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Previously, we have introduced the linear scaling coupled cluster (CC) divide-expand-consolidate
(DEC) method, using an occupied space partitioning of the standard correlation energy. In this arti-
cle, we show that the correlation energy may alternatively be expressed using a virtual space parti-
tioning, and that the Lagrangian correlation energy may be partitioned using elements from both the
occupied and virtual partitioning schemes. The partitionings of the correlation energy leads to atomic
site and pair interaction energies which are term-wise invariant with respect to an orthogonal trans-
formation among the occupied or the virtual orbitals. Evaluating the atomic site and pair interaction
energies using local orbitals leads to a linear scaling algorithm and a distinction between Coulomb
hole and dispersion energy contributions to the correlation energy. Further, a detailed error analysis
is performed illustrating the error control imposed on all components of the energy by the chosen
energy threshold. This error control is ultimately used to show how to reduce the computational
cost for evaluating dispersion energy contributions in DEC. © 2012 American Institute of Physics.
[doi:10.1063/1.3667266]

I. INTRODUCTION

Standard implementations of coupled cluster (CC) wave
function models using a set of canonical Hartree-Fock (HF)
orbitals exhibit a scaling wall. This scaling wall prevents CC
calculations from being carried out for any but the smallest
molecular systems. It has been attempted to remove this scal-
ing wall by expressing the CC wave function in a set of local
HF orbitals. Local occupied HF orbitals have been obtained
using various localization strategies,1–7 and both local occu-
pied and local virtual HF orbitals have recently been obtained
by minimizing powers of the orbital variance.8

Local orbital correlation methods were pioneered by
Pulay9 and Pulay and Saebo,10 and an early prominent con-
tribution is the local coupled cluster (LCC) method of Werner
and coworkers.11–16 Many other local CC methods have
been proposed, e.g., the atomic orbital-based CC,17–19 the
natural linear scaling approach,20 the cluster-in-a-molecule
approach21–23 the divide-and-conquer approach,24 the frag-
ment molecular orbital approach,25 and the incremental
scheme.26–28 Near-linear scaling for the local CC model us-
ing bump functions has been considered by Head-Gordon
and coworkers.29–31 For second order Møller-Plesset (MP2)
theory linear scaling has been obtained using a Laplace
transformation32, 33 of the energy denominators and using ef-
fective integral screening techniques.34–37

In the local CC methods, ad hoc approximations are in-
troduced in the cluster amplitude equations and in the corre-
lation energy, for example by assigning fixed virtual correlat-
ing orbital spaces to local occupied HF orbitals (e.g., using

a)Electronic mail: idamh@chem.au.dk.

the completeness criterion of Boughton and Pulay,38) or by
carrying out a physical fragmentation of the molecule (e.g.,
using dangling bonds). When ad hoc approximations are in-
troduced, the precision of the correlation energy compared to
a conventional calculation is in general unknown.

We have recently introduced the divide-expand-
consolidate (DEC) local CC method.39, 40 In this method,
a set of local HF orbitals is assigned to each atomic site.
The summation over two occupied orbitals in the correlation
energy is then divided into atomic site and pair interaction
energy contributions. For local orbitals the individual site
energies may be obtained by carrying out CC calculations
on small fragments of the total orbital space, which include
self-adaptive buffer spaces ensuring that the atomic site and
pair interaction energies are determined to a preset energy
tolerance – the fragment optimization threshold (FOT). The
precision of a DEC calculation is defined by the FOT. The
theoretical foundation for DEC given in Ref. 40 was based on
a locality analysis of the CC correlation energy and amplitude
equations.

The fundamental property of the DEC scheme is the par-
titioning of the correlation energy into atomic site and pair
interaction energy contributions leading to a linear scaling al-
gorithm for local orbitals. In this paper, we present a family
of DEC schemes where such partitionings can be performed.
In addition to the occupied space partitioning of the correla-
tion energy previously reported in Refs. 39 and 40, we de-
scribe a virtual space partitioning of the correlation energy
and a partitioning of the Lagrangian correlation energy ex-
pression. In the latter, errors in the atomic site and pair interac-
tion energies are bilinear in the errors in the cluster amplitudes
and multipliers. The Lagrangian partitioning scheme is also

0021-9606/2012/136(1)/014105/16/$30.00 © 2012 American Institute of Physics136, 014105-1
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suitable for determining molecular properties. The various
DEC approaches give different ways of evaluating the cor-
relation energy and an internal consistency check to validate
the calculated correlation energy.

The theoretical foundation for the DEC method is in
this paper analyzed from a different perspective than in
Refs. 39 and 40. An important characteristic of the coupled
cluster energy is that it is invariant with respect to rotations
among the occupied and/or among the virtual orbitals. A the-
oretical derivation demonstrating that the invariances of the
correlation energy is partly preserved for the DEC atomic site
and pair interaction energies will be presented here.

For local HF orbitals the atomic site and pair interac-
tion energies describe Coulomb hole and dispersion energy
contributions to the correlation energy, respectively. For lo-
cal HF orbitals the pair interaction energies thus decay with
the inverse pair distance to the sixth power. The distance de-
cay of the pair interaction energy has previously been used
in the DEC method to reduce the computational scaling from
quadratic to linear by restricting pair interaction energies to
distances where the dispersion energy is non-vanishing. In
this paper, we describe how this distance dependence may
also be used to dramatically reduce the computational cost
for evaluating the pair interaction energies for distances where
the dispersion energy contributions are non-vanishing.

The paper is organized as follows. In Sec. II, we derive
the DEC family of methods for evaluating the standard and
Lagrangian coupled cluster correlation energy, and describe
how the correlation energy may be efficiently evaluated for
a set of local HF orbitals. Section III contains numerical re-
sults to illustrate the foundation for the DEC method, and in
Sec. IV we give some concluding remarks.

II. THE DEC FAMILY OF COUPLED CLUSTER
METHODS

The DEC coupled cluster method was introduced in
Refs. 39 and 40 as a method for carrying out coupled cluster
calculations for large molecular systems using a linear scal-
ing algorithm. In this section, we will introduce a family of
DEC coupled cluster methods and use MP2 as an illustrative
and simple example, recalling that MP2 constitutes the start-
ing point for an extension to higher order CC methods.

