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ABSTRACT

We study the mass, velocity dispersion and anisotropy profiles of � cold dark matter (�CDM)

haloes using a suite of N-body simulations of unprecedented numerical resolution. The Aquar-

ius Project follows the formation of six different galaxy-sized haloes simulated several times

at varying numerical resolution, allowing numerical convergence to be assessed directly. The

highest resolution simulation represents a single dark matter halo using 4.4 billion particles,

of which 1.1 billion end up within the virial radius. Our analysis confirms a number of results

claimed by earlier work, and clarifies a few issues where conflicting claims may be found

in the recent literature. The mass profile of �CDM haloes deviates slightly but systemati-

cally from the form proposed by Navarro, Frenk & White. The spherically averaged density

profile becomes progressively shallower inwards and, at the innermost resolved radius, the

logarithmic slope is γ ≡ −d ln ρ/d ln r � 1. Asymptotic inner slopes as steep as the recently

claimed ρ ∝ r−1.2 are clearly ruled out. The radial dependence of γ is well approximated

by a power law, γ ∝ rα (the Einasto profile). The shape parameter, α, varies slightly but

significantly from halo to halo, implying that the mass profiles of �CDM haloes are not

strictly universal: different haloes cannot, in general, be rescaled to look identical. Departures

from similarity are also seen in velocity dispersion profiles and correlate with those in density

profiles so as to preserve a power-law form for the spherically averaged pseudo-phase-space

density, ρ/σ 3 ∝ r−1.875. The index here is identical to that of Bertschinger’s similarity solu-

tion for self-similar infall on to a point mass from an otherwise uniform Einstein–de Sitter

universe. The origin of this striking behaviour is unclear, but its robustness suggests that

it reflects a fundamental structural property of �CDM haloes. Our conclusions are reliable

down to radii below 0.4 per cent of the virial radius, providing well-defined predictions for

halo structure when baryonic effects are neglected, and thus an instructive theoretical template

against which the modifications induced by the baryonic components of real galaxies can be

judged.

Key words: methods: numerical – dark matter.

1 IN T RO D U C T I O N

A couple of decades of steady progress in the simulation of non-

linear structures in a cold dark matter (CDM) dominated universe

have resulted in significant advances in our understanding of the

clustering of dark matter on the scale of galactic haloes. There is

now widespread consensus that the hierarchical assembly of CDM

⋆E-mail: jfn@uvic.ca

haloes yields (1) mass profiles that are approximately ‘universal’

(i.e. independent of mass and cosmological parameters aside from

simple physical scalings (Navarro, Frenk & White 1996, 1997, here-

after NFW), (2) strongly triaxial shapes, with a slight preference for

nearly prolate systems (e.g. Frenk et al. 1988; Jing & Suto 2002;

Allgood et al. 2006; Hayashi, Navarro & Springel 2007), (3) abun-

dant, but non-dominant, substructure (Klypin et al. 1999; Moore

et al. 1999a; Ghigna et al. 2000; Gao et al. 2004) and (4) ‘cuspy’

inner mass profiles, where the central density increases systemat-

ically as the numerical resolution of the calculation is improved

C© 2009 The Authors. Journal compilation C© 2009 RAS
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22 J. F. Navarro et al.

(see e.g. NFW; Moore et al. 1999b, hereafter M99; Fukushige &

Makino 2001; Navarro et al. 2004; Diemand et al. 2005).

Despite this consensus, there are a number of issues where con-

flicting claims may be found in the recent literature, hindering the

design and interpretation of observational tests aimed at validating

or ruling out various aspects of the CDM theory on these scales.

One contentious issue concerns the statistics, spatial distribution and

structure of substructure, and their consequences for the discovery

and interpretation of possible signals of dark matter annihilation in

the gamma-ray sky (Stoehr et al. 2003; Diemand, Kuhlen & Madau

2007; Kuhlen, Diemand & Madau 2008; Springel et al. 2008b and

references therein). The controversy extends to the structure of

the inner cusps both of the main halo and of substructure haloes,

where some recent work has claimed a well-defined central slope of

ρ ∝ r−1.2 (Diemand, Moore & Stadel 2004; Diemand et al. 2005,

2008) whereas others have argued that no compelling evidence for

such power-law behaviour is apparent (Navarro et al. 2004; Graham

et al. 2006).

Considerable debate also surrounds whether the structure of

CDM haloes is truly ‘universal’. This is indeed the case if haloes

have mass profiles that are well described by two-parameter for-

mulae, such as the NFW profile or some of its modifications (see

e.g. M99). These profiles have two scaling parameters (mass and

size) but fixed shape, so that two different haloes can, in principle,

be rescaled to be indistinguishable from each other.

On the other hand, recent work suggests that at least three param-

eters may be needed to describe halo mass profiles accurately. An

example is the Einasto formula (Einasto 1965), shown by Navarro

et al. (2004) to significantly improve the accuracy of the fits to

the inner density profiles of simulated haloes. It is unclear from

that work, however, whether the improvement is due to the fact

that the Einasto formula has a different asymptotic inner behaviour

than NFW or to the extra shape parameter it introduces. Merritt

et al. (2005, 2006) explored this further and argued that the third

parameter is indeed needed to account faithfully for the curvature

in the shape of the density profile. Merritt et al.’s conclusions have

received support from the work of Gao et al. (2008) and Hayashi &

White (2008), who have stacked density profiles of many haloes of

similar mass to show that mean profile shape and, in particular, the

Einasto shape parameter α (see equation 4) depend systematically

on halo mass. This implies that the mass profile of �CDM haloes

is not strictly universal; no simple scaling of the average profile of

cluster haloes will provide an accurate fit to the average profile of

galaxy haloes.

Many of these controversies and uncertainties may be traced to

the fact that earlier work has lacked the numerical resolution and the

representative halo sample needed to settle the debate. For example,

the dark matter annihilation flux observable from the Earth depends

crucially on resolving not only substructures but also the nested

‘substructure within substructure’ expected from the hierarchical

assembly of CDM haloes. Only the most recent simulations have

been able to begin addressing this issue (see e.g. Diemand et al.

2008; Springel et al. 2008a,b).

A similar comment applies to the structure of the inner cusp,

where pinning down the asymptotic inner behaviour of the dark

matter density profile depends crucially on understanding the limi-

tations introduced by, for example, finite particle number, gravita-

tional softening and time-stepping technique.

We have shown in earlier work (Power et al. 2003, hereafter P03)

that, when suitable choices of the numerical parameters are made,

the main factor determining the innermost radius where the mass

profile may be measured reliably is the total number of particles

used in the simulation. Empirically, the boundary of the region

where numerical convergence is achieved roughly corresponds to

the radius where the two-body relaxation time, trelax, exceeds the age

of the Universe. Since trelax scales roughly like the enclosed number

of particles times the local orbital time-scale, and the latter drops

sharply towards the centre, extending the resolved region inwards

even modestly requires a dramatic increase in the total number of

particles.

These difficulties, coupled to the significant halo-to-halo scat-

ter already seen in early work, imply that substantive progress on

these issues requires a concerted numerical effort where several dif-

ferent haloes are simulated with varying numerical resolution, so

that cosmic variance and numerical convergence may be assessed

directly.

These are the aims of The Aquarius Project, a recently completed

suite of numerical simulations of the formation of galaxy-sized

haloes in the �CDM cosmogony. The series includes resimulations

of six different ∼1012 M⊙ haloes where the number of particles

is systematically varied. In one case, the same halo is simulated

five times, gradually increasing the number of particles in the halo

from about 1 million to ∼1.1 billion within the virial radius. The

highest resolution simulations of the other five haloes have roughly

100–200 million particles each within the virialized region.

The simulation series has been presented recently by Springel

et al. (2008a,b), where the interested reader may find relevant details.

