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ABSTRACT
In the fuzzy dark matter (FDM) model, gravitationally collapsed objects always consist of a solitonic core located within a
virialised halo. Although various numerical simulations have confirmed that the collapsed structure can be described by a
cored NFW-like density profile, there is still disagreement about the relation between the core mass and the halo mass. To
fully understand this relation, we have assembled a large sample of cored haloes based on both idealised soliton mergers and
cosmological simulations with various box sizes. We find that there exists a sizeable dispersion in the core–halo mass relation that
increases with halo mass, indicating that the FDM model allows cores and haloes to coexist in diverse configurations. We provide
a new empirical equation for a core–halo mass relation with uncertainties that can encompass all previously-found relations in the
dispersion, and emphasise that any observational constraints on the particle mass 𝑚 using a tight one-to-one core–halo mass
relation should suffer from an additional uncertainty on the order of 50 % for halo masses & 109 (8 × 10−23 eV/(𝑚𝑐2))3/2 M�.
We suggest that tidal stripping may be one of the effects contributing to the scatter in the relation.
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1 INTRODUCTION

The cold dark matter (CDM) model is one of the essential components
of the standard cosmological paradigm. In this model, dark matter
(DM) is described as a cold, pressureless, non-interacting fluid that
dominates the matter content of the universe. The CDM model is
extremely successful in explaining the observed large-scale structure
of our universe (Aghanim et al. 2020; Alam et al. 2017; Pillepich
et al. 2018). However, on small scales, the behaviour of DM is still
weakly constrained and its properties are less understood. A prominent
manifestation of this is a series of possible incompatibilities found
between predictions from CDM-only simulations and observations
(Bullock & Boylan-Kolchin 2017).

The fuzzy dark matter (FDM) model is proposed to be a promising
alternative to CDM (for reviews see e. g. Hui et al. 2017; Niemeyer
2020; Ferreira 2020; Hui 2021). In this model, DM is composed of
ultra-light particles. With a particle mass as light as 10−22 eV 𝑐−2,
this candidate has a de Broglie wavelength of ∼ 1 kpc, behaving as
a wave on astrophysical scales, while on large scales it behaves like
CDM, as required by observations. This wave behaviour on small
scales leads to a series of phenomenological consequences, like the
suppression of structure formation on those scales, and the formation
of a core in the interior of each galaxy halo, where the field is in its
ground state (soliton). With these features, the FDM model not only
presents many predictions that can be tested using observations, but
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depending on its mass, it might reconcile some of the small-scale
incompatibilities, like the cusp–core problem.

The dynamics of structure formation in the FDM model are gov-
erned by the non-relativistic Schrödinger–Poisson system of equations.
Although the computational cost of solving the coupled system in a
cosmological box is known to be much more expensive than for CDM
simulations (May & Springel 2021), Schive et al. (2014a) were able to
perform cosmological FDM simulation on an adaptive refined mesh
to gain detailed insights into the non-linear structure formation. Their
self-gravitating virialised FDM haloes are well-resolved to confirm
the existence of a solitonic core at the centre of each halo, for which
the density structure is approximated by the so-called soliton profile
with an outer Navarro–Frenk–White (NFW)-like profile. In addition,
simulations have confirmed that FDM indeed mimics the non-linear
power spectrum of CDM on large scales, but suppresses structure on
small scales depending on the particle mass (Widrow & Kaiser 1993;
Schive et al. 2014a; Mocz et al. 2018).

Regardless of the different numerical approaches and initial setup,
several independent simulations have been performed to confirm the
core–halo structure of a FDM halo, but there is still disagreement
on the relation between the core mass and the halo mass, expressed
as 𝑀c ∝ 𝑀𝛼

h (Schive et al. 2014b; Schwabe et al. 2016; Mocz et al.
2017; Nori & Baldi 2021). The relation depends on the mechanism of
interaction between the core and the NFW region, which is not well
understood yet. It might also depend on the formation and merger
history of the haloes, as shown in Du et al. (2017). Recent literature
pointed out that the soliton is in a perturbed ground state interacting
with the NFW region, i. e. the excited states, by means of wave
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interference (Li et al. 2021). The resulting oscillation of the soliton
further complicates the analytical understanding of the relation.

The disagreement on the core–halo mass relation is of particular
observational importance because many previous constraints on the
particle mass of FDM are made by dynamic modeling of dark matter-
dominated galaxies, which relies on the soliton profile and core–halo
mass relation predicted by simulations. For instance, analyses of
dwarf spheroidal galaxies that have often found a particle mass of
𝑚𝑐2 ∼ 10−22 eV or smaller (Chen et al. 2017; González-Morales et al.
2017; Safarzadeh & Spergel 2020) are in tension with measurements
like the Lyman-𝛼 forest measurement 𝑚𝑐2 ≥ 10−20 eV (Rogers &
Peiris 2021), which constrains the FDM mass by probing a different
prediction, the suppression of structures. For ultra-faint dwarf (UFD)
galaxies that have even smaller stellar-to-total mass ratios, some
studies predicted similar particle masses as found for dwarf spheroidals
(Calabrese & Spergel 2016), while others (Safarzadeh & Spergel
2020) have found that the particle mass should be heavier, with the
strongest bound coming from Hayashi et al. (2021) with a particle
mass as heavy as𝑚𝑐2 = 1.1+8.3

−0.7×10−19 eV from Segue I. Constraints
from ultra-diffuse galaxies also suggest a FDM mass of 𝑚𝑐2 ∼
10−22 eV (Broadhurst et al. 2020). Except for the Lyman-𝛼 bounds,
the constraints cited above depend on the assumed core–halo mass
relation. Although the origin of such incompatibilities might also be
due the influence of baryons in these systems, the core–halo relation
is another important aspect, and any change or uncertainty in this
relation will influence the bounds on the FDM mass cited above.