In Sec. II A, the standard and Lagrangian correlation en-
ergies are given, and in Sec. II B the HF orbitals are assigned
to atomic sites. In Sec. II C the DEC family of CC methods
is derived by partitioning the correlation energy into atomic
site and pair interaction energy contributions. Two different
partitioning schemes are carried out for the standard correla-
tion energy, while a single partitioning scheme is considered
for the Lagrangian correlation energy. Numerical illustrations
are given in Sec. II D showing that the atomic site energies
may be associated with a description of the Coulomb holes in
the wave function while the pair interaction energies describe
dispersion energy contributions. The numerical results show
that the site energies may be efficiently calculated in a local
basis as described in Sec. II E. A physical interpretation of the
atomic site and pair interaction energy contributions in terms
of local orbitals is given in Sec. II F.

A. Standard and Lagrangian correlation energy

We consider a closed-shell molecule. The total MP2 en-
ergy, EMP2, is obtained from the general coupled cluster en-
ergy in Eq. (A2) neglecting the singles contributions

EMP2 = EHF + Ecorr, (1)

where the correlation energy Ecorr is given as

Ecorr =
∑

ijab

tab
ij (2giajb − gibja), (2)

tab
ij are the cluster doubles amplitudes, expressed in the molec-

ular orbital (MO) basis. Indices i and j refer to occupied MOs,
and a and b to virtual MOs. giajb is a two-electron integral in
the HF orbital basis using Mulliken notation.

The MP2 cluster amplitude equation

giajb +
∑

c

(
tcbij Fac + tac

ij Fbc

)
−

∑

k

(
tab
kj Fki + tab

ik Fkj

)
= 0

(3)
is the simplification of the general cluster amplitude equation
in Eq. (A8) where terms of second and higher orders in the
fluctuation potential are neglected.

The Lagrangian expression for the MP2 correlation en-
ergy may be expressed as

Lcorr =
∑

ijab

tab
ij (2giajb − gibja)

+
1

2

∑

ijab

t̄ab
ij

[
giajb +

∑

c

(
tcbij Fac + tac

ij Fbc

)

−
∑

k

(
tab
kj Fki + tab

ik Fkj

)
]

, (4)

where the cluster multiplier equation reads

2(2giajb − gibja) +
∑

c

(
t̄cbij Fac + t̄ac

ij Fbc

)

−
∑

k

(
t̄ab
kj Fki + t̄ab

ik Fkj

)
= 0, (5)

which is the simplification of Eq. (A9) where the terms of
second and higher orders in the fluctuation potential are ne-
glected. From Eqs. (3) and (5) we see that

t̄ab
ij = 4tab

ij − 2tba
ij . (6)

For MP2 the multipliers can thus be determined directly from
the amplitudes.

B. Assignment of HF orbitals to atomic sites

Assuming we have carried out a HF calculation, the HF
orbitals may be assigned to atomic sites, for example by asso-
ciating a HF orbital to the atomic site where it has the largest
Mulliken charge. An atomic site P thus has assigned a set of
occupied P and virtual P orbitals, see Figure 1. To obtain
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FIG. 1. An illustration showing how a one dimensional system is divided into atomic sites I, J, K.. which has each been assigned a set of occupied (red) I , J ..
and virtual (blue) I , J .. HF orbitals.

a more homogeneous assignment of orbital spaces to atomic
sites, and to reduce the number of atomic sites, HF orbitals
originally assigned to hydrogenic sites are reassigned to the
atomic site to which the hydrogen form a covalent bond.

For a set of delocalized HF orbitals there is no advantage
in assigning HF orbitals to atomic sites when evaluating the
correlation energy, but for local HF orbitals, simplifications
occur that allows the correlation energy to be evaluated
using a linear scaling algorithm. This will be detailed in
Secs. II D and II E.

Having assigned a set of occupied and virtual HF orbitals
to each atomic site, we may express the correlation energy
in terms of a summation over atomic sites and atomic pair
sites instead of a summation over the individual occupied and
virtual HF orbitals.

C. A family of DEC partitionings of the correlation
energy

For the standard and Lagrangian correlation energy given
in Eqs. (2) and (4), respectively, we may introduce a fam-
ily of DEC CC methods by replacing the summations in
Eqs. (2) and (4) over two occupied or two virtual orbital in-
dices by a summation over atomic sites and pairs of atomic
sites. This leads to CC methods containing a quadratic num-
ber of pair interaction energy contributions. In Sec. II D, we
demonstrate that only a linear number of pairs need to be con-
sidered when local orbitals are used.

For the correlation energy in Eq. (2) there exists two par-
titionings. Either an occupied space partitioning of the orbital
space (superscript o) or a virtual space partitioning of the or-
bital space (superscript v). The third partitioning comes from
a partitioning of the Lagrangian correlation energy in Eq. (4)
and contains elements of both the occupied and virtual parti-
tioning. The three partitionings are

Ecorr =
∑

P

Eo
P +

∑

P>Q

�Eo
PQ, (7)

Ecorr =
∑

P

Ev
P +

∑

P>Q

�Ev
PQ, (8)

Lcorr =
∑

P

LP +
∑

P>Q

�LPQ. (9)

Equation (7) defines the occupied space partitioning,
Eq. (8) the virtual space partitioning, and Eq. (9) the La-
grangian partitioning. The occupied space partitioning was

introduced in Ref. 39 while the virtual and Lagrangian par-
titioning have not been considered previously. The definitions
of the atomic site energies are

Eo
P =

∑

ij∈P

∑

ab

tab
ij (2giajb − gibja), (10)

Ev
P =

∑

ab∈P

∑

ij

tab
ij (2giajb − gibja), (11)

LP =
∑

ij∈P

∑

ab

[
tab
ij (2giajb − gibja)

+
1

2

∑

c

t̄ab
ij

(
tcbij Fac + tac

ij Fbc

)
]

+
∑

ab∈P

∑

ij

[
1

2
t̄ab
ij giajb −

1

2

∑

k

t̄ab
ij

(
tab
kj Fki + tab

ik Fkj

)
]
,

(12)

while the pair interaction energies are given by

�Eo
PQ =

∑

i∈P

j∈Q

∑

ab

tab
ij (2giajb − gibja)

+
∑

i∈Q

j∈P

∑

ab

tab
ij (2giajb − gibja), (13)

�Ev
PQ =

∑

a∈P

b∈Q

∑

ij

tab
ij

(
2giajb − gibja)

+
∑

a∈Q

b∈P

∑

ij

tab
ij (2giajb − gibja), (14)

�LPQ =

⎡
⎢⎢⎢⎣

∑

i∈P

j∈Q

+
∑

i∈Q

j∈P

⎤
⎥⎥⎥⎦

∑

ab

[
tab
ij (2giajb − gibja)

+
1

2

∑

c

t̄ab
ij

(
tcbij Fac + tac

ij Fbc

)
]
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+

⎡
⎢⎢⎢⎣

∑

a∈P

b∈Q

+
∑

a∈Q

b∈P

⎤
⎥⎥⎥⎦

∑

ij

[
1

2
t̄ab
ij giajb

−
1

2

∑

k

t̄ab
ij

(
tab
kj Fki + tikFkj

)
]
. (15)

For the Lagrangian partitioning scheme we have collected the
terms containing Fock matrix elements such that the individ-
ual energy contributions contain either summations over oc-
cupied or virtual orbitals.