Our first paper (Springel et al. 2008b) deals with predictions of

the annihilation signal, whereas the second (Springel et al. 2008a)

addresses the statistics, spatial distribution and structure of dark

matter substructures. Here we deal with the structure of the main

halo, with special emphasis on the structure of the inner cusp. The

plan of this paper is as follows. Section 2 briefly summarizes the

numerical parameters of our simulations; Sections 3 and 4 present

our main results. We conclude with a brief discussion and summary

in Section 5.

2 TH E N U M E R I C A L S I M U L AT I O N S

We present here for completeness a brief summary of the numerical

simulations, and refer the reader to Springel et al. (2008a,b) for

further details.

2.1 The cosmological parameters

All our simulations assume a �CDM cosmogony with the follow-

ing parameters: �m = 0.25, �� = 0.75, σ8 = 0.9, ns = 1 and

Hubble constant H0 = 100 h km s−1 Mpc−1 = 73 km s−1 Mpc−1.

These cosmological parameters are the same adopted in previous

numerical work by our group, such as the Millennium Simulation of

Springel et al. (2005), and are consistent, within their uncertainties,

with constraints derived from the Wilkinson Microwave Anisotropy

Probe 1- and 5-year data analyses (Spergel et al. 2003; Komatsu

et al. 2009) and with the recent cluster abundance analysis of Henry

et al. (2009).

2.2 The code

The simulations were carried out with a new version of the GADGET

(Springel, Yoshida & White 2001; Springel 2005) parallel cosmo-

logical code. This version, which we call GADGET-3, has been espe-

cially developed for this project, and implements a novel domain de-

composition technique in order to achieve unprecedented dynamic

range in massively parallel computer systems without sacrificing

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 402, 21–34
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Diversity and similarity of simulated CDM haloes 23

Table 1. Basic parameters of the Aquarius simulations. We have simulated six different haloes, each at several different numerical resolutions.

Halo mp ǫG r200 M200 N200 Vmax rmax σ host σmax

(M⊙ h−1) (pc h−1) (kpc h−1) (M⊙ h−1) (106) (km s−1) (kpc h−1) (km s−1) (km s−1)

Aq-A-1 1.250 × 103 14 179.41 1.343 × 1012 1074.06 208.75 20.69 117.47 261.70

Aq-A-2 1.000 × 104 48 179.49 1.345 × 1012 134.47 208.49 20.54 117.13 261.88

Aq-A-3 3.585 × 104 87 179.31 1.341 × 1012 37.39 209.22 20.35 117.31 262.80

Aq-A-4 2.868 × 105 250 179.36 1.342 × 1012 4.68 209.24 20.58 117.23 262.29

Aq-A-5 2.294 × 106 500 180.05 1.357 × 1012 0.59 209.17 20.84 116.61 260.59

Aq-B-2 4.706 × 103 48 137.02 5.982 × 1011 127.09 157.68 29.31 89.59 190.74

Aq-C-2 1.021 × 104 48 177.26 1.295 × 1012 126.77 222.40 23.70 124.08 270.50

Aq-D-2 1.020 × 104 48 177.28 1.295 × 1012 126.98 203.20 39.48 113.15 254.28

Aq-E-2 7.002 × 103 48 154.96 8.652 × 1011 123.56 179.00 40.52 101.73 215.14

Aq-F-2 4.946 × 103 48 152.72 8.282 × 1011 167.45 169.08 31.15 96.78 204.53

Note. The leftmost column gives the simulation name, encoding the halo (A to F) and the resolution level (1 to 5; 1 is our highest resolution, 5 is the lowest).

mp is the particle mass in the high-resolution region, ǫG is the Plummer-equivalent gravitational softening length, r200 is the virial radius, defined as the radius

enclosing a mean overdensity 200 times the critical value for closure, M200 is the mass within the virial radius, N200 is the total number of particles within

r200. Other characteristic properties of the haloes listed are the position (rmax) of the peak (Vmax) of the circular velocity profile, as well as the one-dimensional

velocity dispersion of the main halo (σ host), and the peak (σmax) of the velocity dispersion profile.

load balancing or numerical accuracy. Time-stepping is carried out

with a kick-drift-kick leap-frog integrator where the time-steps are

based on the local gravitational acceleration, together with a con-

servatively chosen maximum time-step for all particles. Pairwise

particle interactions are softened with a spline of scalelength hs,

so that they are strictly Newtonian for particles separated by more

than hs. The resulting softening is roughly equivalent to a traditional

Plummer-softening with scalelength ǫG ∼ hs/2.8. The gravitational

softening length is kept fixed in comoving coordinates throughout

the evolution of all our haloes. The dynamics are then governed by a

Hamiltonian and the phase-space density of the discretized particle

system should be strictly conserved as a function of time (Springel

2005).

2.3 Halo selection

All haloes in the Aquarius suite were identified for resimulation

in a 9003-particle parent simulation of a 100 h−1 Mpc box. The

identification technique selects all ∼1012 M⊙ haloes in the box

and chooses, at random, a few of them that satisfy a mild isolation

criterion (no neighbour exceeding half its mass within 1 h−1 Mpc).

This criterion is only imposed in order to remove haloes in the

vicinity of massive groups and clusters, which may have evolved

differently from the average.

Each halo is then resimulated at various resolutions, making sure

that each resimulation shares the same power spectrum and phases at

all resolved spatial frequencies. Initial displacements are imprinted

using the Zeldovich approximation and a ‘glass-like’ uniform parti-

cle load (White 1996). The 100 h−1 Mpc simulation box is divided

into a ‘high-resolution’ region, which corresponds to the Lagrangian

region surrounding the target halo, and a low-resolution region (the

rest of the box), which is represented with a smaller number of

particles with mass increasing with distance to the target halo.

We have carefully designed the geometry of the high-resolution

region in order to avoid contamination of the halo by massive low-

resolution particles. Typically, about 30 per cent of particles in the

high-resolution region end up in the virialized region of the final

halo, and no higher mass particles end up within the virial radius of

the final halo.

Table 1 lists some basic information about each simulation. This

includes a symbolic simulation name, the particle mass in the high-

resolution region, mp, the gravitational softening length, ǫG, the

virial radius,1 r200, as well as the total mass, M200, and the total

number of particles, N200, enclosed within r200. Other structural pa-

rameters of interest include the location of the peak in the circular

velocity profile, specified by rmax and Vmax, as well as that of the

velocity dispersion profile [σ max and r(σmax)]. σ host indicates the

one-dimensional rms velocity of the main halo within r200 (exclud-

ing substructures).

Table 1 lists only information on the haloes used in this paper.

A more complete list of numerical parameters may be found in

Springel et al. (2008a). One of our haloes, labelled Aq-A, has been

resimulated five times, spanning a factor of ∼2000 in particle mass.

Our naming convention uses the tags ‘Aq-A’ through ‘Aq-F’ to re-

fer to each of the six Aquarius haloes. An additional suffix ‘1’ to

‘5’ denotes the resolution level. ‘Aq-A-1’ is our highest resolution

calculation: it follows the surroundings of Aq-A with ∼4.4 billion

particles, ∼1.1 billion of which end up within r200. We have level-2

simulations of all six haloes, corresponding to between 100 and

200 million particles per halo (within r200). The softening param-

eters of each simulation adopt the ‘optimal’ softening recommen-

dation of P03, which aims to balance the number of time-steps

required for accurate integration whilst minimizing the loss of spa-

tial resolution.

