II both use the four 
corners of the representational space: (0 0), (0 1), (1 0), 
and (1 1). Specifically, each corner of the representational 
space codes for two items, one from each category. The 
property of maximizing interitem separation can clearly 
be seen; note, however, that separation is only maximized 
within each category. To offer an analogy, this is like being 
in a crowded room and trying to keep your distance from 
the members of one group while being indifferent to your 
proximity to members of another group. In the Type I so-
lution, each hidden node codes for one of the two irrel-
evant features. It is somewhat counterintuitive that the re-
codings are devoted to information that is irrelevant to the 
category structure. The reason for this is that there is no 
within-category variability for the critical feature (it is al-
ways on for one category and off for the other). The DIVA 

network captures this regularity most simply by adjusting 
the strength of the bias assigned to the first output node 
in each channel, and therefore does not have to devote the 
input-to-hidden and hidden-to-output weights to this part 
of the problem. In the Type II solution, the first hidden 
node codes for the first stimulus feature and the second 
hidden node codes for the irrelevant feature. The second 
relevant feature in the XOR function does not need to be 
represented in the recoding because within each channel it 
is perfectly predicted by the first feature. The more com-
plex category structures lead to various compromises that 
optimize separation in the recoding space for the members 
of each category under the constraints imposed by the de-
creased levels of category coherence. 

As stated above, a core design principle of DIVA is 
learning along coordinated channels—that is, collectively 
solving a multiplicity of functions. This is also a good 
way to characterize the processing that takes place within 
each channel. The reconstructive process taking place at 
each output node is actually computing a traditional MLP 
classification function in which the number of classes is 
the number of different values that the particular feature 
takes on in the training set. For example, in Type I learn-
ing (e.g., a unidimensional rule on the first feature), the 
items (1 0 1), (1 1 1), (1 1 0), and (1 0 0) are processed 
along the same category channel. Reducing the error on 
each output node requires learning to correctly predict the 
value of that feature for each of the four patterns. Since 
there are two possible values for each feature, the recon-
struction task specifically for the third output node is a bi-
nary classification problem of distinguishing the patterns 
(1 0 1) and (1 1 1) from the patterns (1 0 0) and (1 1 0). 
This characterization in terms of dimensional classifica-
tions extends to the processing that takes place in parallel 
at each of the output nodes.

This type of analysis helps to clarify why some learn-
ing tasks are harder than others for DIVA. For the Type I 
problem, each channel includes two two-way dimensional 
classifications like the one just described, and the third 
output node is a simple one-way dimensional classifica-
tion (all of the patterns assigned to the channel share the 
same value for this feature). Type II learning consists of 
three two-way dimensional classifications, but since two 
dimensions are perfectly correlated in the XOR function, 
two of the dimensional classifications in each channel 
can be jointly solved. Unlike reference point models that 
benefit in Type II from ignoring the irrelevant dimension, 
DIVA benefits from the fact that the two relevant dimen-
sions perfectly predict one another within each category.

The remaining Types III–VI are more difficult because 
they require learning three distinct dimensional classifi-
cations on each channel. The high level of difficulty for 
Type VI can be understood in terms of another property 
of dimensional classification. In the Type VI problem, one 
category channel is assigned the patterns (0 1 1), (1 0 1), 
(1 1 0), and (0 0 0). It can be seen that each of the three 
two-way dimensional classifications is balanced—that is, 
half of the patterns have one value and half of the patterns 
have the other. Types III–V are easier to solve because at 
least one of the dimensional classifications is an “odd-

Table 2 
Sample Hidden Node Activations for DIVA Trained on 

Shepard et al. (1961)

