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The diversity of three-dimensional photonic
crystals
Rose K. Cersonsky 1, James Antonaglia2, Bradley D. Dice 2 & Sharon C. Glotzer 1,2,3,4,5✉

Many butterflies, birds, beetles, and chameleons owe their spectacular colors to the micro-

scopic patterns within their wings, feathers, or skin. When these patterns, or photonic

crystals, result in the omnidirectional reflection of commensurate wavelengths of light, it is

due to a complete photonic band gap (PBG). The number of natural crystal structures known

to have a PBG is relatively small, and those within the even smaller subset of notoriety,

including diamond and inverse opal, have proven difficult to synthesize. Here, we report more

than 150,000 photonic band calculations for thousands of natural crystal templates from

which we predict 351 photonic crystal templates – including nearly 300 previously-

unreported structures – that can potentially be realized for a multitude of applications and

length scales, including several in the visible range via colloidal self-assembly. With this large

variety of 3D photonic crystals, we also revisit and discuss oft-used primary design heuristics

for PBG materials.
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W
hen will a 3D crystal possess an omnidirectional
photonic band gap (PBG)? By definition, when there
exists a range of frequencies which are not transmit-

table through the crystal due to the interactions of waves moving
through media of different permittivity. For a material whose
spatially dependent dielectric constant is given by ε(r), the
transmittable frequencies are given by the eigenvalues of

∇ ´

1

εðrÞ
∇ ´HðrÞ ¼

ω

c

� �2
HðrÞ; ð1Þ

as derived from Maxwell’s equations and solved in reciprocal
space, where H(r) is the magnetic field, ω is the frequency, and
c is the speed of light. Before the introduction of efficient com-
putational packages such as MPB, MEEP, or COMSOL1–3, sol-
ving this equation was mathematically burdensome, thus the
photonics community developed several heuristics to guide the
design of photonic crystals, both from the more straightforward
2D and select 3D photonic crystals.

Yablonovitch4, John5, and Ho, et al.6 pointed to the sphericity
of the Brillouin Zone (BZ), which is the reciprocal space analog to
the real space primitive unit cell, as an important feature for
predicting which photonic crystals have a PBG. They reasoned
that cubic face-centered (cF) and body-centered (cI) lattices are
the most likely targets for PBGs, as they have the most
spherical BZs.

The study of 2D PBGs has also provided useful insight into
photonic crystal design. Meade, et al. explain the origins of PBGs
in 2D crystals by looking at the modes of the photonic band
structure defining the PBG. They showed that PBGs occur when
there is a large shift in where the electric energy density is loca-
lized, where the electric energy density is given by integrating the
product of the electric field E(r) and displacement field D(r)= ε
(r)E(r). In the band below the PBG, the electric energy density
primarily resides in the medium with the higher dielectric con-
stant (hereon “dielectric”); this band is known as the “dielectric
band” where dielectric constant ε is the square of the index of
refraction n. Above the PBG, the electric energy density is in the
medium with the lower dielectric constant (hereon "air”); this
band is known as the “air band.” Meade, et al. suggest one must
aim to decrease the energy of the dielectric band in order to
increase the size of the PBG. For a PBG between the transverse
electric (TE) modes, this requires that regions of dielectric be
connected7. Likewise, the importance of energy localization sug-
gests that the greater the difference in ε of the two regions, the
larger the PBG, as this will decrease the similarity between the
dielectric and air band. These 2D principles are used to under-
stand and design 3D photonic crystals, the terminology of electric
and air band has become conventional in 3D PBG crystals.8

In this work, we revisit these heuristics—connectivity of the
dielectric, increasing gap size with increasing ε, and spherical BZ
—given a large dataset of 3D photonic band structure calcula-
tions, 151,593 in total, and discuss, despite their usefulness, the
inadvertent restrictions that they may have imposed on the design
search space of PBG crystals to structures near diamond and
inverse opal, both of which are face-centered cubic structures that
exhibit PBGs when the dielectric forms a continuous
network6,8–17. From our calculations, we demonstrate that an
omnidirectional PBG can be supported in all Bravais lattices, in
systems of connected and disconnected high dielectric media, and
that in some systems, the largest band gap is possible with
an intermediate dielectric constant. Furthermore, we provide a
comprehensive dataset of PBG crystal possibilities, opening
multiple avenues for further study.