2.4 Radial profiles

Our analysis uses spherically averaged profiles of the basic dynami-

cal properties describing the structure of �CDM haloes: the density,

circular velocity, velocity dispersion and anisotropy profiles. Typ-

ically, these are computed in 50 spherical shells equally spaced in

1 We define the virial mass of a halo, M200, as that contained within a

sphere of mean density 200 × ρcrit. The virial mass defines implicitly the

virial radius, r200, and virial velocity, V200 = (GM200/r200)1/2, of a halo,

respectively. We note that other definitions of ‘virial radius’ have been used

in the literature; the most popular of the alternatives adopts a density contrast

(relative to critical) of 
 ≈ 178 �0.45
m ∼ 100 (for our adopted cosmological

parameters, see Eke, Cole & Frenk 1996). We shall refer to these alternative

choices, where appropriate, with a subscript indicating the value of 
; i.e.

r50 would be the virial radius obtained assuming 
 = 50, and so an enclosed

density 200 times the mean cosmic value.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 402, 21–34
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24 J. F. Navarro et al.

log10 r (where r is the distance to the halo centre), and spanning the

range 1.5 × 10−4 < r/r200 < 3. (When different choices for either

the number of bins or the radial range are made, this is stated ex-

plicitly in the analysis below.) These concentric shells are centred

at the location of the particle identified by the SUBFIND algorithm

(Springel et al. 2001) as having the minimum gravitational poten-

tial. Extensive tests show that this procedure identifies the region

where the local density of the main subsystem of each halo peaks,

and is coincident in most cases (except perhaps major ongoing

mergers between comparable-mass haloes) with the results of other

methods, such as the ‘shrinking sphere’ method discussed by P03.

The mass density in each radial bin is estimated as the dark mass

in the bin divided by its volume, and assigned to a radius corre-

sponding to the bin centre. Circular velocities are computed by

adding up the mass of each bin plus all interior ones, and assigned

to the radius corresponding to the outer edge of the bin. The con-

struction of velocity dispersion and anisotropy profiles is described

in detail in Section 4.1. When differentiation is necessary, such as

when computing the logarithmic slopes shown in Figs 5 and 6, we

use a simple three-point Lagrangian interpolation to perform the

numerical differentiation (as implemented by the DERIV subroutine

of the IDL software package).

3 M ASS PRO FILES

3.1 Numerical convergence

We begin our study of the mass profile by using our series of

resimulations of the Aq-A halo in order to assess the radial range

where numerical convergence is achieved. Fig. 1 shows the mass

profile of the five Aq-A resimulations; the left-hand panels show

the spherically averaged density profile (multiplied by r2 in order

to emphasize small departures) and the right-hand panels show the

corresponding circular velocity profile. Lines of different colours

correspond to different resimulations, as labelled. Arrows indicate

hs = 2.8 ǫG, the length-scale where softened pairwise interactions

become fully Newtonian.

This figure demonstrates the striking numerical convergence

achieved in our resimulations. Outside some characteristic radius

(which we discuss below), all the profiles are essentially indistin-

guishable from each other, even down to details such as ‘bumps’

in the outer regions caused by the presence of substructure. As

discussed by Springel et al. (2008a), this reflects the high quality

of the numerical integration of GADGET-3 and the careful approach

we have taken for building our initial conditions; indeed, the Aq-

A resimulations faithfully reproduce not only the properties of the

main halo, but even the mass, location and internal structure of most

major substructures.

Inevitably, near the centre the mass profiles diverge as a conse-

quence of numerical limitations. Each profile is plotted down to the

‘convergence radius’ proposed by P03. These authors demonstrate

that deviations from convergence depend (for appropriate choices of

other numerical parameters) solely on the number of particles, and

scale roughly with the collisional ‘relaxation’ time, trelax. Expressed

in units of the circular orbit time-scale at r200 (which is of the order

of the age of the Universe), κ = trelax/tcirc(r200), the relaxation time

may be written as

κ(r) =
N

8 ln N

r/Vc

r200/V200

=
√

200

8

N (r)

ln N (r)

[

ρ(r)

ρcrit

]−1/2

, (1)

where N = N (r) is the enclosed number of particles and ρ(r) is the

mean enclosed density within r.

According to P03, deviations of roughly 10 per cent are expected

in the Vc profile where κ ≈ 1, and they adopted this condition to

define the convergence radius, rconv. Stricter convergence demands

Figure 1. Spherically averaged density (left-hand panel) and circular velocity (right-hand panel) profiles for the Aq-A halo simulation series. Different colours

correspond to different resolution runs, as labelled in the figure. The density profile is multiplied by r2 in order to emphasize small deviations. The bumps in the

outer regions may be traced to the presence of substructure and unrelaxed tidal debris. Profiles are shown from ∼3r200 down to the ‘convergence radius’, r
(1)
conv,

corresponding to the radius where the relaxation time, trelax, is of the order of the age of the Universe. The thick portion of each profile indicates the region

r > r
(7)
conv where trelax is more than seven times the age of the universe and where stricter convergence is achieved. Outside r

(7)
conv circular velocity estimates

converge to better than 2.5 per cent (see Fig. 2). The dot–dashed line shows an Einasto profile with α = 0.17 matched at (r−2,ρ−2), the peak in the r2ρ profile.

This provides an excellent fit to the structure of the inner regions of the halo, as shown by the residuals plotted in the bottom panels. Arrows indicate the

softening length hs of each simulation.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 402, 21–34
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Diversity and similarity of simulated CDM haloes 25

larger values of κ , and we shall use a superscript on rconv to denote

the value of κ adopted for its definition. For instance, r (1)
conv = r (κ=1)

conv

corresponds to κ = 1.

Profiles in Fig. 1 are thus plotted in the range [r (1)
conv, 3 r200]. As

shown in the bottom-right panel, this inner radius indeed corre-

sponds to the point where systematic deviations in Vc(r) reach

∼10 per cent. It is also clear from this figure that convergence in the

local density profile is always much easier to achieve, so concen-

trating our analysis on the enclosed mass profile, or on the circular

velocity, is a conservative approach.

Although each halo converges over a different radial range, the

departures from convergence are all similar when expressed in terms

of κ . This is shown in the top panel in Fig. 2, where differences in Vc

from our highest resolution halo, Aq-A-1, are shown as a function

of κ for the other Aq-A resimulations. Deviations of ∼10 per cent

are typical at κ = 1; convergence to better than ∼2.5 per cent,

on the other hand, requires κ ≈ 7 (indicated by the right dashed

vertical line).

We may use these results to estimate convergence radii for our

highest resolution run, Aq-A-1: its Vc profile converges to better

than 10 per cent for radii r > r (1)
conv = 112 h−1 pc; 2.5 per cent

convergence or better is expected for r > r (7)
conv = 253 h−1 pc (see

bottom panel of Fig. 2). Convergence radii for various values of κ

are listed in Table 2 for each simulated halo.

3.2 Fitting formulae

The fitting formulae we have used to describe the mass profile of

our simulated haloes are the following: (i) The NFW profile, given

by

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
; (2)

(ii) the modification to the NFW profile proposed by M99,

ρ(r) =
ρM

(r/rM)1.5[1 + (r/rM)1.5]
, (3)

and (iii) the Einasto profile,

ln[ρ(r)/ρ−2] = (−2/α)[(r/r−2)α − 1]. (4)

Because each of these formulae defines the characteristic param-

eters in a slightly different way, we choose to reparametrize them in

terms of r−2 and ρ−2 ≡ ρ(r−2), which identify the ‘peak’ of the r2ρ

profile shown in the left-hand panels of Fig. 1. This marks the radius

where the logarithmic slope of the profile, γ (r) = −d ln ρ/d ln r ,

equals the isothermal value, γ = 2.

The characteristic radius, r−2, is a well-defined scalelength which

is relatively easy to identify in each halo without resorting to any

particular fitting formula. In practice, we determine r−2 by com-

puting the logarithmic slope profile, γ (r), and identifying where a

low-order polynomial fit to it intersects the isothermal value. Each

r2 ρ profile is then visually inspected in order to ensure that r−2

corresponds to the main peak of the profile, and that it is not unduly

influenced by secondary peaks that arise as the result of substruc-

ture. (See the left-hand panels of Fig. 1.) Table 2 lists r−2 and ρ−2

for all our simulated haloes. Note that for the NFW profile, r−2 = rs

and ρ−2 = ρs/4, while for the Moore profile, ρ−2 = (4/3) ρM and

r−2 = 2−2/3 rM.

