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Endophytes are microbes that inhabit host plants without causing disease and are reported

to be reservoirs of metabolites that combat microbes and other pathogens. Here we review

diverse classes of secondary metabolites, focusing on anti-microbial compounds, syn-

thesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic

compounds, polyketides, and peptides from the interdisciplinary perspectives of biochem-

istry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends

were apparent. First, host plants are often investigated for endophytes when there is prior

indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However,

within their native ecosystems, and where investigated, endophytes were shown to pro-

duce compounds that target pathogens of the host plant. In a few examples, both fungal

endophytes and their hosts were reported to produce the same compounds. Terpenoids

and polyketides are the most purified anti-microbial secondary metabolites from endo-

phytes, while flavonoids and lignans are rare. Examples are provided where fungal genes

encoding anti-microbial compounds are clustered on chromosomes. As different genera

of fungi can produce the same metabolite, genetic clustering may facilitate sharing of

anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and

how more interdisciplinary research may lead to new opportunities to develop bio-based

commercial products to combat global crop and human pathogens.
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INTRODUCTION

Plant pests and pathogens including viruses, bacteria, nematodes,

insects, and fungi reduce crop yields by 30–50% globally, con-

tributing to malnutrition and poverty (Pimentel, 2009). There are

700 known plant viruses, such as cassava mosaic virus (CMV)

which devastates the livelihoods of cassava farmers in Africa

(Thresh and Cooter, 2005). Amongst bacterial pathogens, blights

caused by Xanthomonas species cause 350 different plant dis-

eases including rice blight disease (X. oryzae) (Leyns et al., 1984).

Nematodes are considered significant problems in tropical and

subtropical regions, but are often undiagnosed because they exert

their damage on plant roots (Shurtleff and Averre, 2000). Nema-

todes such as those belonging to the genera Paratrichodorus and

Trichodorus are also vectors of plant pathogenic viruses (Bout-

sika et al., 2004). Approximately 9,000 species of insects and

mites damage crops, causing an estimated 14% loss in global crop

yields, requiring $13 billion in pesticide controls in the U.S. alone

(Pimentel, 2009). Fungi are considered to be particularly seri-

ous plant pathogens because they can also potentially produce

mycotoxins that are then consumed by humans and animals. For

example, the maize and rice pathogenic fungus Fusarium monili-

forme produces fumonisin B1 which is associated with esophageal

cancer (Gelderblom et al., 1991). The maize pathogenic fungus

Aspergillus flavus, which causes kernel rot, produces aflatoxin on

pre-harvest corn and in storage (Payne and Widstrom, 1992).

Fusarium graminearum, the causal agent of head blight in wheat

and ear rot in maize, produces toxic trichothecenes including

deoxynivalenol (DON) (Sutton, 1982). Combined, aflatoxin and

DON cause $1.5 billion in losses each year across different crops in

the U.S. alone (Robens and Cardwell, 2003). Other serious fungal

pathogens of crops include: Magnaporthe grisea and Pyricularia

oryzae, which cause rice blast diseases in Asia; Puccinia sp., the

causal agents of rusts in barley, maize, and wheat; Phytophthora

infestans, an oomycete fungus which infects the Solanaceae family

and led to the potato blight in Ireland in the 1840s; and Rhizoctonia

solani, the causal agent of damping-off in diverse crops and stem

canker in potato (Strange and Scott, 2005).

Synthetic pesticides including fungicides are widely used in

pathogen management but there are increasing demands to

develop environmentally friendly, bio-based products. Bio-based

strategies include the use of biocontrol agents such as plant growth

promoting bacteria (Compant et al., 2005), and fungi such as Tri-

choderma viridi, which has been used to control Rhizoctonia stem

canker and black scurf of potato (Beagle-Ristaino and Papavizas,

1985).

A potential opportunity to control crop pathogens is the use of

endophytes and their derived secondary metabolites. Endophytes

are microorganisms which inhabit plants in the tissues beneath
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the epidermal cell layers but cause no apparent harm to their hosts

(Stone et al., 2000). In fact, endophytes can confer diverse benefi-

cial traits to host plants (Johnston-Monje and Raizada, 2011a,b).

All plants that have been investigated for endophytes possess them

(Strobel and Daisy, 2003), and since there are more than 300,000

species of land plants, these microbes represent a large reservoir of

biological resources including bioactive compounds with poten-

tial applications for medicine, industry and agriculture, including

pathogen control.

The objective of this paper is to review the diversity of anti-

microbial compounds synthesized by fungal endophytes including

terpenoids, alkaloids, phenylpropanoids, aliphatic compounds,

polyketides, and peptides. Bioactive compounds in general synthe-

sized by fungi were reviewed from different perspectives (Strobel

and Daisy, 2003; Aly et al., 2010). We review compounds from

the interdisciplinary perspectives of biochemistry, genetics, fun-

gal biology, host plant biology, human and plant pathology. We

conclude by discussing common themes.

TERPENOID COMPOUNDS

Sesquiterpenes, diterpenoids, and triterpenoids are the major

terpenoids that have been isolated from endophytes.

SESQUITERPENES

The structures of sesquiterpene derivatives described in this review

are shown (Figure 1).

Trichodermin (1)

Trichodermin was characterized from Trichoderma harzianum, an

endophytic fungus living in Ilex cornuta, an evergreen holly shrub

from East Asia (Chen et al., 2007). Trichodermin is a member of

the 12,13-epoxytrichothecene mycotoxin family which has been

used as a template for chemical synthesis of pharmaceutical com-

pounds and plant growth regulators (Cutler and LeFiles, 1978).

Trichodermin has been reported to protect against the Solanaceous

plant pathogens Alternaria solani and R. solani in vitro (Chen et al.,

2007). However, trichodermin has been shown to have inhibitory

effects on plant growth including wheat coleoptiles (Triticum aes-

tivum), tobacco (Nicotiana tabacum), beans (Phaseolus vulgaris),

and corn (Zea mays) (Cutler and LeFiles, 1978). Mechanistically,

trichodermin has been shown to be a very potent inhibitor of

eukaryotic protein synthesis, specifically by inhibiting peptide-

bond formation at the initiation stage of translation (Carter et al.,

1976) and by inhibiting peptidyl transferase activity required for

translational elongation and/or termination (Wei et al., 1974).