Results
Our data set consists of 2714 crystal structures from multiple
sources18,19. Each structure is used as a template, with identical
dielectric or air spheres on every lattice site for the "direct” or
"inverse” versions, respectively. We screened each structure for
PBGs between the first 20 bands across the structural parameters
of volume filling fraction ϕ (from 0–1) and dielectric constant ε
(from 4–16 in reduced units), resulting in 151,593 band structure
calculations via MIT Photonic Bands (MPB)1 and managed with
the signac data framework20. PBGs are reported as dimensionless
percentages, i.e., the range of frequencies within the PBG (Δω)
divided by the mid-gap frequency (ω*)1. Of the photonic band
structures computed, 12,778 contain PBGs of size 0.1% or larger
for 0.022 ≤ ϕ ≤ 0.711. The lowest ε resulting in a PBG is ε= 4
(agreeing with literature)6,13, and many structures have PBGs with
values of ε as low as 6. In total, we find 474 unique PBGs >0.1% in
351 structures (some structures exhibit PBGs at more than one
band location at different filling fractions). A summary of the
PBGs is shown in Fig. 1, with the maximum gap size for each
location (above band 2 and higher) indicated by the size and color
of the circles. PBGs under the first band or between bands 1 and 2
are physically impossible, as the first two bands will approach zero
frequency at the center of the BZ. The gap atlas, selected photonic
band structures, and isosurface representations of structures
mentioned in the main text are provided in the Supplementary
Information. Photonic band structures for templates that are of
special interest or mentioned later in the text are shown in Fig. 1b.
Results were validated where possible against previous
literature1,6,10,12,21,22. Validation data sets are provided in
the Supplementary Information. The maximum PBG size (for any
ϕ and with ε= 16) for the well-known diamond, inverse diamond,
inverse opal, and inverse simple cubic are approximately 15, 34, 8,
and 12% above bands 2, 2, 8, and 5, respectively.

We find PBGs in all 14 Bravais lattices, including the more
asymmetric monoclinic and triclinic lattices. In Fig. 2a, we find
that PBGs most often exist in cF and cI lattices, concurring with
the earlier postulate, as well as rhombohedral (hR) and cubic
primitive (cP) lattices, despite their aspherical BZs. As expected,
large PBGs (>25%) tend to occur in structures with diamond or
gyroid-like topologies, but less expectedly, they also occur in tI
lattices, which can have highly aspherical BZs (Fig. 2b(i)). We can
compare the sphericity of the BZs using the isoperimetric quo-
tient, defined as 36πV2

A3 , where IQ= 1 for perfect spheres. The IQ of
hR, cP, and tI lattices are at most π/6= 0.523, whereas the IQ of
cF and cI lattices are 0.7533 and 0.7404, respectively. Thus a
nearly spherical BZ is neither necessary nor sufficient to produce
a PBG, although it will often correlate with the largest PBGs.
Discussions of the point group symmetry of the structures and
Wyckoff sites, sphericity of the BZ, space group, and angles
between nearest-neighbor vectors are provided in the Supple-
mentary Information.

The space group of the crystal strongly constrains the presence
and locations of band crossings. The relationship between the
crystal space group and mandatory band crossings is well
understood23. However, the relationship between the space group
and the absence of band crossings is nontrivial and of interest for
band gap design24. Our dataset shows strong correlations between
the Bravais lattice and gap locations. We find that a large fraction
of PBGs between bands 2 and 3 are in cF and tI structures, and
PBGs between bands 5 and 6 are primarily found in cP structures,
as shown in Fig. 2a.

Connectivity. Next, we look at the 2D heuristic of connectivity of
the dielectric7. For any structure realized with monoatomic
spheres on every lattice site, there are two connectivity thresholds
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defined by the geometry. The first, which we denote ϕN, is min(ϕ)
such that the dielectric forms a continuous network, defined for
both direct and inverse structures. The second, which we denote
ϕT, is min(ϕ) such that the dielectric spheres on any two lattice
sites touch and can only be defined for direct structures. A
schematic of these thresholds is provided in the Supplementary