We note that, unlike NFW or M99, when α is allowed to freely

vary the Einasto profile is a three-parameter fitting formula. This

is not, of course, the only possible extension of NFW-like profiles

Figure 2. Top panel: fractional deviations in the circular velocity profile

of the Aq-A convergence series versus the (enclosed) relaxation time, trelax,

expressed in units of the circular orbit period at the virial radius, tcirc(r200).

Deviations are measured relative to the highest resolution halo, Aq-A-1.

Note that departures from convergence for all simulations are similar when

expressed this way, indicating that trelax is the main parameter determining

convergence. Solid circles mark the location of the convergence criterion

proposed by P03. Note that Vc estimates converge there to about 10 per cent.

A stricter convergence criterion, for example 2.5 per cent convergence in

Vc, is achieved at larger radii, where trelax ∼ 7 tcirc(r200) (right vertical line).

Bottom panel: relaxation time versus radius for all five Aq-A simulations.

Arrows indicate hs = 2.8 ǫG, the length-scale where pairwise interactions

become Newtonian.

which allows for a variable shape with the aid of an extra free

parameter. For example, Merritt et al. (2006) compared N-body

haloes with the three-parameter Einasto formula, as well as with

the anisotropic model of Dehnen & McLaughlin (2005) and with

the deprojected Sersic (1968) model of Prugniel & Simien (1997).

Merritt et al. conclude that, overall, Einasto’s formula performs best.

Therefore, we adopt it here for the rest of our analysis, although we

do not exclude the possibility that other three-parameter formulae

may perform at least as well as Einasto’s. A full exploration of this

issue is beyond the scope of this paper.
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26 J. F. Navarro et al.

Table 2. Fit parameters of Aquarius haloes.

Halo r
(1)
conv r

(7)
conv ρ−2 r−2 α χ χr γmax

(kpc h−1) (kpc h−1) (1010 h2 M⊙ Mpc−3) (kpc h−1)

Aq-A-1 0.113 0.253 7.462 × 105 11.05 0.170 ± 0.0259 −1.898 −1.948 0.894

Aq-A-2 0.250 0.575 7.322 × 105 11.15 0.163 ± 0.0249 −1.917 −1.976 1.051

Aq-A-3 0.417 0.966 7.456 × 105 11.09 0.174 ± 0.0266 −1.926 −1.995 1.128

Aq-A-4 0.952 2.277 6.501 × 105 11.90 0.160 ± 0.0248 −1.991 −2.061 1.321

Aq-A-5 2.206 5.530 7.534 × 105 11.02 0.165 ± 0.0268 −2.015 −2.111 1.493

Aq-B-2 0.219 0.507 1.830 × 105 16.79 0.173 ± 0.0123 −1.868 −1.938 1.039

Aq-C-2 0.248 0.573 4.973 × 105 14.37 0.159 ± 0.0125 −1.948 −2.010 1.077

Aq-D-2 0.281 0.652 2.075 × 105 20.30 0.170 ± 0.0124 −1.862 −1.942 1.070

Aq-E-2 0.223 0.516 2.058 × 105 17.88 0.130 ± 0.0200 −1.912 −1.947 1.084

Aq-F-2 0.209 0.486 1.673 × 105 18.84 0.145 ± 0.0167 −1.911 −1.980 1.298

Note. The first column labels each halo, as in Table 1, the second and third list the convergence radii obtained for κ = 1 and 7.

These radii, r
(1)
conv and r

(7)
conv, respectively, correspond to where departures from convergence in the circular velocity are expected

to be of the order of 10 and 2.5 per cent. The characteristic scale radius r−2 corresponds to where the logarithmic slope equals

the isothermal value; ρ−2 = ρ(r−2), and α is the best-fitting Einasto parameter. The uncertainty in α indicates the range

where 
Q/Q deviates by less than 50 per cent from the absolute minimum shown in Fig. 4. Strictly, these are non-symmetric,

so we conservatively quote the largest deviation, positive or negative. χ refers to the exponent of the best-fitting power-law

describing the ρ/σ 3 profile. χr is analogous to χ , but for ρ/σ 3
r , where σ r is the rms velocity in radial motions. χ and χr are

computed by minimizing residuals in the region r
(1)
conv < r < r−2. Finally, γmax lists the value of the maximum asymptotic

slope of the density profile cusp, measured at r = r
(7)
conv.

3.3 Fitting procedure

Best-fitting parameters are found by minimizing the deviation be-

tween model and simulation across all bins in a specified radial

range. In the case of the density profile, the best fit is found by

minimizing the figure-of-merit function, Q2, defined by

Q2 =
1

Nbins

Nbins
∑

i=1

(

ln ρi − ln ρmodel
i

)2

. (5)

This function provides an intuitively simple measure of the level

of disagreement between simulated and model profiles. It is dimen-

sionless; it weights different radii logarithmically and, for given

radial range, Q2 is approximately independent of the number of

bins used in the profile. Thus, minimizing Q2 yields for each halo

well-defined estimates of a model’s best-fitting parameters. Note

that when Q is small, it is just the rms fractional deviation of the

data from the model.

It is less clear how to define a goodness-of-fit measure associated

with Q2 and, consequently, how to assign statistically meaningful

confidence intervals to the best-fitting parameter values. This dif-

ficulty arises because, at very high resolution of the simulations

analysed here, discreteness noise in the binned density estimates is

negligible. The figure of merit of a fit therefore depends not only

on how faithfully a model approximates a halo but also on the

presence of individual halo features that no simple fitting formula

can hope to reproduce. These distinct features are present on small

scales (substructure) and large scales (such as streams, aspheric-

ity and other relics of each halo’s specific assembly history; see

e.g. Vogelsberger et al. 2009). As a result, bin-to-bin residuals are

distinctly non-Gaussian and highly correlated, precluding the use of

simple statistical tools such as the χ 2 distribution in order to assess

goodness of fit.

Assessing the acceptability of various Q values would require

the definition of a detailed statistical model in order to reliably

measure the departures of individual haloes from a smooth profile

whose average shape (and scatter) could be obtained directly by

averaging various numerical realizations of haloes of the same mass.

Unfortunately, such procedure is unlikely to be robust with only six

haloes in our sample.

Therefore, we limit our analysis to comparing the minimum-

Q values obtained with various formulae, and to discussing how

Q changes as the fitting parameters are varied. The actual value

of Q is, after all, a reliable and objective measure of the average

per-bin deviation from a particular model. As we discuss below,

this is, in many cases, enough to prefer unequivocally one fitting

formula over another and to make a compelling case for the need

of an extra parameter in the fit.

3.4 Einasto versus NFW versus M99

The left-hand panel of Fig. 3 compares the density profiles of all six

level-2 Aquarius haloes, after scaling radii to r−2 and densities to

ρ−2. The right-hand panel shows the circular velocity profiles, scaled

in an analogous manner to match the peak of the profile, identified by

rmax and Vmax. In these scaled units, the fitting formulae introduced

in Section 3.2 are curves of fixed shape and normalization, as shown

by the thin solid, dashed and dot–dashed curves in Fig. 3. (The

Einasto curve adopts α = 0.159 in this figure.)

Comparison with the simulations (thick curves) indicates that

there is a clear mismatch between the shape of the halo profiles and

those of the NFW and M99 fitting formulae. This is not just a result

of enforcing the r−2–ρ−2 scaling. We illustrate this by showing, in

the two bottom panels of Fig. 3, residuals from best fits obtained by

adjusting both fit parameters of the NFW and M99 profiles (r−2 and

ρ−2) in order to minimize Q2. (The radial range chosen for these fits

is r (1)
conv < r < 0.5 r200.) Note the ‘S’ shape in the residuals, which

are largest (and increasing) at the innermost radius of the profile.

Because of the shape mismatch, extrapolating either the NFW or

M99 fits further inwards, to regions less well resolved numerically,

is almost guaranteed to incur substantial error.