Category Structure

Item  Type I  Type II  Type III  Type IV  Type V  Type VI

1 1 0 (1 0) a (1 0) a (.9 0) a (.9 0) a (1 0) a (1 0) a
1 1 1 (1 1) a (1 .9) a (.8 1) a (.5 .5) a (1 .2) b (1 .6) b
1 0 1 (0 1) a (1 1) b (1 1) b (1 1) a (.3 1) a (.8 1) a
1 0 0 (0 0) a (1 0) b (1 0) a (1 .1) b (1 .8) a (.3 .2) b
0 1 0 (1 0) b (0 0) b (0 0) b (0 0) b (.2 0) b (0 0) b
0 1 1 (1 1) b (0 1) b (0 1) a (0 .9) a (0 0) a (.3 .6) a
0 0 1 (0 1) b (0 1) a (.1 1) b (1 1) b (0 1) b (0 1) b
0 0 0 (0 0) b (0 0) a (.2 0) b (.5 .5) b (0 .4) b (0 .2) a

Note—a and b denote the assignment of items to the two categories 
within each type.
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ball” classification, in which three of the four patterns as-
signed to each channel share a common value whereas the 
remaining “oddball” has the alternate value. This directly 
parallels another way of looking at these three category 
structures in terms of the number of dimensions along 
which a unidimensional rule-plus-exception (RULE ) 
classification can be formulated (Nosofsky et al., 1994). 
The presence of at least one oddball dimensional classifi-
cation markedly reduces the difficulty of finding a region 
of weight space that simultaneously supports all of the 
dimensional classifications.

The number of oddball dimensional classifications 
varies among Types III, IV, and V, even though they are 
learned at similar rates: Type III has two, Type IV has 
three, and Type V has only one. Accordingly, Type V is 
unique among the six types in that it is fairly difficult to 
learn and the solution is highly constrained. Part of the 
challenge faced by DIVA is reaching a set of recodings that 
support reconstruction on both category channels. When 
the system can move freely toward the optimal solution 
(i.e., under a strict range on the initial random weights), it 
tends to solve Type V in a fairly straightforward fashion. 
Alternatively, when the initial weights bias one or both 
channels in the direction of a suboptimal solution, it is 
more difficult to reach a coordinated recoding scheme. 
This effect is predicted only for a category structure with 
a solution that is high in both difficulty and constraint.

Linear Separability
There is an ambiguity that arises in interpreting the 

theoretical implications of Shepard et al. (1961), be-
cause two factors are in play at the same time. Type II is 
a nonlinearly separable (NLS) function over two dimen-
sions, and Type IV is a linearly separable (LS) function 
over three dimensions. Medin and Schwanenflugel (1981, 
Experiment 4) used subsets of the training items from 
Type III and Type IV of Shepard et al. (1961) to examine 
the role of linear separability with the number of relevant 
dimensions held constant. Medin and Schwanenflugel 
(1981) found no evidence of a learning advantage for the 
particular linearly separable categories that they tested. 
Their results remain an important benchmark for model 
comparison and have exerted a major influence on theory 
development.

Most importantly, a strong prediction of prototype-
based accounts is greater ease of learning for LS cate-
gories. Simply put, unless each member of a category is 
closer to the central tendency of its own category than to 
that of the contrasting category, successful classification 
based on similarity to prototypes is an unpromising prop-
osition. By contrast, exemplar accounts with sensitivity to 
individual instances have no such difficulty. Along similar 
lines, simple neural network models (without a hidden 
layer) lack the ability to acquire NLS classifications. Stan-
dard backpropagation networks are capable of learning 
NLS categories, but they still make a strong and incorrect 
prediction: that linear boundaries should be much easier 
to acquire. In sum, oversensitivity to linear boundaries 
(Kruschke, 1992) has plagued accounts of human learning 
outside the reference point framework.

The immediate question, then, is whether the success 
of DIVA in simulating the Type II advantage will extend 
to a test of the LS-versus-NLS category structures used 
by Medin and Schwanenflugel (1981). A 3 2 3 2 
DIVA network was tested using the default values (learn-
ing rate of 1.0 and random initialization range of 0.5). 
Each training run consisted of 25 passes through the train-
ing set. Mean levels of classification accuracy at the end 
of training were 92% for NLS and 87% for LS. The overall 
rates of learning were very similar, with a possible slight 
advantage for the NLS category structure. Therefore, a 
well-known problem in simulating human learning using 
backpropagation (LS category structures being learned too 
easily and NLS category structures being learned with too 
much difficulty) is overcome. The DIVA account reveals 
how a learning system based on abstracting statistical reg-
ularities, as opposed to computing weighted similarity to 
item-specific reference points, can handle NLS category 
structures as human learners do. By building coordinated 
statistical models of the categories, rather than by explic-
itly searching for a discrimination function, DIVA shows 
the appropriate insensitivity to linear separability.