In this work, we perform new FDM halo simulations, and use the
largest cosmological FDM simulations with full wave dynamics to
date (May & Springel 2021), to obtain a large sample of collapsed
objects. We revisit the core–halo mass relation, and find a scatter
that can encompass all previously-found relations (i. e. Schive et al.
2014b; Mocz et al. 2017; Mina et al. 2020; Nori & Baldi 2021).

The paper is organized as follows: Section 2 reviews the equa-
tions of motion of the FDM model in the form of the coupled
Schrödinger–Poisson equations. Section 3 outlines the adopted nu-
merical scheme and initial setup to perform the simulations. Section 4
presents the measured density profiles, scaling relations and their
observational consequences. Section 5 summarises the results and
suggests a ‘to-do list’ for future high-resolution simulations.

2 THEORY

2.1 The fuzzy dark matter model

The FDM model proposes that DM is made of bosonic particles that
are ultra-light, with a mass of 𝑚𝑐2 ∼ 10−22 eV to 10−19 eV when all
or most of the dark matter consists of FDM. Within this mass range,
the de Broglie wavelength of this particle, given by 𝜆db ∼ 1/𝑚𝑣, is of
the order of kpc, or slightly smaller. This means that inside galaxies,
these particles are going to behave as classical waves. This model
only has one free parameter, the particle mass 𝑚. For heavier particle
masses, the de Broglie wavelength (and thus the wave behaviour)
would be relegated to smaller and smaller scales, so that the particles
would eventually behave very closely to CDM (Widrow & Kaiser
1993; Mocz et al. 2018; Garny et al. 2020).

As we are interested in the dynamics of this model on small scales,
FDM can be described as a non-relativistic scalar field that obeys
the Schrödinger–Poisson (SP) equations. This can be written, in
comoving coordinates, as:

iℏ
𝜕𝜓

𝜕𝑡
= − ℏ2

2𝑚𝑎2 ∇
2𝜓 + 𝑚Φ

𝑎
𝜓 , (1)

∇2Φ = 4𝜋𝐺𝑚( |𝜓 |2 − 〈|𝜓 |2〉), (2)

where 𝑎 = 1/(1 + 𝑧) is the cosmological scale factor and Φ is the
gravitational potential. Note that the SP equations follow a scaling
symmetry

{𝑥, 𝑡, 𝜌, 𝑚, 𝜓} = {𝛼𝑥, 𝛽𝑡, 𝛽−2𝜌, 𝛼𝛽−2𝑚, 𝛽−1𝜓} . (3)

Therefore, this symmetry can be used to re-scale the resulting structure
of a simulation to another particle mass.1

The complex scalar field can be written in polar coordinates,

𝜓 =

√︂
𝜌

𝑚
ei𝜃 , (4)

where the amplitude and phase are related to the fluid comoving
density and velocity

𝜌 = 𝑚 |𝜓 |2, v =
ℏ

𝑎𝑚
∇𝜃 . (5)

The above relation is called the Madelung transformation (Madelung
1927). This allows us to rewrite the system of eqs. (1) and (2) for
FDM in a hydrodynamical form:

¤𝜌 + 3𝐻𝜌 + 1
𝑎
∇ · (𝜌v) = 0 , (6)

¤v + 𝐻v + 1
𝑎
(v · ∇) v = − 1

𝑎
∇Φ + 1

2𝑎3𝑚2 ∇
(
∇2√𝜌
√
𝜌

)
, (7)

with the Hubble parameter 𝐻 = ¤𝑎/𝑎. These equations are the Made-
lung equations.

The last term of eq. (7), the modified Euler equation, is often called
‘quantum pressure’2, which has an effect of counteracting gravity. This
term is not present in CDM and only appears in this type of models.
From the competition between these two components, hydrostatic
equilibrium is reached at a defined length scale, the Jeans wavelength,
below which structures will not form. Therefore, this model predicts
a suppression of structure formation on small scales.

2.2 Non-linear structure of the fuzzy dark matter model

A consequence of the finite Jeans length and corresponding suppres-
sion of small-scale structure formation can be seen in the suppression
of small-scale power in the power spectrum of these models, and
consequently the suppression of the formation of smaller haloes. The
effect of this suppression can also be seen inside haloes, where there
is a highly non-linear evolution. The interior of each halo forms a
core, where there is no further structure formation and the FDM field
is in its ground state. A gravitationally bound object thus consists of
two components in the FDM model: The inner part – where quantum
pressure dominates – is called the core, while in the outer part, gravity
dominates and structure formation can happen. The density profile of
the entire halo structure can be modeled by a cored NFW profile

𝜌(𝑟) =


𝜌c

[
1 + 0.091

(
𝑟
𝑟c

)2
]−8

, for 𝑟 < 𝑟t

𝜌s
[
𝑟
𝑟s

]−1 [
1 +

(
𝑟
𝑟s

)]−2
, for 𝑟 ≥ 𝑟t

(8)

1 Since we only want to re-scale the mass, we will fix 𝛽 = 1 and only change
𝛼 to perform the scaling. This 𝛼 is unrelated to the slope of the core–halo
mass relation.
2 This term is also called ‘quantum potential’ in parts of the literature since it
can be rewritten in terms of a stress tensor that has off-diagonal components,
hence unlike pressure. Some also claim that this term is similar to the Bohm
quantum potential (see Ferreira (2020) for details). Here we use the historic
and most commonly used term: ‘quantum pressure’.
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with the core density

𝜌c = 1.9 × 109 𝑎−1
(
10−23 eV
𝑚𝑐2

)2 (
kpc
𝑟c

)4
. (9)

The core density is a numerical fit to the FDM simulations from
Schive et al. (2014b). The scale density 𝜌s can be obtained from the
continuity condition for the density

𝜌s
𝜌c

=

[
1 + 0.091

(
𝑟t
𝑟c

)2
]−8 [

𝑟t
𝑟s

] [
1 +

(
𝑟t
𝑟s

)]2
. (10)

Thus, the cored NFW profile depends on three parameters 𝑟c, 𝑟t and
𝑟s, which denote the core, transition, and scale radius, respectively.
Previous simulations show that the core structure is well fitted by
the core profile with maximum error 2 % up to the transition radius
𝑟t ≥ 3𝑟c (Schive et al. 2014b). For the outer region 𝑟 > 𝑟t, the profile
follows the NFW profile.