Note that no approximations have been made in the cor-
relation energy expressions in Eqs. (7)–(9) relative to Eqs.
(2) and (4); the summations over two occupied or two virtual
indices have just been split into sums over atomic sites and
pair sites.

Using the derivation in Appendix B 1, it follows that the
correlation energy is term-wise invariant with respect to an
orthogonal transformation among the occupied and/or virtual
HF orbitals. From these invariances it follows that some of
the invariance properties are preserved for the different par-
titionings. The invariance with respect to rotations among
virtual orbitals is preserved in Eo

P and �Eo
PQ, while Ev

P and
�Ev

PQ are invariant with respect to rotations among the oc-
cupied orbitals. Conversely, Eo

P and �Eo
PQ are not invariant

with respect to rotations among the occupied orbitals and Ev
P

and �Ev
PQ are not invariant with respect to rotations among

the virtual orbitals. For LP and �LPQ the first two terms in
Eqs. (12) and (15) are invariant with respect to rotations
among virtual orbitals but not among occupied orbitals,
whereas the last two terms are invariant with respect to ro-
tations among occupied orbitals but not virtual orbitals. The
invariances of the atomic site and pair interaction energies are
used to select a set of local orbitals for their evaluation, reduc-
ing the computational scaling to become linear.

D. The correlation energy separated into Coulomb
hole and dispersion energy contributions

We now examine the dependence of the occupied
(virtual) site energies on the occupied (virtual) orbitals by
carrying out calculations using occupied (virtual) orbitals
of different locality, where the locality is measured by the
maximum orbital spread (MOS) for the occupied (virtual)
orbitals. An equivalent investigation will subsequently be
carried out for the Lagrangian energy.

We report MP2/cc-pVDZ calculations on arachidic acid
(saturated fatty acid with composition C20H40O2) and on
a polyalanine alpha-helix containing 8 alanine residues, re-
ferred to as alanine(8). We use geometries obtained from the
MAESTRO program42 where no further optimizations have
been carried out. Arachidic acid is an approximately 24 Å
long (semi-)one-dimensional system, and it thus constitutes
an instructive example where a standard MP2 calculation can
easily be carried out, and where the distance dependence of
the pair interaction energies �EPQ can be observed for large
pair distances rPQ. Alanine(8) is a more three-dimensional

system, where the maximum distance between two atoms is
about 13 Å.

We consider calculations using the localized HF orbitals
of Ref. 43 with m = 2 and using nonlocal canonical orbitals.
In addition, we consider calculations with two sets of HF or-
bitals, where the locality is in between the ones of the canon-
ical HF orbitals and the localized HF orbitals. For arachidic
acid we thus consider four calculations of the occupied (vir-
tual) site energies labeled I aa

2 , I aa
5 , I aa

7 , and I aa
19 , where the sub-

script denotes the approximate MOS (in a.u.) for the occu-
pied (virtual) orbitals – i.e., I aa

2 represents a calculation with
MOS≈2 a.u. for the occupied (virtual) orbitals, and I aa

19 rep-
resents calculations where delocalized canonical orbitals with
MOS≈19 a.u. are used. Similarly, for alanine(8) we consider
four calculations of the occupied (virtual) fragment energies
denoted I al8

2 , I al8
5 , I al8

7 , and I al8
10 .

A log-log plot for arachidic acid showing the atomic site
(red crosses) and pair interaction energies (blue crosses) as a
function of the pair distance are given in Figure 2, while the
corresponding alanine(8) results are given in Figure 3. Atomic
site energies are plotted at a hypothetical 0 on the abscissa.
Results for the occupied partitioning scheme are given in the
plots on the left, while the corresponding results for the vir-
tual partitioning scheme are given in the plots on the right.
The plots are presented in order of increasing orbital locality
(decreasing MOS) from the top – i.e., the top panels contains
canonical HF basis results, and the bottom panels contain re-
sults for the most local HF orbitals. The MOS for the occu-
pied orbitals are given in the left panels, while the MOS for
the virtual orbitals are given in the right panels recalling that
the occupied site energies are invariant with respect to a rota-
tion among the virtual orbitals –and vice versa for the virtual
site energies.
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FIG. 2. Absolute atomic site energies (red crosses at hypothetical zero) and
pair interaction (blue crosses) energies in a.u. for arachidic acid plotted as
a function of the distance (Å) between atomic sites (zero for atomic sites)
for orbitals of different locality as indicated by the maximum orbital spread
(MOS, in a.u.), see the text. The left and right panels show results for the
occupied and virtual partitioning schemes, respectively.
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                                          Distance (Angstrom)

MOS = 1.604
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MOS = 2.335

FIG. 3. Absolute atomic site energies (red crosses at hypothetical zero) and
pair interaction (blue crosses) energies in a.u. for alanine(8) plotted as a func-
tion of the distance (Å) between atomic sites (zero for atomic sites) for or-
bitals of different locality as indicated by the maximum orbital spread (MOS,
in a.u.), see the text. The left and right panels show results for the occupied
and virtual partitioning schemes, respectively.

For the delocalized canonical HF orbital calculations the
pair interaction energies are independent of rPQ, while for the
semi-local orbitals in the middle plots the fragment energies
decay with rPQ for larger rPQ. The I2 results show a clear
r−n

PQ dependence for both arachidic acid and alanine(8) and
for both partitioning schemes. A least squares fit shows that n

≈ 6 as expected for pair interaction energies describing dis-
persion effects (see Appendix C for the distance dependence
of pair interaction energies for local orbitals). The r−6

PQ decay
makes it possible to reduce the computational scaling since
pair interaction energies for large rPQ are vanishing and can
be neglected (Figures 2 and 3, bottom).