Phomenone (2)

The antifungal eremophilane sesquiterpene, phomenone, is pro-

duced from Xylaria sp., an endophytic fungus associated with

Piper aduncum, a tree of the pepper family from the New World.

Phomenone has been claimed to have antifungal activity against

Cladosporium cladosporioides (wheat pathogen) and C. sphaeros-

permum (common indoor mold) though supporting evidence was

not presented (Silva et al., 2010). Phomenone is also a phytotoxin

and is assumed to be a causal agent of wilted leaves in tomato;

citing unpublished data, the authors suggested that phomenone

induces electrolyte loss and dysfunction of cell membrane perme-

ability (Capasso et al., 1984). Phomenone is structurally similar to

the sesquiterpene eremophilane ring system of the PR toxin pro-

duced by Penicillium roqueforti, which inhibits RNA polymerase

and protein synthesis at the initiation step as well as elongation

(Moule et al., 1976). Phomenone has been used as a natural pre-

cursor for synthesis of anti-cancer ester drugs (Weerapreeyakul

et al., 2007).

8α-Acetoxyphomadecalin C (3) and phomadecalin E (4)

These eremophilane sesquiterpenes were obtained from the endo-

phytic fungus, Microdiplodia sp. KS 75-1, from the stems of conifer

trees (Pinus sp.). The compounds showed moderate antibiosis

activities on agar assays against the pathogen Pseudomonas aerug-

inosa (ATCC 15442) (Hatakeyama et al., 2010), a standard strain

used to evaluate bactericidal disinfectants. Phomadecalin C was

also isolated from cultures of Phoma sp. (NRRL 25697), a fungus

originally isolated from wood decay stromata (Che et al., 2002).

Phomadecalin C was shown to be antagonistic to Bacillus subtilis

(ATCC 6051) in standard disk assays (Che et al., 2002).

Cycloepoxylactone (5) and cycloepoxytriol B (6)

These compounds were purified from cultures of the endophytic

fungus Phomopsis sp. (Valsaceae), isolated from the leaves of Lau-

rus azorica (Lauraceae), a laurel tree from the Canary Island of

Gomera. Cycloepoxylactone has been shown on agar plates to

inhibit the growth of an anther smut fungus (Microbotryum vio-

laceum) and a soil inoculant bacterium (Bacillus megaterium),

while cycloepoxytriol B also inhibited growth of an alga (Chlorella

fusca) (Hussain et al., 2009).

3,12-Dihydroxycadalene (7)

This was one of five cadinane sesquiterpenes isolated from Pho-

mopsis cassiae collected from Cassia spectabilis (Senna spectabilis),

a tree from tropical America belonging to the legume fam-

ily Fabaceae. This compound showed potent antifungal activity

against the phytopathogenic fungi Cladosporium cladosporioides

and C. sphaerospermum using a TLC-based assay (Silva et al.,

2006).

1α-10α-Epoxy-7α-hydroxyeremophil-11-en-12,8-β-olide (8)

This compound, structurally related to eremophilanolide

sesquiterpenes, was obtained from Xylaria sp. BCC 21097, isolated

from the palm Licuala spinosa (Isaka et al., 2010). The com-

pound was active against Candida albicans (causative agent of

human genital and oral infections) and exhibited activity against

the malaria parasite Plasmodium falciparum using a microculture

radioisotope assay in which failure of the parasite to uptake radi-

olabeled nucleic acid precursors indicated anti-parasitic activity.

The authors hypothesized that this activity may be structurally

related to the epoxide moiety (Isaka et al., 2010).

Heptelidic acid (9) and hydroheptelidic acid_ENREF_28 (10)

These compounds were isolated from Phyllosticta sp., an endo-

phytic fungus inhabiting the needles of Abies balsamea (balsam fir

tree) from New Brunswick, Canada (Calhoun et al., 1992). In this

region, this tree species is affected by defoliating larvae of spruce

budworm (Choristoneura fumiferana). The endophyte-derived

compounds were shown to be toxic to these larvae (Calhoun et al.,

1992) which have caused hundreds of millions of dollars in losses

to the Canadian forestry sector (Chang et al., 2012).
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FIGURE 1 | Structures of sesquiterpene derivatives of fungal endophyte origin (1–13).

5-Hydroxy-2- (1-oxo-5-methyl-4-hexenyl)benzofuran (11) and

5-hydroxy-2-(1-hydroxy-5-methyl-4-hexenyl) benzofuran (12)

These two new benzofuran-carrying normonoterpene derivatives

were isolated from cultures of an unidentified endophytic fungus

obtained from Gaultheria procumbens, a ground cover plant that

grows between Canadian forest trees infected by spruce budworm,

as noted above. These endophyte-derived compounds were found

to be toxic to the cells and/or larvae of spruce budworm (Findlay

et al., 1997).

Chokols (13)

These compounds were isolated from Epichloë typhina, an

endophyte of Phleum pratense (perennial Timothy-grass). The

compounds were found to be fungitoxic to the leaf spot disease

pathogen Cladosporium phlei (Yoshihara et al., 1985).

DITERPENES

The structures of diterpenes and triterpenes derivatives discussed

here are illustrated (Figure 2).

Paclitaxel (14)

The anti-cancer and antifungal drug paclitaxel (Taxol) was

reported to be produced from the endophytic fungus Taxomyces

andreanae originally isolated from the inner bark of the yew tree

Taxus brevifolia in northwestern Montana (Stierle et al., 1993,

1995). Paclitaxel is reported to be produced by ∼20 different
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FIGURE 2 | Structures of diterpene and triterpene derivatives of fungal endophyte origin (14–24).