This model, imposing only continuity of the densities, does not
guarantee a smooth transition. To do so, an extra continuity condition
in the first derivative of the density must be imposed in addition to
eq. (10) for the model to be both continuous and smooth. However, the
resulting transition radius for a smooth transition is 𝑟t < 3𝑟c, as was
shown analytically in (Bernal et al. 2018), which is in disagreement
with previous results from simulations (Schive et al. 2014b; Mocz
et al. 2017). In this work, we will only apply the continuity eq. (10),
and allow 𝑟t to vary.

In Schive et al. (2014b), a fitting function for the core–halo mass
relation was obtained:

𝑀c =
1

4
√
𝑎

[(
𝜁 (𝑧)
𝜁 (0)

)1/2
𝑀h

𝑀min,0

]1/3

𝑀min,0 , (11)

where 𝑀c and 𝑀h are again the core and halo masses, and 𝑀min,0 ∼
4.4 × 107 (

𝑚𝑐2/(10−22 eV)
)−3/2M� , and the outer exponent 𝛼 = 1/3

represents the (logarithmic) slope of the relation 𝑀c ∝ 𝑀𝛼
h . In order

to compare with Schive et al. (2014b), we follow their definition
of halo mass 𝑀h = (4𝜋𝑟3

h/3)𝜁 (𝑧)𝜌m0, where 𝑟h is the halo’s virial
radius, 𝜌m0 is the background matter density and 𝜁 ∼ 180 (350) for
𝑧 = 0 (≥ 1).

Previous studies were able to confirm the empirical density profile
eqs. (8) and (9) using different simulations. However, they disagree
about the form of the core–halo mass relation, calling the validity
of eq. (11) obtained by Schive et al. (2014b) into question. Schwabe
et al. (2016) performed idealised soliton merger simulations and were
unable to reproduce eq. (11). Mocz et al. (2017) used a larger halo
sample with simulations of a similar setup and obtained a slope of
𝛼 = 5/9, disagreeing with eq. (11). Mina et al. (2020) found the
same slope of 5/9 using cosmological simulations with a box size
of 2.5 Mpc ℎ−1. Finally, Nori & Baldi (2021) performed zoom-in
simulations by including an external quantum pressure term in an
𝑁-body code, and obtained a relation with yet another value of the
slope, 𝛼 = 0.6. Such disagreement between different studies indicates
that there is still a fundamental lack of understanding of the core–halo
structure in the FDM model, and also generates uncertainty in any
constraints on the FDM mass which were obtained using eq. (11) or
similar relations. Therefore, the main motivation of this work is to
revisit and clarify the core–halo mass relation. We will further discuss
the existing discrepancies in the literature and their possible origins
together with our own results in section 4.2.

3 NUMERICAL METHOD

Previous core–halo relations are obtained from different types of
simulations. The most general way is to perform a cosmological
simulation, but these simulations are often restricted to end before
redshift 𝑧 = 0 and the number of well-resolved cores is limited due
to computational difficulties. A cheaper approach is to perform non-
cosmological simulations of soliton mergers. This approach allows
more control of the resolution and the final halo mass, but is at risk of
simulating unrealistic haloes due to the idealised, non-cosmological
initial conditions. In this work, we analyse properties of haloes from
three different sets of simulations: 1) soliton merger simulations, 2)
cosmological simulations in a small box, and 3) a high-resolution
large-scale cosmological simulation. The first two sets of simulations
are performed in this work, and the last was performed by May &
Springel (2021). All of them used the same numerical scheme, but
different initial conditions.

3.1 Numerical scheme

The time-dependent SP given in eqs. (1) and (2) are discretised on a
uniform spatial grid and evolved from timestep 𝑛 to the next timestep
using the pseudo-spectral method

𝜓𝑛+1 ≈ e𝐾Δ𝑡F −1
[
e𝐷Δ𝑡 F

[
e𝐾Δ𝑡𝜓𝑛

] ]
, (12)

where 𝐾 = −i𝑚Φ/(2ℏ𝑎), 𝐷 = −iℏ𝑘2/(2𝑚𝑎2), and F denotes the
Fourier transform operator (see e. g. Woo & Chiueh 2009). This
scheme is second-order accurate in time and exponentially accurate in
space. Each full time integration is divided into three steps, which is
similar to the symplectic leapfrog, ‘kick-drift-kick’, integrator. Before
applying the ‘kick’ operator e𝐾Δ𝑡 , the potential Φ must be updated
by solving the Poisson equation shown in eq. (2).

Since the numerical method is explicit, the choice of time step must
follow a Courant–Friedrichs–Lewy (CFL)-like condition. In this case,
the phases of the exponential operators must be smaller than 2𝜋:

Δ𝑡 < min
{

4
3𝜋

𝑚

ℏ
Δ𝑥2𝑎2, 2𝜋𝑎

ℏ

𝑚 |Φmax |

}
, (13)

where |Φmax | is the maximum value of the potential. The scale factor
for the next time step is approximated by 𝑎next ≈ 𝑎 + 𝐻𝑎Δ𝑡, which is
later used to calculate the time steps for the ‘kick’ and ‘drift’ operators.

At early times, the CFL condition is determined by the ‘drift’
operator. As the gravitational potential becomes deeper at later times,
the ‘kick’ term begins to control the choice of time step. For example,
∼ 90 % of the computational time is controlled by the ‘drift’ term in
our simulations. The scheme restricts this work to simulations of less
massive haloes, because the core radius–halo mass relation 𝑟s ∝ 𝑀−𝛼

h
implies that a higher spatial resolution is required to resolve the small
core radius of a massive halo, leading to smaller time steps based on
the CFL condition Δ𝑡 ∝ Δ𝑥2.