Modeling the 5–4 Problem: A Case of Weak 
Category Structure

The success of the exemplar view of categorization 
rests in no small part on extensive behavioral and com-
putational tests of the 5–4 problem (Medin & Schaffer, 
1978; Minda & Smith, 2002; Nosofsky, 2000; Nosofsky, 
Kruschke, & McKinley, 1992; Nosofsky, et al., 1994; 
Smith & Minda, 2000). The 5–4 problem (see Table 3) 
consists of nine training items and a set of transfer items 
that are based on four binary-valued features. The clas-
sification problem is designed to be linearly separable, 
even though the training set includes three weak category 
members with only two out of four category-consistent 
feature values. ALCOVE and RULEX fit the data well in 
terms of goodness of fit to item-by-item human classifica-
tion accuracy and capturing two qualitative patterns that 
specifically challenge abstraction-based accounts.

Table 3 
Fitting DIVA to the 5–4 Problem

Probability of Classification Response A at Test

 Stimulus  DIVA  Medin & Schaffer (1978)  

A1 (1 1 1 0) .72 .78
A2 (1 0 1 0) .94 .88
A3 (1 0 1 1) .92 .81
A4 (1 1 0 1) .75 .88
A5 (0 1 1 1) .85 .81
B1 (1 1 0 0) .26 .16
B2 (0 1 1 0) .24 .16
B3 (0 0 0 1) .08 .12
B4 (0 0 0 0) .07 .03
T1 (1 0 0 1) .52 .59
T2 (1 0 0 0) .45 .31
T3 (1 1 1 1) .80 .94
T4 (0 0 1 0) .44 .34
T5 (0 1 0 1) .56 .50
T6 (0 0 1 1) .54 .62

 T7 (0 1 0 0)  .25  .16  
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The first of these qualitative patterns is that learners 
are more accurate in classifying Stimulus A2 (1 0 1 0), 
which has two features in common with the A proto-
type (1 1 1 1), than they are in classifying Stimulus A1 
(1 1 1 0), which has three prototypical features. (For ease 
of viewing, here and in Table 3, values of 0 and 1 are used 
to describe the stimulus items.) Whereas the prototype 
view clearly makes the opposite prediction, exemplar-
based models effectively capture this result (Medin & 
Schaffer, 1978; Nosofsky et al., 1992). The second pat-
tern emerges in transfer performance on the Category A 
prototype (1 1 1 1), which is not included in the training 
set. The prototype (Stimulus T3) is the most accurately 
classified among the transfer items, but it is not classified 
with greater accuracy than some of the nonprototypical 
training items, A2 (1 0 1 0) and A3 (1 0 1 1), which are 
more distant from the central tendency of the category. 
One caveat with regard to these results is that they are not 
uniformly observed across variations in stimulus materi-
als and method (Medin & Schaffer, 1978; Smith & Minda, 
2000; but see Nosofsky, 2000).

A 4 2 4 2 DIVA network was applied to the 5–4 
problem, using the default parameter settings of learning 
rate of 1.0 and random initialization range of 0.5. The 
binary features were encoded using 1 values. Average 
performance on all items (training and transfer examples) 
was computed across 50 network initializations. Each 
network was tested after 16 blocks of training. Sensitiv-
ity testing showed qualitative consistency across param-
eter settings. DIVA successfully captured the two notable 
patterns found in human learning. The model showed a 
greater mean probability of correct responding for the less 
prototypical Stimulus A2 (.94) than for Stimulus A1 (.72). 
The transfer test for the prototype of Category A yielded a 
mean probability of correct responding (T3  .80), which 
was the highest accuracy rate among the transfer items but 
lower than the two training items (A2  .94, A3  .92). 
DIVA showed a traditional prototype enhancement effect 
(see, e.g., Posner & Keele, 1968), which is one of the best 
established findings in the category learning literature. 
Like exemplar-based accounts, DIVA displays prototype 
sensitivity without an explicit mechanism of prototype 
formation.