endophyte species inhabiting different plant species (Zhou et al.,

2010b). Paclitaxel possesses a unique chemical structure com-

posed of a taxane ring with a four-membered oxetane ring and a

C-13 ester side chain. Paclitaxel acts by stabilizing microtubules

and inhibiting spindle function leading to disruptions in nor-

mal cell division (Horwitz, 1994). Paclitaxel is derived from ger-

anylgeranyl diphosphate (GGDP), a compound synthesized from

dimethyl diphosphate and indole pyrophosphate, catalyzed by

GGDP synthase (Eisenreich et al., 1996). Cyclization of GGDP

to taxa-(4,5),(11,12)-diene is catalyzed by taxadiene synthase (TS)

which represents the first step in paclitaxel biosynthesis (Hezari

et al., 1995). We have independently confirmed the presence of

a protein of the expected molecular weight (110 kDa) of TS

in a paclitaxel-producing fungal endophyte using a plant anti-

TS antibody (Soliman and Raizada, unpublished data). Inter-

estingly, using selective chemical inhibitors and genetic studies,

we recently showed that endophytic paclitaxel may be derived

from both mevalonate and non-mevalonate pathways (Soliman

et al., 2011), a surprising result since non-mevalonate pathway

enzymes have only been shown to exist in bacteria and plas-

tids but not fungi. A curiosity remains as to why both fungal

endophytes and their host plants produce the same compound,

apparently redundantly. Isolation of the genes responsible for

fungal paclitaxel biosynthesis may help to reveal whether these

two pathways evolved from convergent evolution or parallel

evolution.
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Periconicins A (15) and B (16)

These fusicoccane diterpenes were identified from the endophytic

fungus Periconia sp. collected from the inner bark of Taxus cus-

pidata by bioassay-guided fractionation (Kim et al., 2004). Peri-

conicin A was found to be a more potent anti-microbial agent

than periconicin B against B. subtilis, Klebsiella pneumoniae, and

the opportunistic human pathogen Proteus vulgaris (ATCC 3851)

using a microtiter broth dilution method (Kim et al., 2004). Peri-

conicin A was also reported to have potent antifungal activity

against the human pathogens C. albicans, Trichophyton menta-

grophytes (causative agent of cutaneous infections), and T. rubrum

(causative agent of jock itch, athlete’s foot and ringworm) (Shin

et al., 2005). Periconicins having the same carbon skeleton as

fusicoccins, which are a group of plant growth regulators resem-

bling the major plant hormone gibberellins (de Boer and Leeuwen,

2012). Though many antifungal compounds have adverse effects

on plant growth, fusicoccins have the potential to remove seeds

from dormancy, stimulate seed germination, open leaf stomata,

and promote plant growth by cell elongation, though these effects

vary by crop species and dosage (Muromtsev et al., 1994; Shin

et al., 2005; de Boer and Leeuwen, 2012).

Sordaricin (17)

This pimarane diterpene is the aglycon of sordarin and was

purified from the fungi Xylaria sp. isolated from the leaves of

Garcinia dulcis, a tropical fruit tree of southeast Asia (Pongcharoen

et al., 2008). The compound exhibited moderate antifungal activ-

ity against C. albicans ATCC90028 using an agar diffusion assay

(Pongcharoen et al., 2008). C. albicans is an important pathogen of

human immunocompromised patients. Sordarin was previously

shown to inhibit fungal protein synthesis by selectively binding and

inhibiting elongation factor 2 (EF-2) which catalyzes ribosomal

translocation during translation (Justice et al., 1998). Replacement

of the sugar moiety of sordarin with alkyl side chains increased the

antifungal activity against yeast in a manner proportional to the

lipophilicity of the alkyl side chain (Tse et al., 1998). Introduction

of oxime moieties to sordarin could increase antifungal activity

against C. albicans and C. glabrata, perhaps by altering the spatial

orientation of the lipophilic side chain (Serrano-Wu et al., 2002).

Diaporthein B (18)

This pimarane diterpene was purified from the culture broth of

the fungus Diaporthe sp. BCC 6140, isolated from unidentified

wood in Thailand, and it showed strong inhibition of growth

of Mycobacterium tuberculosis using a metabolic indicator colori-

metric assay (Alamar Blue) (Dettrakul et al., 2003). The bioassay

suggested that the ketone group at position C-7 may be important

for the antifungal activity (Dettrakul et al., 2003). This compound

may hold promise against the global tuberculosis epidemic, which

affects nearly 9 million new patients each year [World Health

Organization (WHO), 2012].

Guanacastepene (19)

This novel diterpenoid, produced by an unidentified fun-

gus CR115 from a branch of the tree Daphnopsis ameri-

cana growing in Costa Rica, was shown to have antibacterial

activity against methicillin-resistant Staphylococcus aureus and

vancomycin-resistant Enterococcus faecium (Singh et al., 2000).

As the possible mode of action, guanacastepene was reported to

damage bacterial membranes (Singh et al., 2000).

Scoparasin B (20)

Structurally related to cytochalasins, this diterpenoid was isolated

from the endophytic fungus Eutypella scoparia PSU-D44 inhabit-

ing the leaves of G. dulcis, a tropical fruit tree of southeast Asia as

noted earlier. The compound was shown to have antifungal activ-

ity against an important skin pathogen, Microsporum gypseum,

using a hyphal-extension inhibition assay (Pongcharoen et al.,

2006).

Compound JBIR-03 (21) and asporyzin C (22)

These compounds, belonging to the tremorgenic mycotoxin

indoloditerpenes, were identified from Aspergillus oryzae, an endo-

phyte of the marine red algae Heterosiphonia japonica, a Pacific

seaweed which has become invasive to Europe. JBIR-03 exhibited

strong insecticidal activity against brine shrimp (Artemia salina),

while asporyzin C exhibited potent activities against Escherichia

coli (Qiao et al., 2010).

Diterpene CJ-14445 (23)

This compound was isolated from solid cultures of the endo-

phytic fungus Botryosphaeria sp. MHF associated with the leaves

of Maytenus hookeri, a medicinal plant containing the potent

antitumor agent maytansine (Yuan et al., 2009). The compound

inhibited growth of C. albicans, Saccharomyces cervisiae, and Peni-

cillium avellaneum using standard agar disk diffusion assays (Yuan

et al., 2009).

TRITERPENES

Helvolic acid (24)

This nordammarane triterpenoid was isolated from the yeast

Pichia guilliermondii Ppf9 (asexual form is Candida guillier-

mondii) that colonizes the Himalayan lily family medicinal plant

Paris polyphylla (Zhao et al., 2010). Helvolic acid was reported to

exhibit strong antibacterial activity using broth dilution. It was

also reported to inhibit spore germination of Magnaporthe oryzae,

the causative agent of rice blast disease (Zhao et al., 2010), one of

the most damaging diseases of rice. In Aspergillus fumigatus, genes

encoding helvolic acid are clustered together in the sub-telomere

chromosome region (Lodeiro et al., 2009), suggesting that the

pathway may have been derived from horizontal gene transfer,

possibly from bacteria. In A. fumigatus, a major human pathogen,

evidence was presented that the helvolic acid gene cluster may

be transcriptionally regulated by the major virulence-controlling

transcription factor LaeA (Bok et al., 2005).