3.2 Initial setup

3.2.1 Soliton merger simulations

The soliton merger simulations are performed with a particle mass
𝑚𝑐2 = 10−22 eV, a box size 𝐿 = 300 kpc and at 𝑧 = 3 on a grid with
𝑁3 = 5123 cells. The simulations are started with six randomly-placed
solitons with mergers mostly occurring at 𝑡 ∼ 0.1 𝑡H, where 𝑡H is
the Hubble time. Since the simulations at 𝑧 = 3 take 16 times longer
than those at 𝑧 = 0 due to the dependence of time step on the scale
factor as shown in eq. (13), we stop the simulations at 0.5 𝑡H. We
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Figure 1. Time evolution of core and halo. The top row shows an example
of a soliton merger simulation at 𝑧 = 3 in a box of size 300 kpc with particle
mass 𝑚𝑐2 = 10−22 eV. The bottom row shows a selected halo formation
from the large-scale structure simulations by May & Springel (2021). A
stable core–halo structure can always be found at the end of all simulations.
For illustrative purposes, the first two columns show the projected density
(obtained by integrating density slices along the 𝑧-axis), but the last column
is a single slice (i. e. one grid cell in thickness) of the snapshot through the
𝑧-coordinate of the halo center.

have checked that haloes at 𝑡 ∼ 0.5 𝑡H are relaxed, since they meet the
virialisation criterion |2(𝐾 +𝑄)/𝑊 | ≈ 1 (Hui et al. 2017; Mocz et al.
2017) (where 𝐾, 𝑄 and 𝑊 , are the kinetic, quantum and potential
energies, respectively). However, we also included unrelaxed haloes in
between 0.1 𝑡H < 𝑡 < 0.5 𝑡H in our results. Alternative initial settings
were tested, such as increasing the number of solitons with a larger
range of masses, but the results do not change the main conclusion of
this work.

3.2.2 Small-volume cosmological simulations

A series of cosmological simulations are performed using the same
resolution, particle mass and box size. They all begin from 𝑧 = 50 and
stop at 𝑧 = 0. The initial conditions are generated using MUSIC (Hahn
& Abel 2011) with the CDM transfer function from Eisenstein &
Hu (1998); Eisenstein & Hu (1999), and the following cosmological
parameters: Ω𝑚 = 0.276, ΩΛ = 0.724, ℎ = 0.677 and 𝜎8 = 0.8. Due
to the difficulty of simultaneously resolving the large-scale structure
and the inner non-linear evolution of haloes on a grid size of 5123,
we use initial conditions that correspond to ‘zoom-in’ regions with
𝐿 = 300 kpc of a larger 1 Mpc box generated by MUSIC with different
random seeds.

3.2.3 Large-volume cosmological simulation

A large-volume high-resolution cosmological simulation was per-
formed by May & Springel (2021) with similar cosmological paramet-
ers, but larger box size 𝐿 = 10 Mpc ℎ−1 and grid size 𝑁3 = 86403,
and slightly lighter particle mass 𝑚𝑐2 = 7 × 10−23 eV. With such
a box size and spatial resolution, this simulation contains a popu-
lation of haloes with diverse formation histories, including tidally
stripped, isolated, and merged haloes. Therefore, it provided us with
a more realistic measurement of the core–halo mass relation in a
FDM universe. Figure 1 visually shows the time evolution of the

density distribution in different simulations. It is clear that, whether
a halo is formed through soliton mergers or gravitational collapse
of large-scale structure, there always exists a stable core structure
enveloped by interference fluctuations within its host halo, but we
will see later that different box sizes can lead to different types of
core–halo structure.

3.2.4 Initial power spectrum

As noted above, in this work (as well as May & Springel 2021), we
did not use the initial power spectrum of the FDM model, which
presents a suppression of power on small scales, because the inner
structure of haloes should be insensitive to the initial conditions
(Schive et al. 2014b). Although different merger histories may lead to
different core–halo structure, the extent of this impact is still to be
determined. We assume here that the increased amount of small-scale
structure, as well as the number of system interactions, will have
negligible effects on the statistics of core–halo structure. Simulated
haloes with comparable size of the soliton are rare if a more realistic
power spectrum is applied, but should still exist and therefore be
included in the resulting core–halo mass relation.

3.3 Spatial resolution

Our soliton merger simulations have a smaller box size, but the same
number of grid cells (5123) as our cosmological simulations, so the
resolution Δ𝑥 = 0.644 kpc is better than previous studies (Schwabe
et al. 2016; Mocz et al. 2017). This allows us to resolve smaller
cores, but the haloes may experience stripping effects from their own
gravitational pull. On the other hand, although the large simulation
is performed in high resolution, the (re-scaled) grid resolution Δ𝑥 =

1.547 kpc is still twice as large as that of the soliton merger simulations.
The importance of resolving the core with fine enough grids is reflected
in the core mass–radius relation. Figure 2 shows that simulated haloes
have cores following a tight relation:

𝑎1/2𝑀c =
5.5 × 109

(𝑚𝑐2/10−23 eV)2 (𝑎1/2𝑟c/kpc)
M� . (14)

As the core becomes more massive, the core size decreases further.
When the core size is resolved by less than two grid cell lengths, the
relation becomes more dispersed and discretised.

4 RESULTS

4.1 Density profiles

The centres of the haloes from the simulations performed in this
work are found by the minimum gravitational potential, and those
from the cosmological simulation in May & Springel (2021) are
determined by selecting the densest cells of haloes found by a grid-
based friends-of-friends-like halo finder. We measured the spherically
averaged density profile and performed fitting to eq. (8) to extract 𝑟c,
𝑟t and 𝑟s for all haloes. As shown in Figure 3, a flat cored structure
is identified towards the center in all profiles. They are well fitted
by the core density profile eq. (8) with a maximum error of 10 %
up to the core radius 𝑟c. After the transition radius 𝑟t, the profiles
follow the NFW profile. We also see that for some haloes, we have a
direct transition from the core to the NFW profile, while others show
a longer transition with an intermediate behaviour linking the two
regimes.