Information. For all structures, ϕT ≤ ϕN, and for some direct
structures, ϕN= ϕT as the lattice sites are evenly distributed. As
shown in Fig. 2b, we find that many PBGs, including large PBGs,
occur for ϕ < ϕN and ϕ < ϕT, especially in PBGs at high fre-
quencies, as these modes can more easily travel between dis-
connected regions of the dielectric.
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(v) Inverse Monoclinic Cristobalite (II) 
at ε = 10, ϕ = 0.33
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at ε = 16, ϕ = 0.13
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Fig. 1 Overview of PBG properties of nature-inspired structural templates. a The largest PBGs in each PBG location found for each structure computed

for ε= 4–16, arranged in concentric rings by ε. Circle areas are proportional to the PBG size; colors correspond to the band location of the PBG. Circles are

arranged by structure, where each radius corresponds to a single structure at different ε. Some structures are shown more than once since some structures

were found to exhibit PBGs in different locations at different filling fractions. Structures that have been previously studied or noted elsewhere in the text

have been labeled. b Selected band structures, plotted for the first 20 bands across reciprocal space. (i) Lithium oxide, (ii) Inverse simple chiral cubic, (iii)

Inverse clathrate II, (iv) Inverse AB13, (v) Monoclinic tridymite, (vi) Inverse β-polonium (the only template found to have a PBG between bands 3–4), (vii)

Ice II, and (viii) Inverse silicon II.
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Variation with dielectric strength (Epsilon). Finally, in our
dataset, we find 41 of 474 cases where the PBG size is non-
monotonic with ε, as seen in Fig. 2d(iii). The most dramatic non-
monotonicity occurs for lithium oxide (also known as the fluorite
or the C1 structure), whose PBG between bands 17 and 18
increases for 6 ≤ ε ≤ 9 but decreases to half its maximum size for
9 ≤ ε ≤ 16, as seen in Fig. 2d(ii). The other PBG, between bands
8–9, was previously theorized in Maldovan et al.11 and is
monotonic with ε. This non-monotonic relationship is potentially

due to various factors, e.g., the location of the bandgap; whether
the dielectric spheres are commensurate with the frequency of the
PBG; occurring within a density regime where Mie scattering may
increase the complexity of the mode configurations25,26. Also
possible is that as the dielectric constant changes, the optimal
topology changes, as suggested in Men, et al.13, and only for
intermediate ε is an optimized geometry accessible. Similar non-
monotonicity was observed in an experimental system and
mentioned but not thoroughly investigated27. We note that all
structures studied in this work are studied as perfect crystals, not
results from self-assembly.

Field analysis. In simple terms, a photonic band gap will occur
when two neighboring electromagnetic modes exhibit modes with
sufficiently different frequencies, which is proportional to their
energy. The ways to engineer this difference in frequency are
highly constrained with only 2D geometries. In 3D, the picture is
understandably more complex. Here we parallel the field analysis
done for 2D by Meade, et al.7 to understand the 3D analogs to the
“dielectric” and “air” bands.

We calculated the electric displacement field D above and
below the gap for select structures found to have a PBG. From
these vector fields, we simplified them into flow diagrams of the
electric energy localization using the plotting package Mayavi.28

Several motifs (formally defined as general patterns or distinctive
features) emerged from these flow diagrams, as shown in Fig. 3a
(i–viii). More details on the reduction from vector fields to flow
diagrams are provided in the Supplementary Information. We
quantify the fraction of electric energy found in the dielectric with
the concentration factor f, given by:

f ¼

R

Vε
E�ðrÞ �DðrÞ dr

R

E�ðrÞ �DðrÞ dr
;

ð2Þ

where Vε is the high dielectric region. For each PBG, we highlight
four properties of the eigenmodes delineating the PBG: (1) band
number, (2) Γ representation of the bands, (3) f, and (4) the motif
that most closely resembles the displacement field lines. These
properties are computed for the filling fraction that maximizes
the PBG of a given structure and for the wavevectors k
corresponding to the maxima and minima of the bands below
and above the PBG, respectively. The dotted line signifies ϕN (for
the structures shown, ϕN= ϕT).

In 2D, the dielectric band typically has 50% or more of the
electric energy density localized in the dielectric compared to
the air band7. In contrast, from band 2 to 3 in diamond (Fig. 3b),
the concentration factor f decreases by 0.1, i.e., 10% more of the
electric energy is in the dielectric in band 2 than band 3. There is
no change in concentration factor between bands 8 and 9, and the
concentration factor of band 15 is higher than that of band 14.
Thus, band 15 is more of a “dielectric band” than band 14.