STEROIDS

Structure of steroids compounds discussed here are illustrated

(Figure 3).

Penicisteroid A (25)

This steroid was isolated from the culture extracts of a fungus,

Penicillium chrysogenum, cultured from an unidentified marine

red algal species belonging to the genus Laurencia. Penicisteroid
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FIGURE 3 | Structures of additional steroid derivatives of fungal endophyte origin (25–30).

A showed potent antifungal activity against Aspergillus niger

(plant black mold) and moderate activity against Alternaria bras-

sicae (pathogen of Brassica plants such as cabbage) (Gao et al.,

2011).

Steroids 3β,5α-dihydroxy-6β-acetoxy-ergosta-7,22-diene (26),

3β,5α-dihydroxy-6β-phenylacetyloxy-ergosta-7,22-diene (27),

3β-hydroxy-ergosta-5-ene (28), 3-oxo-ergosta-4,6,8(14),22-tetraene

(29), 3β-hydroxy-5α,8α epidioxy-ergosta-6,22-diene (30)

These compounds were isolated from the liquid culture of a fun-

gal endophyte Colletotrichum inhabiting the stems of Artemisia

annua (Lu et al., 2000), a traditional Chinese medicinal herb.

The authors reported that all the compounds except (30) have

antifungal activity against several crop pathogens including Phy-

tophthora capisici, Gaeumannomyces graminis, Rhizoctonia cerealis,

and Helminthosporium sativum. All of the compounds except (28)

also showed antibacterial activity against Pseudomonas sp, B. sub-

tilis, Sarcina lutea (Micrococcus luteus, a human skin pathogen),

and S. aureus, and antifungal activity against A. niger and C.

albicans (Lu et al., 2000).

ALKALOIDS

The structures of the alkaloidal derivatives described in this review

are summarized (Figure 4).
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FIGURE 4 | Structures of alkaloid derivatives of fungal endophyte origin (31–37).

AMINES AND AMIDES

Peramine (31)

This pyrrolopyrazine alkaloid was characterized from perennial

ryegrass (Lolium perenne L.) produced by the endophytic fun-

gus Acremonium lolii (Rowan, 1993) famous for its production

of loline alkaloids (described later). Ryegrass infected with A.

lolii or purified peramine were shown to be potent anti-feedants

of Argentine stem weevil without negatively impacting mam-

mals (Rowan, 1993). Peramine levels were highest in young

leaves, and peramine has been identified in a number of grass

genera (Rowan, 1993). In Arizona fescue infected with another

fungal endophyte, Neotyphodium, peramine concentrations were

observed to differ between plant genotypes inhabited by the

same endophyte haplotype, suggesting that plant genotype plays

a major role in regulating this secondary metabolite (Faeth et al.,

2002).

Ergot alkaloids (32)

These compounds are produced within different species of the

grass subfamily Pooideae by sexual Epichloe fungi and their

asexual derivatives belonging to the genus Neotyphodium within

the Clavicipitaceae family (Schardl, 2010). These metabolites

can act as anti-feedants and/or toxins against insects, nema-

todes, and mammalian herbivores (Powell and Petroski, 1992;

Wallwey and Li, 2011). Related ergot alkaloid-producing fun-

gal parasites (especially Claviceps purpurea) of animal grass feed

(e.g., tall fescue) have been shown to cause toxicity to live-

stock, in particular ergovaline (Powell and Petroski, 1992). The

first committed step in ergovaline biosynthesis is the prenylation

of l-tryptophan with dimethylallylpyrophosphate (DMAPP) to

produce 4-dimethylallyltryptophan (4-DMAT), catalyzed by the

enzyme DMAT synthase (Heinstein et al., 1971). In total, ergot

alkaloid biosynthesis has been shown to involve 14 co-expressed

genes which are arranged in a chromosomal cluster in C. purpurea

(Wallwey and Li, 2011). Seven of these genes are conserved across

different fungi and are thought to be responsible for the biosyn-

thesis of the tetracylic ergoline scaffold. Interestingly, in Epichloe

festucae, the genes for ergovaline biosynthesis were only highly

expressed during biotrophic growth of the fungus within the plant

not when the mycelia were cultured separately, suggesting that the

plant was needed to induce expression of the fungal gene cluster

(Wallwey and Li, 2011). For more details about ergot alkaloids,
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please refer to excellent recent reviews on the subject (Tudzynski

et al., 2001; Schardl, 2010; Wallwey and Li, 2011).

Phomopsichalasin (33)

This compound is a unique cytochalasan derivative with a novel

ring system involving an isoindolone moiety fused to a 13-

membered tricyclic system. Phomopsichalasin was isolated from

an endophytic Phomopsis sp. originating from the twigs of the

willow shrub, Salix gracilostyla (Horn et al., 1995). Cytochalasans

are well known fungal metabolites that can bind actin (Binder and

Tamm, 1973) and have been shown to have antibacterial, anti-

fungal, anti-viral, and anti-inflammatory activities (Pendse and

Mujumdar, 1986). Phomopsichalasin was shown to be antibacter-

ial against B. subtilis, S. aureus, and Salmonella gallinarum (poultry

pathogen), and antifungal against the human pathogenic yeast

Candida tropicalis (Horn et al., 1995).

Phomoenamide (34)

This compound was detected in cultures of an endophytic Pho-

mopsis sp. fungus obtained from the leaves of G. dulcis, an Indone-

sian tropical fruit tree. The compound has been shown to have

anti-microbial activity against M. tuberculosis using the Alamar

Blue Assay (Rukachaisirikul et al., 2008).

Cryptocin (35)

This tetramic acid analog was purified from the endophytic fun-

gus Cryptosporiopsis quercina which inhabits the inner bark of the

stems of Tripterygium wilfordii, a Chinese medicinal plant used

to treat rheumatoid arthritis. Cryptocin has antifungal activity

against a wide range of plant pathogens including P. oryzae, the

fungus causing rice blast disease (Li et al., 2000), one of the most

devastating crop diseases worldwide.

Pestalachloride A (36)

This compound was purified from Pestalotiopsis adusta, an endo-

phytic fungus that inhabits the stem of an unknown Chinese

tree; the compound showed antifungal activity against the plant

pathogens, Fusarium culmorum, Gibberella zeae (anamorph F.

graminearum), and Verticillium albo-atrum (Li et al., 2008a).