In simulating the set of phenomena surrounding the 5–4 
problem, DIVA captures the advantages of the prototype 
view (enhanced classification accuracy on an untrained 
prototype) and the advantages of the exemplar view (ac-
curacy levels on individual items that belie their similar-
ity to the underlying prototype; good qualitative fits for 
both old and new items). DIVA achieves these results by 
building coordinated statistical models of the categories, 
not by storing reference points in the form of exemplars 
or prototypes.

The present research has placed emphasis on the quali-
tative pattern of results from the 5–4 structure. The de-
tailed quantitative fit of the parameter-free DIVA model 
to the aggregate data of Medin and Schaffer (1978, Ex-
periment 2) is not as good (sum of squared deviations  
.128; see Table 3) as that achieved by a four-parameter ex-
emplar model (Medin & Schaffer, 1978; Nosofsky et al., 

1992). In future work, DIVA will be tested for its ability 
to generate quantitative fits as close to the human data as 
those achieved using reference point models. The valid-
ity of aggregated learning data has recently come under 
some question as a result of individual subject analyses 
showing that aggregate performance is often inconsistent 
(even qualitatively) with individual profiles (Nosofsky 
et al., 1994; see also Ashby, Maddox, & Lee, 1994; Lee & 
Webb, 2005). Therefore, it will also be a priority to assess 
DIVA’s ability to fit individual subject data. DIVA pro-
duces variable performance across training runs primarily 
as a result of the random initial weights. This may corre-
spond with variations in individual performance based on 
dispositional or situational initial conditions that bias the 
learner toward a particular solution path. Other ways to 
capture individual variation include the learning rate and 
parameters that scale or modify the choice rule.

To summarize, DIVA produced a good qualitative fit 
to a benchmark data set that was designed specifically to 
advance the case for exemplar-based accounts. DIVA suc-
ceeds by constructing category representations that sum-
marize statistical tendencies while also being tailored to 
the individual items. In order to reduce the reconstructive 
error on weakly structured categories, DIVA discovers a 
set of weights that preserve both general and specific in-
formation about the content of training set. DIVA is the 
first model that shows exemplar sensitivity and prototype 
sensitivity without employing the reference point formu-
lation of dimensionally weighted similarity to quasilocal 
representations. Just as DIVA successfully matched the 
level of difficulty shown by humans in learning different 
types of category structures, the model also effectively 
captures the relative difficulty of individual items.

DISCUSSION

DIVA is the first model outside the reference point 
framework that successfully accommodates major psy-
chological benchmarks. The relative ordering of the six 
types of classification learning in Shepard et al.’s (1961) 
influential research has been widely thought to reflect the 
operation of a system with the capacity to encode spe-
cific exemplars and to compute similarity only on the 
basis of the relevant dimensions (e.g., Kruschke, 1992). 
In the original work, Shepard and colleagues raised the 
possibility of either an abstraction-based or a selective 
 attention-based solution. On the basis of the present find-
ings, the relative ordering of the six types can be under-
stood in terms of the ease with which a set of internal 
representations can be constructed using the same set of 
weights to simultaneously support recoding/decoding of 
the members of both categories. In further simulation ex-
periments, it was found that DIVA is not overly sensitive 
to linear boundaries. DIVA also successfully accounted 
for human performance on Medin and Schaffer’s (1978) 
5–4 problem—another foundational data set that helped 
to consolidate widespread acceptance of the reference 
point framework and its core design principles of dimen-
sional selective attention and item-specific representa-
tion. Throughout the simulation experiments, a number of 
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novel predictions and alternate interpretations of behav-
ioral data were generated, making clear the value of the 
model above and beyond its data fits. Finally, although it 
is beyond the scope of the present report, DIVA has been 
shown to effectively capture important phenomena in the 
domain of inference learning (see Love et al., 2004; Mark-
man & Ross, 2003; Yamauchi, Love, & Markman, 2002; 
Yamauchi & Markman, 1998) and to avoid the problem 
of catastrophic forgetting in the traditional demonstration 
cases showing that standard backpropagation networks 
lose their initial learning under sequential processing con-
ditions (Kruschke, 1992; McCloskey & Cohen, 1989; Rat-
cliff, 1990; see also French, 1999, and Kruschke, 1993).