The motifs of electric energy localization in 3D delineating a
band gap do not fall neatly into the categories of “dielectric” and
“air” bands. Instead, they fall into two broad categories: those that
travel between adjacent unit cells (Fig. 3a(i–iii)) and those that
remain confined to a single region of dielectric (Fig. 3a(iv–viii)).
For modes with field conformations similar to Fig. 3a(i–iii),
increasing the connectivity of the dielectric reduces the mode
frequency. Therefore if this motif is found in the band below a
gap (but not above the gap), increasing connectivity will enlarge
the PBG, as seen in the PBG between bands 2–3 in Fig. 3b.
However, if both modes or the mode above the gap exhibit this
type of motif, increasing the connectivity will reduce or close the
PBG, such as the 8–9 and 14–15 PBG in Fig. 3b.

We can use a similar analysis to explain the relationship
between ε and PBG size in the lithium oxide crystal structure
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denoted with squares. (iii) ε where the maximum PBG size occurs, which is

an inset showing the PBGs with maxima at low ε.
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shown in Fig. 2b. The heuristic of monotonicity of gap size with ε
assumes a mode configuration where the PBG is enlarged by
higher localization in the dielectric, e.g., when there is a distinct
air band and dielectric band. However, as the PBG in lithium
oxide decreases as the filling fraction approaches the connectivity
threshold, this assumption is invalid, and the relationship of
Δω/ω* and ε is complex.

Discussion
Our data-driven exploration of the possible space of photonic
band gap crystal structures shows that for many photonic crystals,
it is clear that no single design rule applies to all PBGs. Many
current heuristics provide general guidance to designing crystals
for photonic band gaps, but we find many interesting counter-

examples for every heuristic. Consequently, further inquiry is
needed to predict PBGs in 3D, especially at higher frequencies,
where these design rules most typically fail.

The 291 new PBG structures reported here should make for
interesting targets, in particular for colloidal systems where dia-
mond and similar structures have been difficult to synthesize,
only recently realized with tetrahedral clusters of patchy
particles29. Several of these structures shown to have PBGs are
known to assemble on colloidal length scales: lithium oxide (6%
in direct form) and simple chiral cubic (3.4% PBG in direct form,
27% PBG in inverse form) can be self-assembled using polyhedral
nanoparticles30,31, the Clathrate II structure (33% PBG in inverse
form) was recently found using DNA-programmed self-
assembly32, and the AB13 structure (13.3% PBG in inverse form)
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Fig. 3 Mode configurations and motifs for PBG photonic crystals. a Common motifs in the mode conformations of PBG photonic crystals. Motifs (i–iii)

exhibit regions of high electric energy density between adjacent unit cells, while the electric energy density for modes (iv–viii) is confined to an isolated

region of dielectric material. b Gap atlas and field analysis of diamond, which has two large PBGs at different regions of filling fraction, either between bands

2–3 or 8–9, and a small PBG between bands 14–15. The dotted line denotes the filling fraction at which the dielectric has formed a continuous network.

c Gap atlas and field analysis of lithium oxide, which has two PBGs at different regions of filling fraction, either between bands 8–9 or 17–18. The dotted line

denotes the filling fraction at which the dielectric has formed a continuous network. d–j Gap atlases and field analyses for α-cristobalite (cF24), lautite

(oP12), Ice Ih (hP30), palladium oxide (tP4), inverse opal (cF4), inverse simple cubic (cP1), and manganese yttrium (tI8).
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is easily achievable with binary mixtures of hard spheres33,34.
Furthermore, there are structures, previously unstudied in the
colloidal community, that can be new targets for colloidal self-
assembly, such as tI835 (6.0% PBG in direct form, 25% PBG in
inverse form) or cI1636 (6.4% PBG in direct form, 18.4% PBG in
inverse form, the latter of which was previously reported37,38).
However, the choice of structure is largely fabrication- and
application-dependent and is often best decided by those trying to
realize the structure. We have developed an open-source database
of photonic structures, which can be used to browse and down-
load the structures detailed in the study so that further
researchers can gain inspiration and insight.

Methods
Data management. The data for this project was managed using signac, and the
workflow was managed by signac-flow20 in a multi-level project. The top level of
the project consists of statepoints associated with the structural data. Inside each
structure statepoint was an additional project managing the statepoints containing
radii and dielectric constant.