The authors classified this compound as a new chlorinated ben-

zophenone alkaloid belonging to the amine and amide subclass.

The authors further noted that pestalachloride A differs signif-

icantly from other known alkaloids by having a somewhat rare

2,4-dichloro-5-methoxy-3-methylphenol moiety attached to the

isoindolin-1-one core.

INDOLE DERIVATIVE

Loline alkaloid (37)

This indole derivative, a saturated 1-aminopyrrolizidine with an

oxygen bridge, was detected in the grass Festuca pratensis (Lolium

pratense) originating from its fungal endophyte, Neotyphodium

uncinatum (Blankenship et al., 2001). Loline has broad-spectrum

anti-insect and anti-aphid activity resulting in increased resistance

of the host plant against insect herbivores (Wilkinson et al., 2000).

A fascinating four-species ecological interaction involving loline

was reported, in which the loline-producing endophytic fungus

(N. uncinatum) inhabiting its host grass protects a non-host plant

(Rhinanthus serotinus, a parasite of the host grass of the endophyte)

against aphids (Aulacorthum solani) (Lehtonen et al., 2005). In N.

uncinatum, two homologous gene clusters encoding loline were

identified, named LOL-1 and LOL-2, with LOL-1 containing nine

genes within a 25-kb chromosomal segment; as the genes between

the two clusters were generally in the same order and orienta-

tion, these clusters likely represent relatively recent duplications

(Spiering et al., 2005). Based on the identification of these genes, a

biosynthetic route for loline was proposed involving the precursors

proline and homoserine (Spiering et al., 2005).

Neotyphodium is the asexual form, but the sexual derivative,

Epichloe, can also produce loline. Epichloe fungi can be pathogenic

to host plant inflorescences and are horizontally transmitted by re-

infection, whereas Neotyphodium is mutualistic and is transmitted

through spores vertically on healthy inflorescences (Schardl,2010).

Expression of the loline biosynthetic genes has recently been used

to better understand the pathogenic versus mutualistic forms. In

contrast to plants infected by pathogenic Epichloe fungus, the fun-

gal loline biosynthetic genes were upregulated in inflorescences of

healthy plants inhabited by the mutualistic form (Neotyphodium),

suggestive of evolutionary selection on the endophyte for increased

expression of genes encoding this beneficial insecticide (Zhang

et al., 2010).

PHENOLIC COMPOUNDS

The structures of these phenolic compounds are described below

and summarized (Figure 5) (Simple structures 38–42 are not

shown).

PHENOLS AND PHENOLIC ACIDS

2-Methoxy-4-hydroxy-6-methoxymethylbenzaldehyde (38)

This phenolic compound was shown to be antifungal against the

cucumber phytopathogen Cladosporium cucumerinum using an

antifungal-TLC assay. The compound is produced by Pezicula

strain 553, a fungal endophyte colonizing an unknown tree (Schulz

et al., 1995).

p-Hydroxybenzoic acid (39), p-hydroxyphenylacetic acid (40),

tyrosol (41), p-coumaric acids (42)

These antifungal phenolic acids were purified from the stromata

of Epichloe typhina, which can be a symptomless endophyte, but

can also act as a pathogen against its host P. pratense (European

Timothy-grass) (Koshino et al., 1988).

Colletotric acid (43)

This tridepside compound was characterized from the liquid cul-

ture of Colletotrichum gloeosporioides, a fungus that colonizes the

stems of Artemisia mongolica, an Asian plant which shows resis-

tance to insects and pathogens. The compound was shown to have

anti-microbial activity against the bacteria B. subtilis, S. aureus, and

S. lutea (M. luteus), and the fungus H. sativum (Zou et al., 2000),

the latter being a seedling blight and root rot pathogen of cereals.

Cytonic acids A (44) and B (45)

Three novel isomeric tridepsides (p-tridepside isomers) were

obtained from Cytonaema sp., an endophytic fungus of Quercus sp.

(oak tree). These compounds showed inhibitory activity against
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FIGURE 5 | Structures of phenolic compounds of fungal endophyte origin (43–50) (structures of simple structures 38–42 are not shown).

the opportunistic human pathogen cytomegalovirus by inhibiting

a protease required for normal assembly of the viral nucleocapsid

(Guo et al., 2000).

Altenusin (46)

This biphenyl fungal metabolite was isolated from Alternaria sp.

(UFMGCB55), an endophyte of the Asteraceae family plant Trixis

vauthieri, collected from a natural preserve in Minas Gerais, Brazil

(Cota et al., 2008). This plant was investigated because it was

known to contain compounds active against the human protozoan

parasites Trypanosoma and Leishmania, which infect millions of

people worldwide. Altenusin was shown to inhibit trypanothione

reductase (TR), an enzyme required to protect these parasites

against oxidative stress, though the compound itself did not dimin-

ish parasite viability perhaps due to an inability to traverse intracel-

lular compartments (Cota et al., 2008). Altenusin was reported to

have antifungal activity against clinical isolates of Paracoccidioides

brasiliensis, which causes human Paracoccidioidomycosis, perhaps

by inhibiting cell wall synthesis or assembly (Johann et al., 2012).

ISOCOUMARIN DERIVATIVES

(R)-Mellein (47)

This isocoumarin was purified from Pezicula livida (strain 1156),

an endophytic fungus isolated from the European beech tree Fagus
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sylvatica growing in Lower Saxony, Germany. In plate assays, the

compound was inhibitory against the bacteria B. megaterium and

E. coli, the fungi Ustilago violacea and Eurotium repens, and the

alga C. fusca (Schulz et al., 1995). Mellein and 4-hydroxymellein

were also shown to be synthesized by Aspergillus ochraceus and

showed structural similarity to the dihydroisocoumarin moiety of

ochratoxin A, one of the most abundant mycotoxins found in food

(Moore et al., 1972). Mullein and 3-hydroxylated derivatives were

also isolated from Botryosphaeria obtusa, a grapevine pathogen;

in grape these compounds are considered potential molecular

markers for the presence of pathogenic fungi (Djoukeng et al.,

2009).

FLAVONOIDS

Tricin (48) and related flavone glycosides (49)

These flavonoids were isolated from Big Bluegrass (Poa ampla), a

perennial grass native to Western North America, infected with

Neotyphodium typhnium, a symbiotic fungus (Ju et al., 1998).