The large-scale radial trend of the residuals from the best Einasto

fits (middle panels of Fig. 3), on the other hand, is rather weak,

suggesting that the shape of the simulated halo profiles is much

better accommodated by this formula. This is not just a result of the

extra shape parameter in the Einasto formula: even when keeping
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Diversity and similarity of simulated CDM haloes 27

Figure 3. Left-hand panel: spherically averaged density profiles of all level-2 Aquarius haloes. Density estimates have been multiplied by r2 in order to

emphasize details in the comparison. Radii have been scaled to r−2, the radius where the logarithmic slope has the ‘isothermal’ value, −2. Thick lines show

the profiles from r
(7)
conv outwards; thin lines extend inwards to r

(1)
conv. For comparison, we also show the NFW and M99 profiles, which are fixed in these scaled

units. This scaling makes clear that the inner profiles curve inwards more gradually than NFW, and are substantially shallower than predicted by M99. The

bottom panels show residuals from the best fits (i.e. with the radial scaling free) to the profiles using various fitting formulae (Section 3.2). Note that the Einasto

formula fits all profiles well, especially in the inner regions. The shape parameter, α, varies significantly from halo to halo, indicating that the profiles are not

strictly self-similar: no simple physical rescaling can match one halo on to another. The NFW formula is also able to reproduce the inner profiles quite well,

although the slight mismatch in profile shapes leads to deviations that increase inwards and are maximal at the innermost resolved point. The steeply cusped

Moore profile gives the poorest fits. Right-hand panel: same as the left, but for the circular velocity profiles, scaled to match the peak of each profile. This

cumulative measure removes the bumps and wiggles induced by substructures and confirms the lack of self-similarity apparent in the left-hand panel.

α fixed to a single value, residuals are smaller and have less radial

structure than those from either NFW or M99.

We show this in Fig. 4, where we plot the minimum-Q(Qmin)

values of the best Einasto fits for all six level-2 Aquarius haloes,

as a function of the shape parameter α. For given value of α, the

remaining two free parameters of the Einasto formula are allowed to

vary in order to minimize Q2. Different line types correspond to dif-

ferent numbers of bins used to construct the profile (from 20 to 50),

chosen to span in all cases the same radial range, 0.01 < r/r−2 < 5,

a factor of 500 in radius. Minimum-Q values are computed using a

similar procedure for the NFW and M99 formulae, and are shown,

for each halo, with symbols of corresponding colour.

In terms of Qmin, Einasto fits are consistently superior to NFW

or M99, whether or not the α parameter is adjusted freely. For

example, for fixed α = 0.15, all Einasto best fits have minimum-Q

values below ∼0.03. For comparison, best NFW and M99 fits have

an average 〈Qmin〉 ∼ 0.06 and 0.095, respectively. These numbers

correspond to Nbins = 20, but they are rather insensitive to Nbins, as

may be judged from the small difference between the various lines

corresponding to each halo in Fig. 4.

We emphasize that, although the improvement obtained with

Einasto’s formula is significant, NFW fits are still excellent, with a

typical rms deviation of just ∼6 per cent over a range of 500 in ra-

dius. The use of the NFW formula may thus be justified for applica-

tions where this level of accuracy is sufficient over this radial range.

When α is adjusted as a free parameter, 〈Qmin〉 ∼ 0.018 for

Einasto fits. Furthermore, there is, for each halo, a well-defined

value of α that yields an absolute minimum in Q. The Q-dependence

on α about this minimum is roughly symmetric and, as expected,

nearly independent of the number of bins used in the profile. The

Figure 4. Minimum-Q values as a function of the Einasto parameter α for

best fits to all level-2 halo profiles in the radial range 0.01 < r/r−2 < 5.

Colours identify different haloes, and line types identify the number of

bins chosen for the profile. The minimum-Q values obtained for NFW and

M99 best fits are also shown, and are plotted at arbitrary values of α for

clarity. Note that Einasto fits are consistently better than NFW which are

consistently better than M99, and that a significant improvement in Q is

obtained when letting α vary in the Einasto formula. Q is approximately

independent of the number of bins used in the profile, and is minimized for

different values of α for each individual halo (see the text for further details).
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28 J. F. Navarro et al.

minimum in Q is sharp; a shift of just 0.015 in α typically leads

to an increase of ∼50 per cent in Q around the minimum. Given

that the value of α that minimizes Q varies from 0.130 for Aq-E-2

to 0.173 for Aq-B-2, we conclude that the improvement obtained

when allowing α to vary is significant. We quote nominal ‘error

bars’ for α in Table 2 that bracket the interval where Q deviates by

less than 50 per cent from the absolute minimum in Fig. 4.

3.5 Self-similarity?

The need for a variable α discussed above illustrates one of our

main findings: namely that the mass profiles of our Aquarius haloes

are not strictly self-similar. The shapes of the profiles are subtly but

significantly different from each other, and no rescaling can match

one exactly to another. Halo Aq-E-2 provides the most striking ex-

ample, deviating from halo Aq-D-2, for example, by almost a factor

of 2 in density at ∼0.03 r−2. The same differences in mass profile

shape are also easily appreciated in the scaled circular velocity pro-

files, which indicate that the departures from similarity are genuine

and not just caused by inaccuracies in the scaling or by the ‘bumps

and wiggles’ caused by unrelaxed tidal debris and substructure.

We have verified this further by performing the same analysis

after removing bound substructure clumps identified by SUBFIND:

the same conclusion applies to the ‘cleaned’ profiles of the main

smooth halo. With hindsight, this is perhaps not too surprising.

Bound substructures do not amount to more than ∼10 per cent of

the halo mass (Springel et al. 2008a), and therefore cannot alter the

results discussed above.

We have also checked that the differences in α are not caused by

transient departures from equilibrium or numerical resolution: the

same qualitative trends, and indeed very similar α values, are seen

at earlier times and in runs with fewer particles. There also seems

to be little correlation between α and the overall triaxiality of the

system; however, we shall only deal here with spherically averaged

profiles, and defer a detailed study of departures from sphericity to

a later paper.

Although the departures from similarity appear significant, we

must also emphasize that they are rather subtle and are only clearly

evident because of the large radial range resolved by our simula-

tions, about three decades in radius within the virialized region of

a halo. Simulations with more limited numerical resolution have

hinted at this but had difficulty making such a compelling case for

non-similarity (see e.g. Navarro et al. 2004; Merritt et al. 2005,

2006; Stoehr 2006).

3.6 The cusp

It is clear from the residuals in the bottom panels of Fig. 3 that,

near the centre, the M99 profile approximates the simulated haloes

more poorly than either NFW or Einasto. The weak performance of

the M99 formula may be traced to its steep asymptotic inner slope,

ρ ∝ r−1.5. Indeed, all six Aquarius haloes have measured slopes in

the inner regions that are substantially shallower than −1.5. This

is shown in Figs 5 and 6, where the thick portion of each curve

corresponds to r > r (7)
conv and the innermost point plotted to r (1)

conv. In

all cases, the logarithmic slopes converge well inside r (7)
conv, and only

minor deviations may be seen at radii beyond r (1)
conv.

Interestingly, the slope of the Aq-A-1 profile at r = r (7)
conv is exactly

−1 and becomes shallower inwards, so it is clear that at least for this

halo we are able to resolve a region where the dark matter profile

has become shallower than −1, the asymptotic value of the NFW

profile. Fig. 6 shows the radial dependence of the logarithmic slope

Figure 5. Logarithmic slope of the density profile as a function of radius for

our Aq-A convergence series. As in other plots, thick lines show results for

r > r
(7)
conv, thin lines extend the profiles down to the less strict convergence

radius r
(1)
conv. Comparison shows that excellent numerical convergence for

the slope is achieved down to a radius intermediate between these two

convergence radii. Applied to the highest resolution Aq-A-1 simulation,

this implies that the slope is shallower than the asymptotic value of the

NFW profile (r−1) in the inner regions. We see no sign of convergence to

an asymptotic inner power law. Instead, the profiles get shallower towards

the centre as predicted by the Einasto formula (a straight line in this plot).