One interesting feature we observe is oscillations in these profiles

MNRAS 000, 1–10 (2021)
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The black line is a fitting relation (14) from Schive et al. (2014a). The dashed
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Figure 3. Scaled density profile of haloes obtained from simulations of this
work and May & Springel (2021). The scaled core profile is shown as black
line. We highlight two haloes with pink and dark green and their best-fit
cored NFW profile. They have similar core mass, but an order of magnitude
difference in the halo mass. Bottom sub-panel shows the percentage error
between data and core profile. The dashed line denotes an error of 2 %.

in their outer regions that can only be modelled on average by the
smooth NFW profile. A possible reason for the fluctuations is that
they are caused by the interference granules in the NFW region. If
this is true, it is possible that halo density profiles can be used to
measure this unique interference pattern present in models like FDM.
More tests are needed to confirm this hypothesis.
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Figure 4. Range of transition radius as a function of halo mass. The dashed
line shows the typical transition 𝑟t = 3𝑟c obtained from Schive et al. (2014b).

In previous simulations (Schive et al. 2014b; Mocz et al. 2017),
the transition radius was found to be 𝑟t ≥ 3𝑟c, where the residual
error between the data and the core profile is less than 2 % for 𝑟 < 𝑟t.
However, our measured 𝑟t, purely from fitting to the cored NFW
profile eq. (8), disagrees with these previous results. The error at
3𝑟c is greater than at least 10 %, as shown in the bottom panel of
Figure 3, meaning the actual 𝑟t should be located at a radius smaller
than 3𝑟c. The range of values for the measured 𝑟t in Figure 4 shows
that most haloes do have 𝑟t ≤ 3𝑟c. Other recent work, such as Yavetz
et al. (2021), also shows smaller transition radii, e. g. 𝑟t ≈ 2𝑟c. As
mentioned before, from theory, to guarantee a continuous and smooth
transition from the solitonic core to the NFW profile, continuity of
both the density and of its first derivative would be necessary, which
translates to the requirement 𝑟t ≤ 3𝑟c, which, therefore, agrees with
our result. This implies that all the haloes in the simulations presented
here have a continuous and smooth transition from the core to the
NFW profile, with or without a transition period, and thus do not suffer
from the apparent inconsistency present in previous simulations.

4.2 The core–halo mass relation

Figure 5 shows the core–halo mass relation obtained from the soliton
merger and cosmological simulations. All data are scaled to 𝑚𝑐2 =

8 × 10−23 eV using eq. (3) in order to enable a direct comparison with
the data and fitting relation from Schive et al. (2014b). For reference,
we also show the ‘core–halo’ mass relation of a soliton-only profile,
i. e. a pure core profile with 𝑟t → ∞ in eq. (8), represented by
the solid black line. This curve indicates the minimum halo mass
for a certain core mass, and any haloes located to the right of the
soliton-only core–halo relation must have the usual cored NFW
structure. For haloes in the soliton merger simulations with mass
& 108 M� , the relation has a steeper slope than 𝛼 = 1/3, confirming
the results from Mocz et al. (2017). However, haloes from the large-
scale cosmological simulation predict a core–halo relation with a
large enough dispersion that can cover a range of data produced by
both the soliton merger simulations and Schive et al. (2014b). The
range of the dispersion can span as large as one order of magnitude in
halo mass for 𝑀c ∼ 5 × 107 M� . This dispersion, which fills in the
space in between the soliton-only line and the relation from Schive
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Figure 5. Core–halo relation scaled to 𝑚𝑐2 = 8 × 10−23 eV via eq. (3). Green
dots are haloes simulated in this work with cores resolved by at least 3Δ𝑥.
Purple and and faint purple dots are haloes from the large-box cosmological
simulation (May & Springel 2021) with cores resolved by at least 2Δ𝑥 and
Δ𝑥 respectively. The pink shaded region is enclosed by the empirical fits to
the purple and green dots, with the maximum and minimum values of the
parameters in eq. (11). The solid dotted line corresponds to the soliton-only
relation obtained from a pure core profile. The black and orange dashed lines
are fitting relations corresponding to the black and orange dots obtained from
Schive et al. (2014b) and Nori & Baldi (2021)4respectively.

et al. (2014b), indicates the diversity of the cored NFW structure in
the FDM simulations. For example, Figure 3 highlights two profiles
of haloes with similar core mass 𝑀c ∼ 5 × 107 M� , but different halo
mass. The tight ‘one-to-one’ core–halo relations found by different
groups, with different slopes, therefore only describe a part, but not
all populations of haloes in the FDM model.

We suggest an empirical equation that has the following form:
𝑀c = 𝛽 + (𝑀ℎ/𝛾)𝛼. The parameter 𝛽 takes the limit of the relation
for small halo masses into account, although low-mass haloes are
rare in a FDM universe due to the suppression in the initial power
spectrum. 𝛼 is the slope that can be compared to previous works. After
including the scaling symmetry in eq. (3) and the redshift dependence
according to Schive et al. (2014b), we have

𝑎1/2𝑀c = 𝛽

(
𝑚𝑐2

8 × 10−23 eV

)−3/2

+
(√︄

𝜁 (𝑧)
𝜁 (0)

𝑀h
𝛾

)𝛼 (
𝑚𝑐2

8 × 10−23 eV

)3(𝛼−1)/2
M� .

(15)

The best-fit parameters for the haloes from the large-box cosmo-
logical simulation give 𝛽 = 8.00+0.52

−6.00 × 106 M� , log10 (𝛾/M�) =

−5.73+2.38
−8.38 and 𝛼 = 0.515+0.130

−0.189, which is shown as a pink shaded
region in Figure 5.