However, the compound was not reported from pure fungal cul-

tures. These flavonoids were found to be toxic to the larvae of

Culex pipiens (Ju et al., 1998), the common house mosquito which

can also act as a vector for West Nile Virus in North America. The

researchers initially investigated Big Bluegrass for endophytes pro-

ducing anti-insecticide after observing that endophyte-free plants

were more susceptible to spider mites.

LIGNANS

Podophyllotoxin (50)

This aryl tetralin lignan, first described in 1880, is today an impor-

tant anti-cancer drug originally isolated from Podophyllum plant

species in both the Himalayas and North America where indige-

nous peoples used the plant for medicinal purposes (Stähelin

and von Wartburg, 1991). Podophyllum has also been shown

to have anti-viral and insecticidal properties (Sudo et al., 1998;

Gao et al., 2004). More recently, podophyllotoxin was also puri-

fied from endophytes inhabiting Podophyllum sp. including the

fungus Phialocephala fortinii (Eyberger et al., 2006). Podophyl-

lotoxin is thus another example of a secondary metabolite pro-

duced by both an endophyte and its host. Podophyllotoxin was

also obtained from Fusarium oxysporum, an endophyte of the

medicinal plant Juniperus recurva which also originates from the

Himalayan mountains (Kour et al., 2008). Podophyllotoxin pro-

duction was also reported from A. fumigatus which is an endophyte

of Juniperus communis (Kusari et al., 2009). With respect to its

anti-cancer activity, podophyllotoxin and its derivatives have been

shown to prevent mitosis in late S/early G2 phase by binding to

and inhibiting the enzyme (topoisomerase II) required to unwind

the double helix of DNA (Canel et al., 2000). The anti-viral activity

of Podophyllotoxin appears to be due to its ability to disrupt viral

replication and inhibit reverse transcriptase (Canel et al., 2000).

ALIPHATIC COMPOUNDS

The structures of the aliphatic derivatives described in this review

are illustrated (Figure 6).

BREFELDIN A (51)

Brefeldin A has become an important research chemical used by

cell biologists: Brefeldin A blocks the transport of proteins from the

endoplasmic reticulum to the Golgi apparatus resulting in inhibi-

tion of secretion (Misumi et al., 1986). An early report showed that

this compound could be isolated from cultures of the endophyte

Eupenicellium brefeldianum (Harri et al., 1963). During the last

50 years, there have been additional reports of endophytes of dif-

ferent hosts producing breveldin A, including Paecilomyces sp. and

Aspergillus clavatus, inhabitants of the conifer trees Taxus mairei

and Torreya grandis, respectively, from southeast China (Wang

et al., 2007). Brefeldin A has been shown to have antibacterial,

anti-viral, anti-nematode, and antifungal activities (Betina, 1992)

including against the fungi A. niger, C. albicans, and Trichophyton

rubrum (Wang et al., 2007).

PESTALOFONES C (52) AND E (53)

These cyclo hexanone derivatives were isolated from cultures

of Pestalotiopsis fici, an endophytic fungus that colonized the

branches of an unidentified tree in Hangzhou, China. The com-

pound showed antifungal activity against Aspergillus fumigates

(Liu et al., 2009). A. fumigates causes invasive lung diseases that

may cause mortality especially in immune-compromised people.

GAMAHONOLIDE A (54) AND B (55)

These compounds were characterized from stromata of E. typhina

growing on Phleum pretense (Timothy-grass). Gamahonolide A

showed antifungal activity against Cladosporium herbarum, the

fungal plant pathogen and common inhalant allergen of humans,

using antifungal-TLC guided isolation (Hiroyuki et al., 1992).

POLYKETIDES

The structures of the polyketide derivatives noted below are

summarized (Figure 7).

6-O-METHYLALATERNIN (56) AND ALTERSOLANOL A (57)

These tetrahydroanthraquinones were isolated from fungal cul-

tures of Ampelomyces sp. (Leptosphaeriaceae), isolated from the

medicinal plant Urospermum picroides (Asteraceae), collected in

Egypt (Aly et al., 2008). Ampelomyces were among the first fungi

used as biocontrol agents of plant parasitic fungi (Yarwood, 1932).

Both quinone compounds exhibited antibacterial activity against

Enterococcus faecalis, S. aureus, and S. epidermidis (Aly et al., 2008).

Altersolanol A along with other derivatives were also isolated

from the fungus A. solani responsible for black spot disease of

Solanum lycopersicum (tomato) (Okamura et al., 1993). In the

latter study, the compound was found to inhibit growth of the

bacteria S. aureus, B. subtilis, M. luteus, E. coli, and Pseudomonus

aeruginosa and the fungi, C. albicans and Candida utilis (Okamura

et al., 1993). With respect to its antibacterial properties, Alter-

solanol A was reported to interfere with the respiratory chains of

bacterial membranes by acting as an electron acceptor (Haraguchi

et al., 1992).

PALMARUMYCIN CP17 (58) AND PALMARUMYCIN CP18 (59)

These new anti-parasitic natural products with pentacyclic

spiroketal structures were isolated from an Edenia sp. (Pleospo-

raceae) fungus, obtained from mature leaves of Petrea volubilis

(Verbenaceae), a tropical woody vine collected in Coiba National

Park, Panama (Martínez-Luis et al., 2008). The compounds have
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FIGURE 6 | Structures of aliphatic derivatives of fungal endophyte origin (51–55).

an unusual structural feature involving two or three oxygen atoms

which act as bridges between two original naphthalene subunits

(Zhou et al., 2010a). These metabolites were shown to significantly

inhibit growth of the amastigote form of the protozoan parasite

Leishmania donovani (Martínez-Luis et al., 2008), a genus consid-

ered to be the second largest global parasitic killer of humans after

malaria. The palmarumycins were also shown to have antineoplas-

tic effects in mammalian cells by inhibiting the G2/M transition

of the cell cycle through an unknown mechanism (Lazo et al.,

2001).