The ‘critical solution’ of Taylor & Navarro (2001) (which has an r−0.75

asymptotic inner cusp) does better than NFW but not as well as Einasto in

reproducing the inner profile of the halo.

Figure 6. As Fig. 5, but for all level-2 resolution Aquarius haloes, after

scaling radii to r−2.

for all six level-2 haloes and confirms the general applicability of

the Aq-A results: the measured slopes of all haloes approach −1

(and are certainly shallower than −1.5) at the innermost resolved

point.

Figs 5 and 6 also make clear that there is no sign that the profiles

are approaching power-law behaviour near the centre: they keep
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Diversity and similarity of simulated CDM haloes 29

Figure 7. Maximum value of the asymptotic inner slope of the density

cusp, as a function of radius for our Aq-A convergence series. Excellent

numerical convergence is achieved at radii comparable to r
(7)
conv [the inner

limit of the thick lines; thin lines extend down to r
(1)
conv]. This shows that

there is not enough mass near the centre of Aq-A to sustain a cusp steeper

than ρ ∝ r−0.9±0.1. Arrows are as in Fig. 1.

getting shallower to the innermost resolved radius. This behaviour

is well captured by the Einasto model, where the logarithmic slope

is simply a power law of radius, d ln ρ/d ln r ∝ rα . Our results thus

rule out recent claims of cusps as steep as r−1.2 in typical �CDM

haloes (Diemand et al. 2004, 2005, 2008).

This conclusion is unlikely to depend on the details of our profile

construction and/or fitting procedures. Indeed, as we show in the

next section, there is actually not enough mass within the innermost

resolved radius to allow for a cusp as steep as r−1.2. Recent work by

Stadel et al. (2009), also based on very high-resolution simulations,

agrees with our present conclusions, and argues for asymptotic inner

slopes shallower than −1, as previously suggested by Navarro et al.

(2004).

3.7 The asymptotic inner slope

The results presented above do not preclude the possibility that a

shallow power-law cusp may be present in the innermost regions

which are still unresolved in our simulations. It is therefore inter-

esting to estimate the maximum value that the slope of such a cusp

may take. This is constrained, at any radius, by the total enclosed

mass and the local value of the spherically averaged density: slopes

steeper than γmax require more mass than is available within that

radius. This constraint assumes only that the logarithmic slope is

monotonic with radius and that the halo is not hollow. It is then

straightforward to show that the maximum possible inner asymp-

totic slope is γmax = 3[1 − ρ(r)/ρ̄(r)], where ρ̄(r) is the mean den-

sity enclosed within r. Evaluated at the innermost radius where both

local density and enclosed mass (or, equivalently, circular velocity)

have converged, this quantity provides an important constraint on

the density profile at radii that remain unresolved even in our best

simulations.

We show this parameter as a function of radius for our Aq-A

convergence series in Fig. 7. This figure shows that γmax converges

to better than 0.1 for r > r (7)
conv (the innermost point of the thick

Figure 8. As Fig. 7, but for our six level-2 Aquarius haloes. Results are

similar in all cases and rule out cusps steeper than r−1 for �CDM haloes.

portion of the profiles). Our data for Aq-A thus indicate that there

is not enough mass in the unresolved region to support a cusp

steeper than r−0.9±0.1. Fig. 8 shows that the results for Aq-A are

not exceptional: all our level-2 Aquarius haloes suggest maximum

possible asymptotic slopes of about −1.

3.8 Halo centring

Although the statistical uncertainties in the binned density esti-

mates are extremely small due to the large numbers of particles

in our simulations, there is one potential source of systematic er-

ror that may bias the results: the choice of halo centre. Missing

the proper halo centre, where the dark matter density peaks, would

lead to artificially shallow profiles and to depressed central density

estimates. We explore this in Fig. 9, where we show, for the case

of Aq-A-2, the density and logarithmic slope profiles that result

from choosing as halo centre positions shifted by 1, 2, 4, 8 and 16

gravitational softening scalelengths from the location of the particle

with minimum potential energy (our fiducial choice). These panels

explicitly demonstrate the expected effect. They also show that our

fiducial choice maximizes the density estimates near the centre as

well as the steepness of the logarithmic slope. Our conclusion that

cusps as steep as γ = −1.2 are inconsistent with our results is thus

unaffected by our choice of halo centre.

4 DYNAMI CAL PROFI LES

4.1 Velocity dispersion structure

Fig. 10 shows velocity dispersion and anisotropy profiles for our Aq-

A series and demonstrates that the excellent numerical convergence

of our simulations extends to their velocity dispersion structure.

The velocity dispersion (squared) is computed simply as twice the

specific kinetic energy in each spherical shell and the anisotropy

as β = 1 − σ 2
t /(2σ 2

r ), where σ 2
t and σ 2

r are the (squared) veloc-

ity dispersion in tangential and radial motions, respectively. Be-

sides numerical convergence, the panels in this figure illustrate two
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30 J. F. Navarro et al.

Figure 9. Density (left-hand panel) and logarithmic slope (right-hand panel) profiles for halo Aq-A-2. Each curve corresponds to the profiles obtained after

choosing as halo centre a position shifted by various multiples of the gravitational softening scalelength from the position of the particle with minimum

potential energy (our fiducial choice). These panels clearly demonstrate that our fiducial choice maximizes the density estimates near the centre and results in

the steepest logarithmic slopes. Bottom panels show residuals from the best Einasto fit shown in the upper panels.

Figure 10. Left-hand panel: velocity dispersion profiles for our Aq-A convergence series. Arrows, line types and colours are as in Fig. 1. Note the excellent

numerical convergence. The shape of the velocity dispersion profile is remarkably similar to that of the r2ρ profile shown in Fig. 1, highlighting the intimate

connection between the density and velocity dispersion profiles which is responsible for the power-law behaviour of the pseudo-phase-space density profile

discussed in Section 4.4. Right-hand panel: anisotropy profiles for the Aq-A convergence series. Note the non-monotonic variation with radius: the halo is

nearly isotropic near the centre, is dominated by radial motions at intermediate radii, but becomes markedly less anisotropic near the virial radius.

important points. The first concerns the shape of the velocity dis-

persion profiles (left-hand panel in Fig. 10), which is remarkably

similar to that of the r2ρ profiles shown in Fig. 1. This coinci-

dence suggests an intimate connection between density and veloc-

ity dispersion, which we explore in more detail in Section 4.4. The

second point concerns the anisotropy profile, which is clearly non-

monotonic. It is nearly isotropic at the centre, becomes radially

anisotropic at intermediate radii, but the dominance of radial mo-

tions decreases again near the virial radius. As shown in Fig. 11,

these properties appear to be rather general, since all six Aquarius

haloes have non-monotonic anisotropy profiles and similar velocity

dispersion profile shapes.

4.2 Self-similarity?

Fig. 11 also demonstrates a clear lack of self-similarity in the struc-

ture of the simulated haloes. We have chosen to emphasize this by

rescaling all profiles so as to match the peak of the σ (r) curve,

which occurs at r(σmax). This scaling demonstrates that, as with the

density profiles, the shape of the σ (r) profiles differs subtly but sig-

nificantly amongst haloes. We have checked that these differences

in shape are not due to bound subhaloes; removing all the subhaloes

identified by our SUBFIND algorithm and recalculating the dispersion

and anisotropy profiles results in only rather minor changes. The

most striking case is again that of halo Aq-E-2 (blue curve), whose
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Figure 11. As Fig. 10, but for all six level-2 resolution Aquarius haloes, scaled to match at the peak of the profile, identified by σmax and r(σmax). This scaling

highlights small but significant departures from similarity in the velocity dispersion structure of �CDM haloes. Note the correspondence in shape between the

velocity dispersion and r2ρ profiles shown in Fig. 1, which reflects the ‘universal’ pseudo-phase-space density profile of the haloes (Fig. 14). Also note that

the non-monotonic behaviour of the anisotropy highlighted in Fig. 10 is common to all six haloes.