The effect of the large dispersion is encompassed in the uncertainty

4 We adopted parameters resulting from the varying exponents analysis
without sub-sampling restrictions.

of the model parameters. This uncertainty is not the statistical un-
certainty of the fit, but an ‘overestimation’ of the uncertainty in the
parameters that can reflect the large dispersion of the data. Indeed,
the statistical uncertainty would be the incorrect quantity to consider
in this case, since we do not assume that there is an underlying
‘true’ set of values for the parameters with statistical fluctuations, but
rather propose that different halo populations could systematically
follow different relations depending on their histories and properties
(see section 4.2.1). To obtain a more appropriate description of the
core–halo diversity, we employed kernel density estimation (KDE),
estimating the probability distribution function of the core masses
with respect to the central value of the corresponding binned halo
mass. Each of these distributions reveals the dispersion of core masses
for each halo mass.5 We then obtain the minimum and maximum
curves 𝑀c (𝑀h) that fit all of these distributions, and extract the
minimum and maximum vales for the parameters 𝑏, 𝛾 and 𝛼 from
these curves. The difference to the global fit is our uncertainty in the
parameters.

Nori & Baldi (2021); Mocz et al. (2017); Schive et al. (2014b)
determined slopes 𝛼 of 0.6, 0.556 and 0.333, respectively. Given the
large dispersion seen in our data, all of these slopes are compatible
when taking into account the uncertainty we assigned to the fitting
parameters. So when considering the fitting function we propose, all of
the other cases in the literature are covered as well. We emphasise that
our results show that a general halo population is not well-described by
any single one-to-one core–halo mass relation. Further investigation is
required to determine which halo populations follow which relations
(if any), and under what conditions – cf. section 4.2.1.

This large spread and uncertainty in the fitting function can affect
the constraints on the FDM mass obtained from these relations. Here,
we provide a rough estimate of the error. For the same halo mass
𝑀h = 109 M� in Figure 5, we can have the least massive core mass as
𝑀c = 3 × 107 M� and the most massive as 𝑀c = 108 M� . Applying
these values to the core density in eq. (8) gives a 50 % difference
in particle mass 𝑚. Therefore, any observational constraints made
using the relation eq. (11) should include an additional uncertainty
on the order of 50 % in the results, unless the halo mass is smaller
than 109 (8 × 10−23 eV/(𝑚𝑐2))3/2 M� . Therefore, when obtaining
the FDM mass using the core–halo relation, one needs to take into
account the dispersion of these values, shown in the uncertainty in
the fitting parameters, which will translate to a higher uncertainty in
the FDM mass.

We now scrutinize whether the scatter of the core–halo relation
has an influence on the FDM mass constraints through a dynamical
analysis for dwarf galaxies, as has been performed in the literature
when fitting the presence of a core in such galaxies. To this end, we
apply the spherical Jeans analysis to the kinematic data of the Fornax
dwarf spheroidal galaxy, which has the largest data set among the
Galactic dwarf satellites. We perform the Jeans analysis6 using two
different core–halo relations, which are suggested by Schive et al.
(2014b) and this work, and then we map the posterior probability
distributions of the FDM mass through the Markov Chain Monte
Carlo (MCMC) technique based on Bayesian statistics. Comparing
the posteriors, there is no clear difference in the shape of those
distributions, including that of FDM mass, but this is due to the
fact that there exists a degeneracy between halo mass and FDM

5 We can provide the distribution of core masses for each halo mass bin by
request for those interested.
6 For the dynamical analysis we adopt in this work, the interested reader may
find further details in Hayashi et al. (2021).
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mass.Therefore, this degeneracy makes it hard to see the impact that
the core–halo relation has in the Jeans analysis.

Due to limited spatial resolution, we could only observe the dis-
persion to increase with halo mass until 𝑀c ∼ 6 × 107 M� . It would
be important for potential future higher-resolution simulations to
examine if the dispersion keeps increasing along the soliton-only
relation or not. Again, the increasing dispersion is of importance to ob-
servational studies since it will also lead to an increasing uncertainty
in the core–halo relation.

4.2.1 The origin of the dispersion

Different core–halo structures have been found in different simula-
tions:

• As mentioned before, Schive et al. (2014b) and Mocz et al.
(2017) find different results for the slope 𝛼 (1/3 vs. 5/9), even for
similar simulation setups (soliton mergers).

• Mina et al. (2020) claim to confirm a slope of 𝛼 = 5/9, as found
in the soliton merger simulations of Mocz et al. (2017), but using a
cosmological simulation, contradicting the result of 𝛼 = 1/3 from
Schive et al. (2014b). However, the number of haloes in their sample
is very small.

• Schwabe et al. (2016) performed soliton merger simulations
similar to Schive et al. (2014b) (and later Mocz et al. 2017)7 and
could not reproduce the previously-found value of the slope 𝛼, or
indeed any universal relation.

• Nori & Baldi (2021) studied the dynamics of eight simulated
haloes and concluded with a similar comment: Schive et al. (2014b)
and Mocz et al. (2017) only captured a partial representation of the
core–halo relation in a realistic cosmological sample.

• Yavetz et al. (2021) used the Schwarzschild method to construct
self-consistent FDM halos and found that a stable core–halo structure
can exist even when the adopted core–halo mass relation deviates
from Schive et al. (2014b).

These examples illustrate that the diversity of the possible core–halo
slopes found in different works seems originate from the type of
simulations performed, which results in halos and cores that have
different properties. The diversity of core–halo structure found in
these simulations is exhibited in our work, where we can clearly
see the difference between the core–halo mass relation from halos
formed in soliton merger simulations (green points in Figure 5) and
in cosmological simulations (pink points in Figure 5).