RUGULOSIN (60)

This bis-anthraquinoid pigment was isolated using extracts of

Hormonema dematioides, an endophytic fungus of Canadian bal-

sam fir trees, using bioassay-guided fractionation for inhibition of

growth of spruce budworm (Calhoun et al., 1992). Conifer nee-

dles infected with the endophyte were associated with reduced

weight gain of spruce budworm larvae when used as feed (Miller

et al., 2002). Rugulosin has also been reported to be produced by

various other fungal species including Penicillium (Ueno et al.,

1980). Rugulosin is cytotoxic to both prokaryotes and eukaryotes

and causes fatty degeneration, liver cell necrosis, and to a lesser

extent hepatocarcinogenesis to mice and rats (Ueno et al., 1980).

For these reasons, this compound is an important mycotoxin in

yellow rice consumed in Asia (Chu, 1977).

NODULISPORINS

Nodulisporium sp. fungal endophytes (Xylariaceae) isolated from

the endangered plant Juniperus cedrus (Canary Island Juniper,

a gymnosperm) yielded nodulosporins A–C (61–63) which

exhibited antifungal activity against M. violaceum (Dai et al.,

2006). Interestingly, the same endophyte was isolated from an

Angiosperm shrub, Erica arborea, from the Canary Island of

Gomera from which related compounds were isolated called

nodulisporins D–F (64–66) (Dai et al., 2009). Nodulisporins D–

F showed antibacterial activity against B. megaterium, antifungal

activity against M. violaceum (anther smut fungus), and anti-algal

activity against C. fusca, using agar diffusion assays.
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FIGURE 7 | Structures of polyketide derivatives of fungal endophyte

origin (56–81).

PYRROCIDINES A (67) AND B (68)

These polyketide-amino acid-derived antibiotics were isolated

from an endophyte of maize kernels, Acremonium zeae, a fun-

gus which protects pre-harvest kernels against fungal pathogens,

perhaps by competing for the same host niche in a temperature-

dependent manner (Wicklow et al., 2005). Pyrrocidines dis-

played significant antifungal activity on agar disk assays against

mycotoxin-producing A. flavus and Fusarium verticillioides (Wick-

low et al., 2005). The authors reviewed previous studies which

reported that pyrrocidine A inhibits growth of several Gram-

positive bacteria. The study noted that A. zeae has sometimes

been implicated as causing stalk rot and hence is selected against

by breeders and pathologists, perhaps making commercial maize

more susceptible to pathogens. In a subsequent study, pyrro-

cidine A showed potent activity against important ear rot and

stalk rot pathogens of maize, including Nigrospora oryzae, F.

graminearum, Rhizoctonia zeae, and Stenocarpella (Diplodia) may-

dis (Wicklow and Poling, 2009). The authors suggested that

pyrrocidine A may protect vulnerable seedlings, in particular

against pathogens, following colonization of the seedling by

the endophyte from the seed. Pyrrocidine A also showed anti-

pathogen activity against the seed-rot saprophytes Eupenicillium

ochrosalmoneum and A. flavus as well as against the causal agent

of fungal leaf spot disease, Curvularia lunata, and the bacte-

ria Clavibacter michiganense subsp. nebraskense, the causative

agent of Goss’s wilt (Wicklow and Poling, 2009). Other non-

disease causing protective fungal endophytes were not as sensitive

to pyrrocidines suggestive of evolutionary selection for fungal

endophyte compatibility (Wicklow and Poling, 2009). However,

pyrrocidin A showed antibiosis activity against two bacterial

endophytes of maize used as biological control agents, Bacillus

mojavensis and Pseudomonas fluorescens (Wicklow and Poling,

2009).

ISOFUSIDIENOL A–D (69–72)

These chromone-3-oxepine-polyketides were isolated from the

fungus Chalara sp. (strain 6661), an endophyte of Artemisia

vulgaris, an herb known as Mugwort which grows along the

Baltic Sea coast. These compounds exhibited antifungal activity

against the pathogenic yeast C. albicans and antibacterial activity

against B. subtilis, S. aureus, and E. coli of which isofusidienol

A was the most potent using agar disk assays (Lösgen et al.,

2008).

CHAETOGLOBOSINS A (73) AND C (74)

These chlorinated azaphilone derivatives were characterized from

cultures of the fungal endophyte Chaetomium globosum isolated

from the leaves of Ginkgo biloba. These compounds exhibited sig-

nificant toxicity toward brine shrimp larvae and antifungal activity

against the industrial microbe Mucor miehei (Qin et al., 2009) a

fungus used for the production of enzymes employed in the cheese

industry.

CHAETOMUGILIN A (75) AND D (76)

These azaphilone derivatives were also isolated from the fungal

endophyte C. globosum as noted above. The compounds exhib-

ited inhibitory activity against brine shrimp larvae (Qin et al.,

2009).
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PESTALOTHEOL C (77)

This compound was isolated from the endophytic fungus Pestalo-

tiopsis theae which inhabits the branches of an unidentified tree

in Hainan Province, China. In its pathogenic form, this fungus

causes Tea Gray Blight disease. The compound showed inhibitory

activity against HIV replication based on ELISA assays (Li et al.,

2008b).

CR377 (78)

This pentaketide was obtained from a Fusarium sp., an endophytic

fungus living inside the stems of Selaginella pallescens (a resurrec-

tion plant given its ability to recover from severe dehydration),

collected from the Guanacaste Conservation Area of Costa Rica.

The compound exhibited antifungal activity against C. albicans

using an agar diffusion assay with an inhibition zone similar to the

fungicide nystatin (Brady and Clardy, 2000).

XANALTERIC ACIDS I (79) AND II (80)

These compounds were purified from an Alternaria sp. fun-

gus, an endophyte isolated from the leaves of the Chinese

mangrove plant Sonneratia alba. This plant is known as Man-

grove Apple, an edible salt-tolerant plant eaten by humans and

camels in Africa and the Pacific, but also used as a tradi-

tional herb against skin or intestinal parasites. These compounds

exhibited weak antibiotic activity against S. aureus (Kjer et al.,

2009).

PESTALACHLORIDE B (81)

This compound was isolated from P. adusta, an endophytic

fungus isolated from the stem of an unknown tree in

China; the compound displayed significant antifungal activ-

ity against three important plant pathogens, F. culmorum, G.

zeae (anamorph F. graminearum), and V. albo-atrum (Li et al.,

2008a).

PEPTIDES

The structures of the peptide derivatives discussed in this review

are illustrated (Figure 8).