σ (r) profile is much broader than the others. Recall that this halo

also stands out in Fig. 3 as having an unusually broad r2ρ profile.

Halo Aq-E-2 also has an unusual velocity anisotropy profile, with

less predominance of radial motions than the rest of the series. The

departures from similarity in mass and velocity structure therefore

seem closely linked, suggesting that these haloes may share a com-

mon property that combines density and velocity dispersion. We

explore this in Section 4.4.

4.3 Anisotropy–slope relation

We may use the results of the previous section to assess recent

claims by Hansen & Moore (2006) of a general connection between

the local values of logarithmic slope, γ , and the velocity anisotropy,

β. We show this in Fig. 12, where we plot β versus γ for all level-2

Aquarius haloes. Open circles correspond to the inner regions of

the halo [r (1)
conv < r < r−2], whereas filled circles correspond to the

outer regions (r−2 < r < r200). As in other figures, different colours

correspond to the different Aquarius haloes. The relation proposed

by Hansen & Moore is shown by a dashed line and accounts rea-

sonably well (albeit not perfectly) for our data in the inner regions

where both the anisotropy and the logarithmic slope are monotonic

functions of r.

However, there are large departures from this relation in the outer

regions, where the density profile steepens further but the velocity

ellipsoid tends to become less anisotropic. The failure of the Hansen

& Moore relation in the outer regions is not unexpected since γ ,

unlike β, is monotonic with radius. We conclude that if a simple

relation links anisotropy and slope, it can only hold in the inner

regions of haloes.

4.4 The phase-space density profile

The similarity in shape between the σ 2 and r2ρ profiles highlighted

above suggests that there may be a simple scaling between densi-

ties and velocity dispersions in haloes. This is best appreciated by

considering the quantity ρ/σ 3, which, for dimensional reasons, we

Figure 12. Local values of the logarithmic slope of the density profile

plotted versus velocity anisotropy. The relation proposed by (Hansen &

Moore 2006) is shown as a dashed line. Because the density profile steep-

ens gradually from the centre outwards whereas the velocity anisotropy is

non-monotonic, no simple relation between these two quantities is valid

throughout the haloes. The Hansen & Moore formula approximates our

results quite well in the inner regions, but large deviations may be seen out-

side r−2, particularly at the largest radii where our haloes are approximately

isotropic but their density profiles are steepest. Open circles correspond to

r
(1)
conv < r < r−2, filled circles to r−2 < r < r200. Colours are as in Fig. 3.

shall call the pseudo-phase-space density, although it is important

to realize that it is not the true coarse-grained phase-space density at

the resolution of our simulations, or even the average of this quan-

tity in spherical shells. For consistency with the rest of our analysis,

we calculate ρ/σ 3 directly from the estimates of ρ and σ computed

in concentric spherical shells.
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Figure 13. Pseudo-phase-space density profiles for our Aq-A convergence series, estimated as ρ/σ 3, computed in concentric spherical shells. Arrows, line

types and colours are as in Fig. 1. Note the remarkable power-law behaviour of this quantity, a result already noted by Taylor & Navarro (2001). The dot–dashed

line is not a fit to the data, but rather the prediction of the similarity solution of Bertschinger (1985) for infall on to a point mass in an otherwise unperturbed

Einstein–de Sitter universe, ρ/σ 3 ∝ r−1.875. This has been scaled to match Aq-A at r < r−2. Residuals from the Bertschinger solution are shown in the bottom

panels. Note that this power-law behaviour is most evident when the full three-dimensional velocity dispersion is used (left-hand panels). When only the radial

velocity dispersion is used (right-hand panels), deviations from the Bertschinger solution are considerably larger.

Fig. 13 shows the ρ/σ 3 profile for our Aq-A convergence series.

As noted by Taylor & Navarro (2001), the profile of this quantity

is remarkably well approximated by a power law. More remark-

able still is the fact that the power law is indistinguishable from

that predicted by the similarity solution of Bertschinger (1985) for

infall on to a point mass in an otherwise unperturbed Einstein–de

Sitter universe, ρ/σ 3 ∝ r−1.875 (dot–dashed line in Fig. 13). This

solution is spherically symmetric, involves purely radial motions,

and is violently dynamically unstable, so its relevance to �CDM

haloes is far from being clear. The residuals in the bottom panel of

Fig. 13 are deviations from a Bertschinger law matched within the

characteristic radius r−2, where substructure bumps and wiggles are

minimal.

Note that, although there is only one free parameter in this fit (the

vertical scaling), the residuals do not exceed ∼20 per cent anywhere

within the virial radius, even though substructures add significant

noise to the dynamical measurements in the outskirts of the halo.

Interestingly, the residuals increase when σ r, the velocity dispersion

in radial motions, is used in place of the full three-dimensional rms

velocity, σ , to estimate the ‘phase-space density’. Thus, the r−1.875

behaviour seems to concern the full kinetic energy content of each

shell rather than just radial or tangential motions.

Fig. 14 shows that similar conclusions apply to the rest of the

Aquarius haloes. Residuals from the Bertschinger law are small

for all haloes, and are typically larger when the radial velocity dis-

persion is used. Note that there is some ‘curvature’ in the residual

profiles, suggesting that a power law is a good, but perhaps not per-

fect, description of the radial dependence of ρ/σ 3. We are currently

investigating the origin of this curvature and plan to report on it in

a future paper (Ludlow et al., in preparation).

A power-law radial dependence is approximately preserved

when σ r is used, but the best-fitting value of the exponent dif-

fers systematically from −1.875. This may be seen in the bot-

tom panels of Fig. 14, which show the residuals from the best-

fitting ρ/σ 3 ∝ rχ law. The values of the best-fitting expo-

nent for both ρ/σ 3 and ρ/σ 3
r (χ and χr, respectively) are listed

in Table 2.

Perhaps the most important result from Fig. 14 is that there seems

to be very little scatter between haloes when considering their ρ/σ 3

profiles. Take, for example, the case of halo Aq-E-2, which was

a clear outlier in the density, velocity dispersion and anisotropy

profiles. When considering ρ/σ 3, this halo is unremarkable and

follows the Bertschinger law as closely as the others.

This shows that there is a sense in which �CDM haloes are

nearly universal, but that universality does not extend to their den-

sity or velocity dispersion profiles separately, but rather only to their

pseudo-phase-space density profile. This may appear a bold state-

ment, and it certainly needs to be corroborated by future work, but it

offers an intriguing perspective into the origin of the near-universal

density profiles of haloes, the meaning of the Einasto shape param-

eter, α, and the provenance of their velocity dispersion structure.

These issues deserve further investigation.

We end by noting that, although it is still not clear what leads

to the power-law stratification of ρ/σ 3, these results may be used

to place constraints on the structure of the central cusp, under the

plausible (but admittedly unproven) assumption that the power-

law behaviour of the phase-space density continues all the way

to the centre. For example, Taylor & Navarro (2001) used this

assumption to show that, for isotropic systems, a power-law pseudo-

phase-space density implies an inner density cusp with ρ ∝ r−0.75.

This is certainly consistent with the results shown in Fig. 7, which

only exclude cusps steeper than r−0.9±0.1. However, as we show in

Fig. 5, the detailed profile which they derive for an isotropic halo

with Bertschinger’s power-law ρ/σ 3 profile is a significantly worse

fit to our numerical data than the Einasto profile.