Further Directions for Cognitive Simulation
The data fits to this point have been qualitative in na-

ture and oriented toward aggregate data. Researchers are 
increasingly taking into account the profiles of individual 
learners (e.g., Minda & Smith, 2002; Nosofsky & Johan-
sen, 2000; Nosofsky et al., 1994; Rehder & Hoffman, 
2005a, 2005b), so a goal for continued testing of DIVA is 
to establish whether the model can quantitatively fit indi-
vidual learning curves. The model parameters (e.g., learn-
ing rate and weight initialization range) will be evaluated 
as a way to account for individual differences in learning. 
Some immediate speculations are that the range of the 
initial random weights corresponds to the likelihood of 
switching away from an initial approach to a classifica-
tion problem, and that the learning rate corresponds to the 
amount of impact each trial has on the construction of an 
overall solution. Another source of power for generating 
quantitative fits to aggregate or individual data with DIVA 
is the use of a parameter-tuned version of the choice rule 
for generating response probabilities from the output node 
activations.

Research is under way to apply the DIVA model to 
problems based on continuous-valued inputs. An impor-
tant target phenomenon is human learning performance 
on filtration-versus-condensation tasks (Kruschke, 1993; 
see also Garner, 1974 and Posner, 1964). In a filtration 
task, only one of two available perceptual dimensions is 
relevant to classification. (The task is so named because 
the irrelevant dimension can be filtered out.) In a conden-
sation task, both of the dimensions are relevant and the 
two dimensions must be condensed—that is, considered 
in combination—in order to achieve classification suc-
cess. Kruschke (1993) found that human learners showed 
a consistent filtration advantage from start to finish of 
training, and that ALCOVE—but not standard backpropa-
gation—effectively captured the filtration advantage. This 
is a challenging test case for DIVA, because the phenom-
enon appears to result from a shift of attention away from 
the irrelevant feature. DIVA does not tend to ignore in-
formation, since its core task is to optimally reconstruct 
the input.

Rehder and Hoffman (2005a) used an eye-tracking 
methodology to study category learning and argued that 
observed patterns of visual attention are best explained 
in terms of a hybrid account of human category learn-
ing with a gradual probabilistic component and an all-or-

none rule-based component. Their evidence runs counter 
to models like ALCOVE, because the eye movements 
consistent with dimensional selective attention begin at 
about the time at which proficient performance is reached, 
rather than emerging gradually on the basis of trial-by-
trial error-corrective learning. DIVA correctly predicts 
broad attention to all available features under all category 
structures during the period in which learning is actually 
taking place. This is because the model uses the full set 
of available information as inputs and reconstructive tar-
gets, so information does not tend to be ignored while the 
coordinated statistical models underlying category under-
standing are being formed. The question is, what would 
explain a learner’s beginning to ignore irrelevant dimen-
sions only after having mastered the classification task? 
One speculation is that, once learning has succeeded, 
people are likely to look for procedural shortcuts, such 
as disregarding information that need not be considered. 
Along these lines, a DIVA network trained on a unidimen-
sional rule (i.e., Type I from Shepard et al., 1961) would 
perform well on a partial pattern consisting only of the 
relevant dimension, but would perform poorly on a partial 
pattern that lacked the relevant dimension. Therefore, it is 
not difficult to imagine learners exploiting this efficiency, 
once they were confident they had mastered the catego-
ries. Additionally, the threshold for asserting successful 
learning might be an individual difference variable.