For the I2 calculations, the fragment energies have thus
been separated into a contribution (the pair interaction energy)

describing the dispersion energy (the second term of Eqs.
(7) and (8)) and a contribution at rPQ = 0 (the atomic site en-
ergy) describing the Coulomb hole contribution (the first term
of Eqs. (7) and (8)). Note that in the lower left (right) plots of
Figures 2 and 3 we may still have a delocal description of the
Coulomb holes and dispersion energies since the individual
energy contributions are invariant with respect to an orthogo-
nal transformation of the virtual (occupied) orbitals. For ex-
ample, the virtual (occupied) orbitals in the lower left (right)
plot of Figures 2 and 3 may be canonical orbitals.

For both the arachidic acid calculations I aa
5 , I aa

7 and I aa
19

and the alanine(8) I al8
5 , I al8

7 and I al8
10 calculations some of

the site energy contributions are very small compared to the
main trend. This occurs because in our assignment of or-
bitals to atomic sites some of the carbon atomic sites only
gets assigned one occupied HF orbital (the 1s core orbital),
and the dispersion energy where such an atomic site is in-
volved is significantly smaller than the dispersion energy
for atomic sites where valence HF orbitals have also been
assigned.

In Figure 4, we have given a log-log plot of the La-
grangian pair interaction energies for arachidic acid (left)
and alanine(8) (right) as a function of rPQ using the local
occupied and virtual orbitals described in connection with
Figures 2 and 3, bottom. From Figure 4 we see that the La-
grangian pair interaction energies also have an r−6

PQ decay
when local occupied and virtual orbitals are used.

For local HF orbitals Figures 2–4 show that if atomic site
energies are determined to a given tolerance, then beyond a
certain distance the pair interaction energies fall below this
tolerance value (as a result of the distance decay). Thus the
overall precision of the correlation energy will not be compro-
mised by neglecting pairs well beyond this distance, nor will
the precision be made better by including them (due to the
errors in the atomic site energies). Neglecting pairs beyond a
certain cut-off distance reduces the number of pair fragments
from quadratic to linear.

Furthermore, for local HF orbitals Figures 2–4 show
that computing the correlation energy to a precision of 10−2

a.u. is equivalent to neglecting dispersion effects. This is

1e-8

1e-6

1e-4

1e-2

1

5 10 20

E
n
e
rg

y
 (

a
.u

.)

                                                Distance (Angstrom)

arachidic acid

5 10 20

alanine(8)

FIG. 4. Absolute values (a.u) of the Lagrangian pair interaction energies for arachidic acid (left) and alanine(8) (right) plotted as a function of distance (Å)
between atomic sites.
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the case since all pair interaction energies beyond ≈2 Å
fall below 10−2 a.u. A treatment where dispersion effects
are neglected is in general insufficient for accurate chemical
applications.

E. Evaluation of DEC atomic site energies and pair
interaction energies

In this section, we discuss how occupied, virtual and La-
grangian atomic site and pair interaction energies may be
evaluated if both the occupied and virtual orbitals are local.

Consider initially the occupied atomic site energy in Eq.
(10) and assume that both the occupied and virtual orbitals are
local. For ij ∈ P the giajb integral is vanishing if one (or both)
of the charge distributions φ∗

i φa and φ∗
bφj is vanishing. For

a non-vanishing giajb integral it thus follows that ab ∈ [P ],
where [P ] denotes the set of virtual orbitals assigned to the
atomic sites local to atomic site P (including P itself). Similar
arguments may be used for �Eo

PQ, and the summation over
the virtual orbital indices in the occupied atomic site and pair
interaction energies may thus – based on vanishing integrals
– be restricted as

Eo
P =

∑

ij∈P

∑

ab∈[P ]

(
tab
ij

)
(2giajb − gibja), (16)

�Eo
PQ =

∑

i∈P

j∈Q

∑

ab∈[P ]∪[Q]

(
tab
ij

)
(2giajb − gibja)

+
∑

i∈Q

j∈P

∑

ab∈[P ]∪[Q]

(
tab
ij

)
(2giajb − gibja). (17)

The summations in Eq. (16) define the energy orbital space
(EOS) for Eo

P (P ∪ [P ]), and the EOS for �Eo
PQ is the union

of EOS for Eo
P and Eo

Q (P ∪ Q ∪ [P ] ∪ [Q]).
For the virtual and Lagrangian atomic site and pair inter-

action energies we may similarly use the locality of the inte-
grals to express these energies as

Ev
P =

∑

ab∈P

∑

ij∈[P ]

(
tab
ij

)
(2giajb − gibja), (18)

�Ev
PQ =

∑

a∈P

b∈Q

∑

ij∈[P ]∪[Q]

(
tab
ij

)
(2giajb − gibja)

+
∑

a∈Q

b∈P

∑

ij∈[P ]∪[Q]

(
tab
ij

)
(2giajb − gibja), (19)

LP =
∑

ij∈P

∑

ab∈[P ]

⎡
⎣tab

ij (2giajb − gibja)

+
1

2

∑

c∈[P ]

t̄ab
ij

(
tcbij Fac + tac

ij Fbc

)
⎤
⎦

+
∑

ab∈P

∑

ij∈[P ]

⎡
⎣1

2
t̄ab
ij giajb

−
1

2

∑

k∈[P ]

t̄ab
ij (tab

kj Fki + tab
ik Fkj )

⎤
⎦ , (20)

�LPQ =

⎡
⎢⎢⎢⎣

∑

i∈P

j∈Q

+
∑

i∈Q

j∈P

⎤
⎥⎥⎥⎦

∑

ab∈[P ]

⎡
⎣tab

ij (2giajb − gibja)

+
1

2

∑

c∈[P ]

t̄ab
ij

(
tcbij Fac + tac

ij Fbc

)
⎤
⎦

+

⎡
⎢⎢⎢⎣

∑

a∈P

b∈Q

+
∑

a∈Q

b∈P

⎤
⎥⎥⎥⎦

∑

ij∈[P ]

⎡
⎣1

2
t̄ab
ij giajb

−
1

2

∑

k∈[P ]

t̄ab
ij

(
tab
kj Fki + tikFkj

)
⎤
⎦ . (21)

The EOSs for the Lagrangian and virtual partitionings are de-
fined by the atomic site summation, in the same manner as for
the occupied partitioning.