The power-law behaviour of the pseudo phase-space density has

been confirmed by a number of authors and seems to be present

even at early redshift (Vass et al. 2009). Interestingly, the average

power-law exponent to the ρ/σ 3
r profile is 〈χr〉 ≈ 1.97, close to the

‘critical’ 1.94 required by Dehnen & McLaughlin (2005) to have
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Figure 14. Pseudo-phase-space density profiles of all six level-2 Aquarius haloes. Radii have been scaled to r−2, and the pseudo-phase-space densities to

maximize agreement within r−2. Note that for all six haloes these profiles are very well approximated by power laws with an exponent very close to that of

the Bertschinger solution. All haloes, including those that were outliers in the density, velocity dispersion and anisotropy profiles, are almost indistinguishable

in this plot. Deviations from the Bertschinger law are typically more pronounced when radial velocity dispersion is used instead of the full three-dimensional

velocity dispersion. Residuals from the best-fitting power laws, ρ/σ 3 ∝ rχ , are shown in the bottom panels. The values of χ are listed for each halo in Table 2.

a dynamical model that is well behaved at all radii. Simulations of

even larger dynamic range seem required in order to explore the

true asymptotic inner behaviour of the dynamical profile of a halo,

if indeed there is any such asymptote.

5 SU M M A RY

We have analysed density, velocity dispersion, anisotropy and

pseudo-phase-space density profiles at redshift zero for simulated

haloes from the Aquarius Project. This is a set of six galaxy-sized

haloes whose formation and evolution have been simulated at a va-

riety of resolutions in their proper �CDM context. The set includes

the largest simulation of this kind reported so far; an ∼4.4 billion

particle simulation in which the final halo has 1.1 billion particles

within its virial radius, r200. The set also includes simulations of all

six haloes with 100–200 million particles within the virial radius,

as well as a comprehensive numerical convergence study for the

largest system. Our analysis confirms a number of results claimed

by earlier work, and clarifies a few issues where conflicting claims

may be found in the recent literature. Our main conclusions are as

follows.

(i) Density profiles deviate slightly but significantly from the

NFW model, and are approximated well by a fitting formula where

the logarithmic slope is a power law of radius: the Einasto profile

(equation 4). The steeply cusped profile of Moore et al. (1999b) is

a poor fit to the structure of our six haloes.

(ii) We find convincing evidence that the shape parameter of

the Einasto formula varies from halo to halo at given mass (see

Table 2). This complements the earlier conclusion of Merritt et al.

(2006), Gao et al. (2008) and Hayashi & White (2008) that its mean

value varies systematically with halo mass. Together these results

imply that the density profiles of �CDM haloes are not strictly

self-similar: different haloes cannot be rescaled to look alike. This

lack of similarity extends to the kinematic structure, as measured

by the velocity dispersion and anisotropy profiles.

(iii) Intriguingly, departures from similarity are minimized when

analysing a pseudo-phase-space density profile defined as ρ/σ 3.

This suggests a limited sense in which �CDM haloes are indeed

nearly ‘universal’. The pseudo-phase-space density profiles are very

well approximated by ρ/σ 3 ∝ r−1.875, the power law predicted by

Bertschinger’s similarity solution for infall on to a point mass in

an otherwise unperturbed Einstein–de Sitter universe. This simple

law has only one scaling parameter and no shape parameters, yet

it approximates, for over six decades, the ρ/σ 3 profiles to better

than 20–30 per cent, all the way from the innermost resolved point

to the virial radius. The power-law description is, however, not

perfect, and further work designed to understand better its origin

and limitations seems warranted.

(iv) Density profiles become monotonically shallower inwards,

down to the innermost resolved point, with no indication that they

approach power-law behaviour. The innermost slope we measure is

slightly shallower than −1, a result supported by estimates of the

maximum possible asymptotic inner slope.

(v) These results convincingly rule out recent claims that typical

�CDM haloes may have asymptotic central cusps as steep as r−1.2

(Diemand et al. 2004, 2005, 2008). Shallower cusps, such as the

asymptotic r−0.75 behaviour predicted by the model of Taylor &

Navarro (2001), cannot yet be excluded. These results should dis-

courage further work assuming CDM cusps steeper than r−1 except

possibly around central black holes.

(vi) Velocity anisotropy does not depend monotonically on ra-

dius beyond r−2. Haloes are roughly isotropic near the centre, are

dominated by radial motions at intermediate radii, but become more

isotropic again as the virial radius is approached. This behaviour

does not appear to be driven by the presence of substructure. Given

that the slope of the density profile does increase monotonically

with radius, this implies that no simple relation between anisotropy
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and slope can hold throughout a halo. The relation recently pro-

posed by Hansen & Moore (2006) works reasonably well in the

inner regions (r < r−2), but fails at larger radii.

The main aim of the Aquarius Project is to provide reliable

theoretical predictions for the structure and formation history of

dark matter haloes like that surrounding the Milky Way down to

radii of the order of 100 pc. This permits direct comparisons with

a number of observations with minimal extrapolation, and it helps

to design new observational strategies aimed at testing the CDM

paradigm on these very non-linear scales.

We recognize, however, that many of these tests and predictions

will apply to regions where baryons play an important dynamical

role. Our numerical work provides robust results for the limiting but

unrealistic case of pure dark matter haloes, and these will undoubt-

edly be modified in non-trivial ways by the presence of baryons.

Providing a full account of the coupled structure of the CDM and

baryonic components in galaxies like our own is clearly the next

major computational challenge, and it is likely to exercise us for

some time to come.

AC K N OW L E D G M E N T S

The simulations for the Aquarius Project were carried out at the

Leibniz Computing Center, Garching, Germany, at the Computing

Centre of the Max Planck Society in Garching, at the Institute for

Computational Cosmology in Durham, and on the ‘STELLA’ super-

computer of the LOFAR experiment at the University of Groningen.

This work was supported in part by an STFC rolling grant to the

ICC. CSF acknowledges a Royal Society Wolfson Research Merit

award. AH acknowledges financial support from NOVA and NWO.

RE F EREN C ES

Allgood B., Flores R. A., Primack J. R., Kravtsov A. V., Wechsler R. H.,

Faltenbacher A., Bullock J. S., 2006, MNRAS, 367, 1781

Bertschinger E., 1985, ApJS, 58, 39

Dehnen W., McLaughlin D. E., 2005, MNRAS, 363, 1057

Diemand J., Moore B., Stadel J., 2004, MNRAS, 353, 624

Diemand J., Zemp M., Moore B., Stadel J., Carollo C. M., 2005, MNRAS,

364, 665

Diemand J., Kuhlen M., Madau P., 2007, ApJ, 657, 262

Diemand J., Kuhlen M., Madau P., Zemp M., Moore B., Potter B., Stadel J.,

2008, Nat, 454, 735

Einasto J., 1965, Trudy Inst. Astroz. Alma-Ata, 51, 87

Eke V. R., Cole S., Frenk C. S., 1996, MNRAS, 282, 263

Frenk C. S., White S. D. M., Davis M., Efstathiou G., 1988, ApJ, 327, 507

Fukushige T., Makino J., 2001, ApJ, 557, 533

Gao L., White S. D. M., Jenkins A., Stoehr F., Springel V., 2004, MNRAS,

355, 819

Gao L., Navarro J. F., Cole S., Frenk C. S., White S. D. M., Springel V.,

Jenkins A., Neto A. F., 2008, MNRAS, 387, 536

Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 2000, ApJ,

544, 616

Graham A. W., Merritt D., Moore B., Diemand J., Terzic B., 2006, AJ, 132,

2701

Hansen S. H., Moore B., 2006, New Astron., 11, 333

Hayashi E., White S. D. M., 2008, MNRAS, 388, 2

Hayashi E., Navarro J. F., Springel V., 2007, MNRAS, 377, 50

Henry J. P., Evrard A. E., Hoekstra H., Babul A., Mahdavi A., 2009, ApJ,

691, 1307

Jing Y. P., Suto Y., 2002, ApJ, 574, 538

Klypin A., Kravtsov A. V., Valenzuela O., Prada F., 1999, ApJ, 522, 82

Komatsu E. et al., 2009, ApJS, 180, 330

Kuhlen M., Diemand J., Madau P., 2008, ApJ, 686, 262

Merritt D., Navarro J. F., Ludlow A., Jenkins A., 2005, ApJ, 624, L85

Merritt D., Graham A. W., Moore B., Diemand J., Terzić B., 2006, AJ, 132,
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