We can think of a few possible explanations for this diversity
of halos: merger history (Du et al. 2017; Yavetz et al. 2021), tidal
stripping effects, and the relaxation state of the halo (Nori & Baldi
2021). Formation and merger history is an explanation that seems very
plausible to be a relevant factor. Larger cosmological simulations, like
the one from May & Springel (2021), present halos that could have
very different merger histories, and a large dispersion is expected.
This is different from the soliton merger simulations, where we do
not expect a complicated merger history. We leave for future work to
try to identify the different merger histories and try to clarify how this
relates to the different incarnations of the core–halo mass relation.

Another possible factor that can also contribute to the dispersion
found is stripping. Here, we will attempt to provide an argument to
support tidal stripping as one element responsible for the dispersion,
based on the setups of various simulations. By comparing the box sizes

7 Although Schwabe et al. (2016) made use of ‘sponge’ boundary conditions
instead of periodic boundary conditions.

and the resulting slopes 𝛼 between the small-volume cosmological
simulations of this work with Mocz et al. (2017) and Schive et al.
(2014b), which are 335 kpc, 1765 kpc and ≥2000 kpc (box sizes) after
re-scaling via eq. (3), and ∼0.9, 0.556 and 0.333 (slopes) respectively,
we find that smaller simulation box sizes are correlated with a
steeper slope in the core–halo relation. This can be explained by the
stripping effect on the halo by its own gravity due to the periodic
boundary conditions: the self-stripping effect becomes more effective
at removing mass from the NFW region as the box size decreases.
This skews the core–halo structure towards smaller halo masses,
steepening the core–halo relation. A more rigorous test to prove the
above argument requires simulations with increased spatial resolution
and box sizes up to at least 2 Mpc, which current numerical schemes
are unable to feasibly achieve.

The self-stripping effect is a numerical artifact, but there is no doubt
that a stable core–halo structure can exist within such environments.
In more realistic cosmological simulations, dwarf satellites also
experience a similar effect from their host haloes in the form of tidal
stripping. Therefore, we suggest that stripping effects by tidal forces
are one of the contributing factors causing the dispersion obtained
from the large-box simulation in May & Springel (2021). One subtlety
is that the tidal effect is an interaction between host haloes and
sub-haloes with at least two orders of magnitude difference in mass,
but the halo finder used in May & Springel (2021) does not identify
sub-haloes. However, it is known that sub-haloes in CDM simulations
can temporarily move outside of the virial radius of the host halo
after the first pericentric passage (van den Bosch 2017). We assume
that ejected sub-haloes should also exist in a FDM cosmology, and
therefore identified by the halo finder. An in-depth analysis of the
tidal effect on the core–halo relation, or FDM sub-haloes in general,
would require building merger trees, which is still not yet studied in
any FDM cosmological simulations. We leave this investigation to
future work.

4.3 Other relations

4.3.1 Inner dark matter slope–halo mass relation

Observational constraints obtained through Jeans analysis require
adopting the cored NFW density profile and core–halo mass relation.
The scatter in the core–halo mass relation plays a part in the analysis
simply as an uncertainty in the relation. To study the observational
consequences of the diversity, we suggest showing the inner slope–halo
mass relation and core radius–halo mass relation for our FDM haloes,
which can be compared to previous observational results.

We define the inner slope as the logarithmic gradient dark matter
density Δ log 𝜌/Δ log 𝑟 at an inner radius of 1.5 % of the halo’s
virial radius 𝑟h: 𝑟inner = 0.015𝑟h. The definition is frequently used
to study the impact of feedback physics on the inner dark matter
structure (Tollet et al. 2016). As shown in Figure 6, the inner slope of
FDM haloes is expected to be cored (i. e. 0) for less massive haloes
with mass . 109 M� . In contrast, haloes in CDM simulations with
baryonic feedback physics show a cuspy inner slope ∼ −1.5 within
this mass range, due to the inefficient core formation process by
feedback (Tollet et al. 2016). It is therefore important to observe the
inner slope of ultra-faint dwarf galaxies, which can help to distinguish
between feedback-induced and quantum pressure-induced cores. As
the relation moves to more massive FDM haloes, the inner radius
begins to shift outside of the cored region because of the inverse
proportionality between core radius and halo mass. As a result, the
inner slope steepens. Note that the steepening occurs at different halo
mass ranges for different sets of FDM halo samples, because haloes in
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Figure 6. Inner dark matter slope as a function of halo mass. The inner slope is
defined as the logarithmic gradient density at 0.015𝑟h. Green and purple dots
represent haloes from simulations of this work and May & Springel (2021),
where halo mass is rescaled to 𝑚𝑐2 = 8 × 10−23 eV and 𝑧 = 0 via eq. (3).
Open triangles are the observed relation from dwarf galaxies based on Jeans
analysis (Hayashi et al. 2020), whereas open circles are predicted from the
rotation curves of dwarf galaxies (Oh et al. 2015). The blue band is a fitting
function with an uncertainty of ±0.1 predicted by NIHAO, a CDM simulation
with baryonic feedback physics (Tollet et al. 2016). The grey band shows the
prediction by CDM-only simulations.

simulations of smaller box size tend to be stripped, so the steepening
occurs earlier.

The inferred observational relation from the stellar kinematics of
eight dwarf galaxies (Hayashi et al. 2020), and rotation curves of 26
dwarf galaxies (Oh et al. 2015) shows a large scatter of inner slope for
a certain halo masses, which is a result of diverse dark matter density
profiles. If we consider an extrapolation of the inner slope–halo mass
relation (dashed lines in Figure 6), including both small and large box
size simulations, the FDM model with 𝑚𝑐2 ≈ 8 × 10−23 eV may be
able to explain the scatter presented by the observations.

We caution that the definition of halo mass and inner slope vary
across the literature.8 Moreover, populating the region in between
the extrapolated relations would require sub-halo data, which we did
not investigate in this work. We therefore emphasise that the particle
mass 𝑚𝑐2 ≈ 8 × 10−23 eV only represents a loose constraint, and
the main motivation of Figure 6 is to demonstrate the possibility of
explaining the observed diversity of inner slopes by stripped, or more
realistically, tidally stripped sub-haloes, which is closely related to
the diversity of the core–halo structure.