Another area of increased emphasis in categorization 
research is the underlying brain basis for cognitive per-
formance. Although DIVA is brain style in the connec-
tionist tradition, the account is not constrained by spe-
cific neuroscientific findings. Separate systems views are 
widespread in the cognitive neuroscience literature due 
to evidence of dissociations between implicit/procedural 
and explicit/declarative modes of category learning (e.g., 
Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Ashby 
& Maddox, 2005; Smith, Patalano, & Jonides, 1998), and 
between classification and memory tasks (Knowlton & 
Squire, 1993; Reed, Squire, Patalano, Smith, & Jonides, 
1999). Nosofsky and colleagues (e.g., Nosofsky & Jo-
hansen, 2000; Nosofsky & Zaki, 1998; Zaki & Nosofsky, 
2001) offer a range of evidence that exemplar-based ac-
counts can account for a broad range of learning phenom-
ena without the need for multiple systems. Can DIVA 
succeed in a similar manner? In addition, categorization 
researchers have sought to explain classification and old–
new recognition tasks within a common modeling frame-
work (e.g., Nosofsky, 1988, 1991). With DIVA, it should 
be possible to model recognition performance in terms 
of the best reconstruction across category channels or as 
a function of reconstructive success across all category 
channels. Further predictions are that training DIVA to 
a high criterion will lead to high levels of recognition for 
category exceptions (Palmeri & Nosofsky, 1995; Saka-
moto & Love, 2004) and that DIVA will show false recog-
nition of novel yet highly typical items.

Directions for Model Development
One of the aims in this work has been to minimize the 

role of parameter fitting and modeler intervention in the 
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simulation process. A remaining goal is to develop a pre-
cise and a priori procedure for direct translation from a 
description of a psychological task to a complete speci-
fication of the network and its settings. Toward this goal, 
unless the consistent appropriateness of two hidden nodes 
turns out to reflect underlying processing constraints in 
human category learning, DIVA will be generalized to dy-
namically prune (e.g., Castellano, Fanelli, & Pelillo, 1997; 
Karnin, 1990) or recruit (Fahlman & Lebiere, 1990; Love 
et al., 2004) hidden nodes. This may offer an account of 
how DIVA can handle a problem like the Type VI category 
structure, which is not amenable to the default learning 
mode. In addition, mechanisms will be sought to directly 
determine the learning rate and range of random weight 
initialization based on properties of the task and/or the 
learner.

The focus of this article has been on supervised category 
learning, but DIVA is naturally extensible to unsupervised 
learning. Instead of relying on a target signal, the channel 
selected for weight update is the one that produces the best 
reconstruction. On early trials, the random initial weights 
cause one of the channels to win. This channel is updated 
to become better able to successfully reconstruct the cur-
rent stimulus item. When the task conditions specify the 
number of classes, the number of category channels is 
fixed accordingly; when there are no constraints on the 
number of categories, an additional channel is recruited 
when the established channel(s) fail(s) to produce a sat-
isfactory reconstruction. The new channel shares the set 
of input-to-hidden weights common to all channels, and 
the remaining weights are randomly initialized. The new 
channel is trained on its seed example and thereafter com-
petes normally to produce the best reconstruction. The ad-
dition of channels is not presently a core design principle 
of DIVA, but it provides a straightforward means by which 
the system can autonomously originate or expand a clas-
sification scheme. Incidental unsupervised tasks (Love, 
2002; Wattenmaker, 1991), in which the learner is un-
aware of being in a categorization task, are modeled using 
a standard autoencoder without divergent channels.

DIVA and Natural Concepts
The DIVA account is consistent with the probabilistic 

view of categorization and the graded structure of natural 
categories. At the same time, certain aspects of the theory 
view (Murphy & Medin, 1985) are also realized, even 
though important elements of the theory view having to 
do with causal cores and the role of background knowl-
edge are not yet integrated. Assigning category member-
ship is not a matter of finding the best match between 
an input and stored reference points, as in the similarity-
based probabilistic models criticized in the theory view. 
In DIVA, a categorization judgment takes the form of an 
assessment of the extent to which a stimulus is well ac-
counted for by the statistical model underlying a particular 
category. More specifically, whether or not a stimulus is 
understood to be a dog depends on the result of attempting 
to recode and decode the stimulus according to a statistical 
model of dog properties experienced under particular task 
conditions. The statistical models underlying categories 