To elaborate on the choice of partitioning for the stan-
dard correlation energy, we note that only an occupied or vir-
tual partitioning can be exploited to give a linear scaling algo-
rithm. A mixed partitioning gives the atomic site energies,

Eov
P =

∑

i∈P

∑

a∈P

∑

jb

tab
ij (2giajb − gibja), (22)

which are nonlocal because the summation indices jb cannot
be restricted to be local to atomic site P due to vanishing
charge distributions as can be done for the occupied and
virtual partitioning schemes in Eqs. (16) and (18).

The conventional correlation energy contribution may be
evaluated using either an occupied or a virtual orbital space
partitioning. For the Lagrangian, we have chosen an approach
where one of the standard correlation energy contributions
are evaluated using an occupied space partitioning and the
other using a virtual space partitioning. This puts equal weight
on the occupied and virtual contributions to the correlation
energy.

In Ref. 40 it was shown that the CC amplitudes entering
the energy expression for an atomic site energy may be
determined by solving CC amplitude equations in a local
orbital fragment space, denoted the amplitude orbital space
(AOS). A locality analysis of the cluster amplitude equation
shows that the AOS in addition to containing the EOS, must
contain buffer spaces for the occupied and virtual orbitals, see
Figure 5. In particular, the orbital fragment for the occupied
partitioning scheme in Figure 5(a) contains an occupied
buffer space (light-blue). Conceptually, it also contains a
virtual buffer space, but in practice the virtual buffer space
is absorbed in the virtual EOS (dark-red). Similarly, the
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P

P

P

P

P

P

(a)

(b)

(c)

FIG. 5. Illustration of a single atomic fragment for atomic site P using occupied (a), virtual (b) and Lagrangian (c) partitionings of the orbital space. Each
square represents the set of occupied or virtual orbitals assigned to a particular atom. For each partitioning scheme the atomic site energy is evaluated using the
energy orbital space (EOS) (dark-red and dark-blue), whereas the CC amplitude equations are solved in the amplitude orbital space (AOS) which is the union
of the EOS and the buffer space (light-blue and pink).

atomic fragment entering the virtual partitioning scheme in
Figure 5(b) contains a virtual buffer space (pink), and an
occupied buffer space, which, in practice, is absorbed in the
occupied EOS (dark-blue). The Lagrangian atomic fragments
Figure 5(c) similarly also contains both an occupied and
a virtual buffer space which both may be absorbed into
the EOS. The EOS and AOS are thus coinciding in the
Lagrangian scheme. This gives a more uniform treatment of
the occupied and virtual orbital space where, e.g., the self
adaptive determination of orbital spaces is simplified and
may be done more rigorously.

The use of buffer spaces allows the EOS amplitudes to
adjust to the surrounding environment to obtain amplitudes
which, to a high precision, are the same as those of a full CC
calculation.

The AOS for determining CC amplitudes for pair inter-
action energies is the union of the AOSs for the atomic site
calculations EP and EQ. In other words, the locality of a DEC
calculation is determined by the locality of the atomic site cal-
culations, in which locality is determined in a system-adaptive

black-box manner. The black box determination of the sizes
of orbital spaces (as defined by the FOT) ultimately ensures
control of the error in the total correlation energy compared
to a full molecular CC calculation.40

When the DEC correlation energy is evaluated the errors
in the amplitudes and multipliers may be divided into two
contributions:

� the amplitudes and multipliers are determined
using a restricted AOS where weak interactions
with amplitudes outside the AOS have been
neglected

� the EOSs have been truncated and the amplitudes out-
side the truncated EOS have been neglected.

When the correlation energy is determined using the DEC La-
grangian framework both the amplitude and multiplier errors
are approximately proportional to the square root of the preset
energy threshold, FOT, because the energy errors of the stan-
dard CC Lagrangian are bilinear in the amplitude errors (see
Appendix A).
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P ∆Eo
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FIG. 6. Illustrations of excitations from local occupied orbitals φi and φj

(blue) into local virtual orbitals φa and φb (red). Left: Short-range electron-
electron repulsion described by the atomic site energies Eo

P (Coulomb hole).
Right: Dispersion effects described by occupied pair interaction energies
�Eo

PQ.

F. Physical interpretation in terms of local orbitals

In Sec. II D, the physical interpretation of the fragment
energies was discussed for full molecular calculations using
HF orbitals of different locality. Having established that the
site energies can be calculated using small local orbital spaces
when both occupied and virtual orbitals are local, we are now
in a position to give a more explicit intuitive interpretation of
the site energies.

The contributions to the atomic site energies may be ex-
pressed in terms of orbital pair contributions as

Eo
P =

∑

ij∈P

Eo
Pij

(23)

Ev
P =

∑

ab∈P

Ev
Pab

(24)

where

Eo
Pij

=
∑

ab

tab
ij (2giajb − gibja), ij ∈ P (25)

Ev
Pab

=
∑

ij

tab
ij (2giajb − gibja), ab ∈ P (26)

Eo
Pij

arises predominantly from a description of the Coulomb
hole resulting from occupying both φi and φj in the wave
function, recalling that for local orbitals the orbitals assigned
to the same atomic site occupy the same regions in space. In
Figure 6 (left), a graphical representation is given for an in-
dividual contribution to Eo

Pij
of Eq. (25). Similarly Ev

Pab
arise

predominantly from a description of the virtual Coulomb hole

resulting from occupying both φa and φb in the wave function.
A graphical representation is given for an individual contribu-
tion to Ev

Pab
in Figure 7 (left).

P

δ+
δ
−

δ
−

δ+

Q

P

∆Ev
PQEv

P

FIG. 7. Illustrations of excitations from local occupied orbitals φi and φj

(blue) into local virtual orbitals φa and φb (red). Left: Short-range electron-
electron repulsion described by the atomic site energies Ev

P (Coulomb hole).
Right: Dispersion effects described by virtual pair interaction energies �Ev

PQ.

The dispersion interactions (also known as induced
dipole-dipole interactions) described by �Eo

PQ (Figure 6,

right) and �Ev
PQ (Figure 7, right) has an r−6

PQ dependence (as
discussed in connection with Figures 2 and 3). This is shown
explicitly for local orbitals in Appendix C. The dispersion en-
ergies are in general attractive as indicated by the induced par-
tial charges. It turns out to be crucial to exploit the distance
dependence of dispersion energies for an efficient evaluation
of the correlation energy as discussed in Sec. III D.