4.3.2 Core radius–halo mass relation

As suggested by Burkert (2020), the FDM model may fail to explain
the observed trend of the core radius–halo mass relation measured
from dwarf galaxies. We follow Mina et al. (2020) and present the

8 As another detail, the halo masses of the purple and green points in Figure 6
are extracted at 𝑧 = 3 and rescaled to 𝑧 = 0 with the factor (𝜁 (𝑧 = 3)/𝜁 (𝑧 =
0))1/2, which corresponds to a mass of 𝑀h = 350 𝜌m0 (4𝜋𝑟h/3) , whereas all
other data in Figure 6 used 𝑀h = 200 𝜌m0 (4𝜋𝑟h/3) . Changing the definition
would simply shift the data horizontally in Figure 6.
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Figure 7. Core radius vs. halo mass. Green and purple points are properties of
haloes from simulations of this work and May & Springel (2021). The black
line shows the relation predicted by a soliton-only density profile. The dashed
line is an empirical function predicted by LSB galaxies (Salucci et al. 2007).
Black crosses are from Di Paolo et al. (2019).

core radius–halo mass relation measured from our FDM halo samples.
As shown in Figure 7, the scatter is still observed, but the decreasing
trend, which is a fundamental property of quantum pressure-induced
cores, is in disagreement with the positive scaling predicted by low
surface brightness (LSB) galaxies (Salucci et al. 2007; Di Paolo et al.
2019).

The disagreement is expected because the negative scaling, where
less massive galaxies are cored, allows the FDM model to solve
the core–cusp problem, but the relation from LSB galaxies has the
opposite behaviour, where massive galaxies have larger cores. In
addition, LSB galaxies are predicted in CDM simulations to have
experienced tidal heating and supernova feedback (Martin et al. 2019).
Therefore, the relation between core radius and halo mass poses a
challenge to the FDM model, but more importantly, it motivates future
FDM simulations to include baryonic physics to verify if LSB-like
galaxies can be formed or not.

5 CONCLUSION

Solitonic cores are found to be formed in simulations of the FDM
model as a consequence of gravity and the uncertainty principle,
but there is still no consensus on a single universal scaling relation
that describes the relationship between a halo’s mass and that of
its core, or that one even exists. In this work, we performed new
soliton merger simulations and used data from a large-scale cosmo-
logical FDM simulation. All simulations are evolved by solving the
Schrödinger–Poisson equations through the pseudo-spectral method,
which can capture wave phenomena completely. Here is a summary
of our findings.

We found an agreement between the measured density profiles and
a cored NFW profile, but the transition radii of most of haloes are
located at ≤ 3𝑟c. This is in disagreement with previous simulations
(Schive et al. 2014b; Mocz et al. 2017), but more consistent with the
analytical requirement where the transition between the inner core
and the outer NFW profile must be continuous and smooth.

The resulting core–halo mass relation, obtained from both soliton
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merger and cosmological simulations, shows an increasing dispersion
with halo mass. The spread extends all the way from the limit of a pure
soliton profile to that of Schive et al. (2014b), signifying the diversity
in core–halo structure. We suggest that, for small cosmological
simulations, ‘artificial’ stripping effects due to periodic boundary
conditions could partially be responsible for the variety of slopes in
the relation predicted by different simulations. However, ‘natural’ tidal
stripping effects of various severity also exist in larger simulations,
which therefore exhibit a greater spread in the relation. Further, the
exact impact of variations between individual haloes on the relation,
such as merger history or relaxation state, remains to be uncovered.

We provided a new empirical equation that considers the non-
linearity in the low-mass end, but we emphasise that any core–halo
relation must suffer from an uncertainty produced by the diversity
demonstrated in this work. Therefore, observational analyses that
adopted a core–halo relation must take into account this uncertainty in
the fitting parameters, including the particle mass of the FDM model.

Due to the limited spatial resolution imposed by the time step
criteria, our samples still do not represent the full population of
core–halo structure. To obtain this, simulations using a more flexible
numerical scheme, such as adaptive mesh refinement (Schive et al.
2014a; Mina et al. 2020), and sub-halo catalogues from merger
trees would be needed. Such future work would provide verification
of whether the dispersion keeps growing beyond halo masses of
109 (8 × 10−23 eV/(𝑚𝑐2))3/2 M� , or whether the tidally stripped sub-
haloes can explain the observed diversity in the inner slope–halo mass
relation. We also plan in the future to understand the merger history
of the halos we have in the cosmological simulation, using the same
techniques as for CDM, in order to try to understand how halos with
different merger histories influence the core–halo mass relation.

Lastly, including baryonic physics will further complicate the
core–halo structure because the core can now not only be induced by
quantum pressure, but also by stellar feedback physics, not to mention
the question of how these processes would interact. However, only
baryonic physics have a chance of matching the core radius–halo
mass relation of LSB galaxies with FDM.
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Figure A1. Comparison of the power spectrum at 𝑧 = 0 between the code
used in this work and that of May & Springel (2021) for a cosmological test
simulation.

APPENDIX A: CODE COMPARISON

Since there is no analytical solution to the general time-dependent
Schrödinger–Poisson equations, we can only ensure reliability of the
code in the general case (beyond toy examples and limiting cases)
through comparison with other groups. Thus, we compared the dark
matter density fluctuations at 𝑧 = 0 with May & Springel (2021) in a
test simulation. Our codes are independently developed, but adopted
the same pseudo-spectral splitting method in second order.

We ran a cosmological fuzzy dark matter simulation separately
with identical initial conditions generated by MUSIC with box size
𝐿 = 10 Mpc ℎ−1, particle mass 𝑚𝑐2 = 2.5 × 10−24 eV, and number
of grid cells 𝑁3 = 10243. The cosmological simulations are evolved
until 𝑧 = 0, and the density fluctuations are measured as the power
spectrum shown in Figure A1.
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