LEUCINOSTATIN A (82)

This compound was isolated from cultures of Acremonium sp.,

an endophytic fungus that colonizes Taxus baccata (European

yew), an evergreen conifer tree. The compound was shown to

have anti-cancer activities and could act as a fungicide against

the oomycete Pythium ultimum (Strobel et al., 1997), an impor-

tant plant pathogen that causes damping-off and root rot dis-

eases.

ECHINOCANDIN A (83)

This lipopetide was purified from cultures of the endophytic fungi

Cryptosporiopsis sp. and Pezicula sp., inhabitants of Pinus sylvestris

(Scots pine) and F. sylvatica (European beech), respectively. The

compound showed antifungal activity against C. albicans and

Saccharomyces cerevisiae (Noble et al., 1991). Mechanistically,

echinocandins were found to inhibit the synthesis of cell wall glu-

cans by inhibiting glucan synthase leading to cell lysis (Chapman

et al., 2008).

CRYPTOCANDIN (84)

This lipopeptide, related chemically to echinocandin, was iso-

lated from the fungus C. quercina, an endophyte of the Chinese

medicinal plant Tripterigeum wilfordii (Strobel et al., 1999). Cryp-

tocandin was shown to have antifungal activity against multiple

human pathogens including C. albicans and Histoplasma capsula-

tum (causal agent of the lung disease Histoplasmosis), in addition

to T. rubrum and T. mentagrophytes (Strobel et al., 1999) – the latter

two fungi cause skin and nail diseases in humans. The compound

was also shown to inhibit the growth of phytopathogenic fungi

including Sclerotinia sclerotiorum, the fungus that causes white

mold disease which affects over 400 plant species, and Botrytis

cinerea, a necrotic fungus that primarily affects grapes (Strobel

et al., 1999).

CONCLUSION AND FUTURE DIRECTIONS

The objective of this paper was to review the diversity of sec-

ondary metabolites with anti-microbial activities produced by

endophytic fungi, from the interdisciplinary perspectives of bio-

chemistry, genetics, fungal biology, host plant biology, human

and plant pathology. This review covered ∼80 compounds with

diverse activities against plant and human pathogens, produced

from a wide taxonomic diversity of endophytes inhabiting a range

of plant species. Several major themes are apparent from the

literature. With respect to biochemistry, fungal endophytes are

able to produce almost all chemical classes of secondary metabo-

lites, with terpenoids and polyketides being apparently the most

common, and flavonoids and lignans being the rarest. Where

endophytes have been investigated in depth biochemically such

as N. typhnium, many compounds have been identified, suggest-

ing that significant numbers of secondary metabolites remain

to be discovered from less explored or unexplored endophytes.

With respect to the genetic studies reviewed here, genes of fungal

endophytes encoding anti-microbial secondary metabolites were

observed to be clustered on chromosomes (e.g., loline alkaloids,

ergot alkaloids, helvolic acid). Combined with the observation

that the same secondary metabolite can be produced by dif-

ferent genera of endophytic fungi (e.g., paclitaxel, brefeldin A,

echinocandin), this genetic clustering may have facilitated hor-

izontal gene transfer of secondary metabolic pathways between

fungal species during evolution. With respect to fungal biology,

a complexity of this field of study is that fungi can exist in both

sexual and asexual forms and can sometimes switch between endo-

phytic and pathogenic lifestyles (e.g., N. typhnium/E. typhina),

with each type potentially producing different classes of sec-

ondary metabolites. Finally, with respect to the biology of the

host plants, angiosperms, gymnosperms, and lower plants were all

found to be inhabited by fungal endophytes that could combat

specific pathogens. However, treatment of crops with fungicides

may be reducing natural fungicides by killing protective fungal

endophytes of the host (e.g., pyrrocidine A produced from A.

zeae). Often host plants that were investigated for endophyte-

derived anti-microbial compounds were Chinese herbal medicinal

plants or plants associated with indigenous knowledge concerning

their anti-microbial properties (e.g., cryptocandin). Surprisingly,

in some cases, both fungal endophytes and their host plants were

reported to produce the same complex secondary metabolites,
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FIGURE 8 | Structures of peptides derivatives of fungal endophyte origin (82–84).

apparently redundantly (e.g., podophyllotoxin, paclitaxel). We

conclude that fungal endophytes are potentially vital sources for

natural products for agriculture, medicine, and industry, with sig-

nificant potential to combat global crop and human pathogens

which are becoming increasingly resistant to drugs and pesticides.

Despite the apparent progress, significant gaps remain in this

field of research from an interdisciplinary perspective. Biochemi-

cally, many biosynthetic pathways and enzymes remain unidenti-

fied. How each endophyte and its host plant coordinate metabolic

biosynthesis remains unexplored. For example, when both the
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plant and its endophyte produce the same secondary metabolite

(e.g., paclitaxel), does the biosynthesis of this metabolite occur

independently or is their signaling across organisms (e.g., feedback

inhibition)? Furthermore, very little is known about the intra-

cellular location of biosynthesis or mode of secretion of these

anti-microbial compounds. Genetically, very few genes encod-

ing the relevant biosynthetic enzymes have been isolated, and

there is limited research as to how the expression of these genes

is regulated at the molecular level, with only a few exceptions

(e.g., Ergot alkaloids). Concerning fungal biology, factors which

trigger the endophyte to change from mutualism to parasitism,

along with associated changes in secondary metabolite produc-

tion, remain poorly investigated. Concerning host plant biology,

the literature appears to be biased for sampling endophytes from

leaf, stem, and seed tissues compared to flowers, fruits, and roots.

With respect to understanding the activities of these endophytes,

there is limited information about structure-function relation-

ships, specifically identifying moieties which can enhance and/or

reduce the toxicity of the compound. Moreover, reducing the

general toxicity of the compound may have positive effects on

human health and natural ecosystems. Often anti-pathogen data

is from in vitro studies only; however results from the natural

environment may be different. Studies on anti-microbial activities

of endophytes are often limited to a few model species including

human pathogens with limited reports of plant viruses as tar-

gets. A better understanding of the contextual ecology of the host

plant may be critical since identifying pathogens which inhabit the

host may provide clues as to the specific anti-pathogenic targets

of the endophyte under investigation (A. zeae produces pyrroci-

dine A to combat A. flavus). In conclusion, a more comprehensive

understanding of the biochemistry, genetics and biology of endo-

phyte and host, may lead to new opportunities for developing

bio-based commercial products to combat global crop and human

pathogens.
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