III. NUMERICAL EXAMPLES OF ATOMIC SITE AND
PAIR SITE INTERACTION ENERGIES

We now compare DEC MP2 results evaluated to a given
FOT against results from full DEC MP2 calculations for the
arachidic acid and alanine(8) molecules of Sec. II D, where
we use the local occupied and virtual orbitals of Ref. 43 with
m = 2. Full DEC MP2 corresponds to Eqs. (7)–(15) and is
equivalent to a full MP2 calculation (which in principle cor-
responds to FOT = 0). In particular, we compare atomic site
energies and pair interaction energies obtained in DEC calcu-
lations to a given FOT with their counterparts from the full
DEC MP2 calculations. The error analysis of the pair interac-
tion energies will be used to demonstrate how computational
savings may be obtained for evaluating the dispersion (pair
interaction) contribution to the correlation energy.

A. Total errors in DEC MP2 energies

In Tables I–IV, we report the total errors in the atomic
site energies, pair interaction energies, and the correlation en-
ergy for arachidic acid and alanine(8) respectively. Errors are
computed for the FOTs = 10−2, 10−3, 10−4, 10−5, and 10−6

a.u.

TABLE I. Sum of all errors (a.u.) in atomic site energies and pair interaction energies for arachidic acid.

Occupied partitioning Virtual partitioning Lagrangian partitioning

FOT
∑

P δEo
P

∑
P>Q δ�Eo

PQ

∑
P δEv

P

∑
P>Q δ�Ev

PQ

∑
P δEv

P

∑
P>Q δ�Ev

PQ

10−2 8.97 × 10−2 4.82 × 10−2 1.79 × 10−1 7.22 × 10−2 1.50 × 10−1 4.99 × 10−2

10−3 1.79 × 10−2 1.04 × 10−2 2.09 × 10−2 6.70 × 10−3 1.38 × 10−2 4.93 × 10−3

10−4 2.19 × 10−3 1.01 × 10−3 1.40 × 10−3 4.69 × 10−4 1.37 × 10−3 5.80 × 10−4

10−5 1.78 × 10−4 9.07 × 10−5 1.97 × 10−4 5.92 × 10−5 1.25 × 10−4 5.33 × 10−5

10−6 2.18 × 10−5 1.07 × 10−5 7.64 × 10−6 3.22 × 10−6 1.50 × 10−5 5.09 × 10−6
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TABLE II. Sum of all errors (a.u.) in atomic site energies and pair interaction energies for alanine(8).

Occupied partitioning Virtual partitioning Lagrangian partitioning

FOT
∑

P δEo
P

∑
P>Q δ�Eo

PQ

∑
P δEv

P

∑
P>Q δ�Ev

PQ

∑
P δEv

P

∑
P>Q δ�Ev

PQ

10−2 2.04 × 10−1 1.14 × 10−1 3.96 × 10−1 2.26 × 10−1 3.37 × 10−1 1.37 × 10−1

10−3 5.18 × 10−2 3.75 × 10−2 5.44 × 10−2 3.66 × 10−2 2.72 × 10−2 1.22 × 10−2

10−4 4.71 × 10−3 2.11 × 10−3 5.43 × 10−3 3.99 × 10−3 4.21 × 10−3 2.17 × 10−3

10−5 4.45 × 10−4 2.94 × 10−4 4.98 × 10−4 9.33 × 10−4 4.44 × 10−4 1.94 × 10−4

10−6 5.66 × 10−5 9.01 × 10−5 4.10 × 10−5 5.09 × 10−5 3.71 × 10−5 1.53 × 10−5

The results in Tables I–IV demonstrate that the total er-
rors for both atomic site and pair interaction energies are pro-
portional to the FOT. The errors in the atomic site energies
appear to be slightly larger than the pair interaction energy
error, but of the same order of magnitude. The error in the
total correlation energy – being the sum of the atomic site
and pair interaction energy errors – is also proportional to the
FOT for all three partitioning schemes. Consequently, the oc-
cupied, virtual and Lagrangian partitionings schemes consti-
tute three alternative strategies for calculating the correlation
energy. The errors in the Lagrangian approach appear to be
slightly more systematic than the errors for the occupied and
virtual partitioning schemes, which is presumably due to the
variational nature of the Lagrangian approach and the uniform
treatment of the occupied and virtual orbital spaces.

B. Errors in DEC MP2 atomic site energies

The errors for each individual atomic site energy is vi-
sualized in Figure 8 for arachidic acid and in Figure 9 for
alanine(8). Note that since no orbitals have been assigned to
the hydrogen atoms, there are 22 atomic sites in arachidic acid
and 41 in alanine(8).

Figures 8 and 9 illustrates the meaning of the FOT,
namely that all atomic site errors are proportional to the FOT.
As the FOT is tightened with an order of magnitude, the errors
drop one order of magnitude, showing the error control that
the FOT poses on the calculation. In other words, the sizes of
the spaces used in the summations in Eqs. (16), (18), and (20)
have been expanded in a black-box manner until the atomic
site energy is converged with an error proportional to the FOT.

C. Orbital fragment sizes in DEC MP2 calculations

In Tables V and VI, the mean and maximum number of
orbitals in the AOS are given for arachidic acid and alanine(8)
for various FOTs. The number of orbitals in a fragment is an

TABLE III. Total errors (a.u.) in the correlation energy for arachidic acid.

FOT δEo
corr δEv

corr δLcorr

10−2 1.38 × 10−1 2.51 × 10−1 2.0 × 10−1

10−3 2.83 × 10−2 2.76 × 10−2 1.87 × 10−2

10−4 3.20 × 10−3 1.87 × 10−3 1.95 × 10−3

10−5 2.69 × 10−4 2.56 × 10−4 1.78 × 10−4

10−6 3.25 × 10−5 1.09 × 10−5 2.01 × 10−5

important measure, since it dictates the cost of both atomic
site and pair interaction energy calculations. To make it easier
to compare the three partitionings the number of orbitals are
presented as X(Y), where X is the number of occupied orbitals
and Y the number of virtual orbitals.

Tables V and VI show how the size of the fragments cor-
relates with the FOT. As the FOT is tightened, both the occu-
pied and virtual spaces increase in size. As the FOT is propor-
tional to the error in the correlation energy, Tables V and VI
thus show the sizes of the fragment orbital spaces required to
obtain the correlation energy to a given precision.