Structure retrieval and conversion. Crystallographic Information Files (".cif”
format) were downloaded from the Crystallographic Open Database (COD) and
the Inorganic Crystallographic Structure Database (ICSD)18,19. Information
regarding atomic constituents and structure name was taken directly from the .cif
files, regardless of the correctness or conditions of the original authors’ publication
or data. Additionally, we included structures found in unrelated simulations in the
Glotzer group, some of which have no natural analog. These position files were
then converted to a set of lattice vectors and a fractional basis, with the first lattice
vector normalized to unit length.

Input parameters for MPB. All PBG calculations were conducted using MPB, a
scheme-based eigenmode solver developed at MIT1. MPB calculates the photonic
band structure through iterative planewave eigenmode searching. In MPB, the input
parameters required are: (1) lattice vectors and fractional basis, (2) particle radius and
dielectric constant, (3) fractional k-point path in reciprocal space, (4) k-point inter-
polation, (5) resolution, (6) mesh size, and (7) number of bands to calculate.

(1) and (2) define the statepoints for this study. (3) was generated using the
procedure below. (4) was set to 16 in the initial screening, and set to 32 in complex
structures or during the second round of screening. (5) was set to 1 in the initial
screening, and 6 during the second round of screening. (6) was set to 5. (7) was set
to 20. Only those statepoints with PBGs during initial screening were included in
the second round of screening. Those structures found not to have a PBG with
minimal k-points would not have a PBG with additional k-points, which would
only reduce or close the calculated PBG.

Radius screening. For each structure, particle radii were initialized to r∈ (0.0, 1.5)
and Δr= 0.01 and calculations run. MPB outputs were then queried, and radii with
filling fractions outside of [0.0, 1.0] for a structure were removed. For each structure,
radii were added uniformly at smaller intervals where necessary, such that each
structure was screened with at least 20 radii for both dielectric spheres and air spheres.

Dielectric constants. For each structure, we initially assumed a dielectric constant
ε= 16, the highest theorized dielectric constant for solid, translucent media39. It
has been postulated that any crystal will exhibit a PBG in the limit of infinite
dielectric constant8, thus we tested a wide variety of crystals, even if difficult to
realize in experiment. After the initial computations at ε= 16, we performed
computations for structures and statepoints found to have PBGs at lower ε, down
to ε= 2 or such that Δω= 0.

k-point path generation. The first Brillouin zone was computed by finding the
Voronoi tessellation of the reciprocal lattice for each structure using the Voronoi
functionality of SciPy40. The path through the BZ was taken to be a highly
redundant traversal along the edges of each face of the surface of the BZ, including
to and from the face center and the Γ-point. This path, though redundant, is
guaranteed to exhaustively sample the high symmetry points at which band
extrema occur. An example of a highly redundant k-point path is provided in
the Supplementary Information.

For field analysis, the irreducible BZ was calculated to ensure correct k-point
labels in the calculation of Γ representation.

Structural analysis. In order to calculate the connectivity thresholds and bond
angles, we used the Python package pymatgen41, an open-source materials analysis
package.

For every structure, we computed the radius r and filling fraction ϕ for up to two
different thresholds, (1) corresponding to the first peak in the radial distribution

function (RDF), denoted ϕT, and (2) corresponding to the radius at which the spheres
on the lattice sites are connected in a continuous network, denoted ϕN. ϕT is ill-
defined for inverse structures. (2) was found for direct structures using pymatgen and
by analyzing the voxelizations of inverse structures using the skimage package40. For
some direct structures, these thresholds are the same.

Space groups and symmetry information were found using the open-source
package spglib42 and 3D visualization was done with the open-source package
mayavi28.

Field analysis. For MPB, there is an option to output field files for a given

computation at every k
!

and band. We took the electric fields in these files and
visualized them using mayavi28. The flow reduction was made using 1–2 unit cells
of the structure with a resolution of 24–40 grid points. Motifs were drawn based
upon analysis of these flow diagrams. A schematic of this process is provided in
the Supplementary Information.

The concentration factor was computed using (2) as described in Meade, et al.7.
Γ classification was done using character tables found in the Bilbao Crystal

Database43 and Dresselhaus, et al.23.

Data availability
Data for all PBG structures and MPB input parameters is publicly available at https://
glotzerlab.engin.umich.edu/photonics/. A summary of the structures analyzed in this
study is provided in Supplementary Data 1. Further data generated during and/or
analyzed during the current study are available from the corresponding author on
reasonable request.
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