are not strictly a product of the structure of the environ-
ment, but are mediated by the specific tasks that constitute 
the interaction between the learner and the data. Along 
these lines, DIVA learns to recode the initial form of the 
stimulus features in a top-down manner, using the repre-
sentational space of the hidden nodes. DIVA constructs 
psychological representations in concert with learning to 
categorize, as opposed to assuming their availability (and 
their fixedness) from an external and independent source. 
Once again, despite these elements of consistency with 
the theory view, the role of explicit structure and explana-
tory relationships within and between natural categories 
is not yet realized.

Another promising aspect of DIVA is its potential ex-
tension to a broader range of higher cognitive functions. 
For example, the psychological similarity of horse to cow 
can be understood as a matter of how effectively a repre-
sentative instance or summary of the horse category can 
be reconstructed by a statistical model representing the 
cow category. The question of their similarity becomes the 
question: How good a cow is a horse? As such, reconstruc-
tive error is a goodness-of-fit measure that can be con-
verted to a similarity judgment. To further illustrate, com-
paring cat or wolf to the category dog would produce little 
distortion, but a target like bookshelf or sea slug would 
elicit a highly distorted output. The interpretation of wolf-
as-dog is coherent; that of bookshelf-as-dog is not. This 
account is also consistent with the influential constraint 
(Tversky, 1977) that similarity judgments can be asym-
metric; that is, wolf-as-dog yields a different similarity 
outcome than does dog-as-wolf. The typicality of category 
members (Rosch & Mervis, 1975) can also be determined 
by testing an exemplar relative to its category. A dog is 
a typical member of the animal category (or a particu-
lar dog is typical of the dog category) to the extent that 
its reconstructive error is low. Category-based induction 
tasks (Osherson, Smith, Wilkie, Lopez, & Shafir, 1990; 
Rips, 1975) can potentially also be modeled in terms of 
reconstruction-based interpretations of similarity, typical-
ity, and coverage.

An open question is whether a person categorizing a 
stimulus actually experiences the stimulus in terms of the 
resulting reconstruction. Consider the case of assimilat-
ing a wolf to the dog category. The resulting reconstruc-
tion would distort features toward the dog category. The 
belief that one is seeing a dog, not a wolf, might make the 
teeth seem not quite so fang-like and the eyes not quite 
so predatory. This can account for construal and feature 
interpretation processes (Kurtz & Dietrich, 2007; Wis-
niewski & Medin, 1994) through which the understanding 
of a stimulus is infused with the semantics of the cate-
gory guiding the interpretation. The feature reconstruc-
tions produced by DIVA can also potentially account for 
schema-like memory distortions.

Conclusion
The theoretical view of categories as task-coordinated 

statistical models appears to have much to offer. The ap-
proach is grounded in powerful and formally understood 
statistical and computational procedures. DIVA repre-
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sents a major conceptual departure from the small set of 
models that have achieved comparable success in account-
ing for human category learning. Specifically, DIVA does 
not employ nodes that code specifically for exemplars or 
sets of exemplars (i.e., quasilocal reference points) and 
does not categorize according to the similarity match 
between inputs and reference points. Rather than using 
dimensional selective attention to diagnostically stretch 
or shrink dimensions, DIVA performs a task-driven re-
coding or transformation of inputs into a distributed rep-
resentational space. As opposed to computing the error 
that drives learning as the deviation between a category 
guess and the correct category, DIVA uses the deviation 
between the reconstructed and original forms of the input. 
DIVA captures signature phenomena traditionally associ-
ated with the use of rules, prototypes, and exemplars while 
explicitly implementing none of them. The mechanism of 
divergent autoencoding is highly general, and it is hoped 
that the approach may prove broadly applicable to pattern 
recognition problems in a variety of psychological and 
applied domains.
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NOTE

1. By coincidence, there is a neural network model of speech produc-
tion (Guenther, 1995) also called DIVA. The two models are entirely 
independent of one another.
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