We note that the AOS sizes are FOT dependent, but inde-
pendent of molecular size. To illustrate this, the maximum and
average size (Figure 10 left and right respectively) of the oc-
cupied and virtual orbitals in the AOS is plotted as a function
of molecular size for the occupied partitioning scheme (sim-
ilar results are obtained for the other partitioning schemes).
The calculations were carried out for a series of polyalanine
α-helices for FOT = 10−4 a.u. for the occupied space par-
titioning in a cc-pVDZ basis. The polyalanine sizes ranges
from 13 atoms for alanine(1) to 203 atoms for alanine(20). As
seen from Figure 10 the orbital fragment sizes increase with
molecular size for very small molecules, but converges to be-
come independent of molecular size.

Due to overlapping fragments, there is a large overhead
associated with fragment evaluation. To reduce this overhead
several spatially close atomic fragments may be combined
into a super fragment.

D. Errors in DEC MP2 pair interaction calculations

We now investigate the pair interaction energies for
arachidic acid and alanine(8). We consider the errors in pair
interaction energies obtained from DEC MP2, where the ref-
erence energies are the MP2 pair interaction energies from
full MP2 calculations. The pair interaction energy error are
plotted as a function of rPQ for arachidic acid in Figure 11

TABLE IV. Total errors (a.u.) in the correlation energy for alanine(8).

FOT δEo
corr δEv

corr δLcorr

10−2 3.18 × 10−1 6.22 × 10−1 4.74 × 10−1

10−3 8.93 × 10−2 9.10 × 10−2 3.95 × 10−2

10−4 6.82 × 10−3 9.42 × 10−3 6.38 × 10−3

10−5 7.39 × 10−4 1.43 × 10−3 6.38 × 10−4

10−6 1.47 × 10−4 9.90 × 10−5 5.24 × 10−5
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TABLE V. The average and maximum number of orbitals in the occupied space (virtual space) for occupied, virtual
and Lagrangian atomic sites for arachidic acid, determined to a given FOT in a DEC MP2 calculation.

Occupied scheme Virtual scheme Lagrangian scheme

FOT (a.u) Avg Max Avg Max Avg Max

10−2 7.9(68.4) 9(100) 14.1(20.2) 19(35) 8.2(40.1) 12(75)
10−3 7.9(93.5) 9(104) 19.5(91.5) 28(104) 17.1(93.9) 28(141)
10−4 19.5(139.3) 21(185) 28.6(96.9) 36(115) 26.0(131.4) 33(185)
10−5 25.5(191.0) 29(225) 37.5(143.9) 56(165) 36.0(186.3) 48(241)
10−6 32.4(240.2) 40(310) 53.9(167.2) 77(245) 46.5(231.5) 60(285)

FIG. 8. Errors (a.u.) for arachidic acid atomic site energies plotted against
site number compared to a full MP2 calculation using the occupied (left),
virtual (middle) and Lagrangian (right) partitioning schemes for different
FOTs.

FIG. 9. Errors (a.u.) for alanine(8) atomic site energies plotted against frag-
ment number compared to a full MP2 calculation using the occupied (left),
virtual (middle) and Lagrangian (right) partitioning schemes for different
FOTs.

FIG. 10. The maximum (left) and average (right) number of occupied and
virtual orbitals entering a DEC calculation for polyalanines of different sizes.

FIG. 11. Errors in �Eo
PQ (left), �Ev

PQ (middle) and �LPQ (right) for

arachidic acid when computed for FOTs 10−2 (green pluses), 10−3 (blue
crosses), 10−4 (purple stars), 10−5 (blue open squares) and 10−6 (brown
filled squares). All FOTs are in a.u.

TABLE VI. The average and maximum number of orbitals in the occupied space (virtual space) for occupied, virtual
and Lagrangian atomic fragments for alanine(8), determined to a given FOT in a DEC MP2 calculation.

Occupied scheme Virtual scheme Lagrangian scheme

FOT (a.u) Avg Max Avg Max Avg Max

10−2 3.8(52.5) 5(117) 7.7(19.9) 12(36) 8.2(41.4) 12(104)
10−3 6.0(108.8) 12(205) 20.2(67.1) 32(111) 25.7(119.9) 37(229)
10−4 22.0(184.3) 44(344) 43.5(140.4) 67(229) 45.5(181.8) 68(330)
10−5 35.2(312.2) 62(490) 77.7(214.4) 144(345) 69.0(317.1) 96(535)
10−6 48.4(424.7) 103(602) 107.1(338.1) 146(514) 96.0(419.9) 128(582)
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FIG. 12. Errors in �Eo
PQ (left), �Ev

PQ (middle) and �LPQ (right) for ala-

nine(8) when computed for FOTs 10−2 (green pluses), 10−3 (blue crosses),
10−4 (purple stars), 10−5 (blue open squares) and 10−6 (brown filled
squares). All FOTs are in a.u.

and for alanine(8) in Figure 12. The errors are given for
FOTs = 10−2, 10−3, 10−4, 10−5 and 10−6 a.u. for all three
partitioning schemes.

The errors displayed in Figures 11 and 12 decay rapidly
with pair distance as does the exact pair interaction energies
(Figures 2 and 3 (bottom) and Figure 4). Further, the errors for
different FOTs are separated substantiating the error control
that implicitly is imposed on the pair interaction energies via
the FOT. However, from Figures 11 and 12 we also see that
the errors for different FOTs are most clearly separated for the
Lagrangian partitioning. This is due to the variational nature
of the Lagrangian correlation energy and the more uniform
treatment of the occupied and virtual orbital spaces in the La-
grangian partitioning scheme. This makes the Lagrangian the
best candidate for the cost reduction described below.

Having illustrated the predictable behavior of the DEC
pair interaction energy errors, and considering the r−6

PQ decay
of the pair interaction energies (see Appendix C), we are now
in position to reduce the cost for evaluating pair interaction
energies that are not negligible.

Consider the case where we have optimized the atomic
site energies to a FOT = 10−4 a.u. The correlation energy
error relative to a full MP2 calculation will then be propor-
tional to 10−4 a.u. The pair fragments are constructed using
the union of spaces from the corresponding atomic site cal-
culations, and as the pair distance increases the errors in the
pair interaction energies decrease rapidly. Thus, beyond a cer-
tain distance the precision of the pair interaction energies is
unnecessarily high, since the error in the total correlation en-
ergy will be proportional to 10−4 a.u. From Figures 11 and 12
we see that beyond, e.g., ≈5 Å the errors of pair interaction
energies corresponding to FOT = 10−3 a.u. are well below
10−4 a.u. Hence, to reduce the computational cost we may
consider computing pair interaction energies using the atomic
site spaces corresponding to FOT = 10−3 a.u., without affect-
ing the precision of the total correlation energy. Furthermore,
pairs separated by more than ≈10 Å may be completely ne-
glected (as discussed in Sec. II D and in Ref. 39).

The cost reducing scheme described above yields three
regions for the pair interaction energies;

� Region 1: Pair interaction energies are computed from
original atomic site spaces (FOT = 10−4 a.u., rPQ < 5
Å for the above example).

� Region 2: Pair interaction energies are computed from
atomic site spaces obtained using a less tight threshold
(FOT = 10−3 a.u., 5 Å < rPQ < 10 Å for the above
example).

� Region 3: Pair interaction energies are vanishing and
are neglected (rPQ > 10 Å for the above example).

We note that the behavior of the rather different
molecules arachidic acid and alanine(8) is very similar,
since it reflects the nature of dispersion. Therefore, such
cost effective schemes are expected to be general for non-
metallic closed-shell molecules. The most important thing
is to be conservative when choosing where to start making
approximations.

IV. SUMMARY AND PERSPECTIVE

In this paper, we have introduced a family of DEC cou-
pled cluster methods which – in addition to the occupied par-
titioning of the standard CC correlation energy in Refs. 39
and 40 – include a virtual partitioning of the standard corre-
lation energy and a partitioning of the Lagrangian correlation
energy. A detailed theoretical analysis and numerical illus-
trations are provided to demonstrate the performance of the
different DEC partitionings.

We have shown that the atomic site and pair interaction
energies entering the occupied (virtual) partitioning scheme
for the correlation energy are invariant with respect to an
orthogonal transformation among the virtual (occupied) or-
bitals. By selecting local orbitals we have provided a descrip-
tion for the practical evaluation of the atomic site and pair
interaction energies in terms of small orbital fragment calcu-
lations. The orbital fragment CC equations of the occupied,
virtual or Lagrangian DEC partitioning schemes are solved in
an amplitude orbital space that includes buffer spaces, while
the atomic site and pair interaction energies are evaluated us-
ing the subset energy orbital space. Importantly, the occupied,
virtual and Lagrangian partitioning schemes constitute inde-
pendent strategies for evaluating the correlation energy. The
combined use of these schemes may be used to validate the
calculated DEC correlation energy, also for large molecular
systems where a standard reference calculation cannot be car-
ried out.

There are two error sources in the atomic site and pair in-
teraction energies: the error in amplitudes resulting from solv-
ing the CC equations in an orbital fragment space instead of
the full space and the error arising from neglecting amplitudes
outside the energy orbital space. We have shown numerically
that these amplitude errors introduce errors in the atomic site
and pair interaction energies that are proportional to the frag-
ment optimization threshold (FOT). Consequently, the errors
in the atomic site energies, in the pair interaction energies,
and in the total correlation energy are proportional to the pre-
defined FOT.

The DEC evaluation of the correlation energy is on par
with a standard MP2 (canonical) evaluation of the correlation
energy, as the error in the correlation energy and amplitudes
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are fully controlled in both approaches. In a standard calcu-
lation, the precision of the amplitudes and the correlation en-
ergy is determined by a preset residual norm in the amplitude
and multiplier equations, while in the DEC scheme the pre-
cision of the correlation energy is determined by the energy
threshold (FOT) for the atomic site calculations which in turn
determine the precision of the amplitudes and the multipliers.

Although all three schemes have the same error control
and will yield reliable results, the Lagrangian scheme is seen
to have some advantages compared to the occupied and virtual
schemes;

� The variational nature of the Lagrangian scheme yields
errors in amplitudes/multipliers that are roughly pro-
portional to the square root of the FOT.

� The Lagrangian scheme has a more uniform treatment
of the occupied and virtual space.

� With the Lagrangian scheme it is straightforward
to extend the DEC scheme to calculate molecular
properties.

For these reasons the Lagrangian partitioning is our preferred
scheme.

Numerical investigations of the DEC errors show that the
errors in pair interaction energies decay with r−6

PQ in a local or-
bital basis. This result is of major importance, since it implies
that distant pair sites may be evaluated at a much lower FOT
(smaller orbital space) with no loss of precision in the corre-
lation energy. Very distant pairs may be neglected completely,
also without loss of precision. Pair interaction energies eval-
uated at a lower FOT contain much smaller amplitude orbital
spaces, thus speeding up the DEC calculation dramatically.

We have shown that DEC CC and standard CC share the
same solid theoretical foundation. The DEC is governed by a
FOT threshold and – in a local orbital basis – tightening the
FOT results in rapid reduction of errors in the DEC ampli-
tudes and energy. The DEC CC method scales linearly with
system size and provides a predictable accuracy of the re-
sults. The method is also embarassingly parallel (the orbital
fragment calculations are independent), making it computa-
tionally efficient for calculations on large molecular systems
on contemporary computer architectures.
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APPENDIX A: LAGRANGIAN COUPLED CLUSTER
THEORY

The coupled cluster energy may be evaluated in terms of
the CC Lagrangian

LCC = 〈HF|H exp(T )|HF〉

+
∑

μ

t̄μ〈μ| exp(−T )H exp(T )|HF〉 (A1)

where |HF〉 is the Hartree–Fock state. The first term is the
standard coupled cluster energy

ECC = 〈HF|H exp(T )|HF〉 (A2)

and the second term contains the cluster amplitude equations
multiplied with the Lagrangian multipliers. H is the Hamilto-
nian and T is the cluster operator containing singles, doubles,
etc. excitations,

T = T1 + T2 + · · · (A3)

where

T1 =
∑

AI

tAI a
†
AaI =

∑

AI

tAI τA
I , (A4)

T2 =
∑

I>J
A>B

tAB
IJ a

†
AaIa

†
BaJ =

1

4

∑

IJAB

tAB
IJ τAB

IJ , (A5)

and indices I, J, . . . (A, B, . . . ) denote occupied (virtual) HF
spin orbitals. |μ〉 refers to the excitation manifold

|μ〉 = τμ|HF〉 (A6)

where the excitation operator τμ refers to either singles τA
I ,

doubles τAB
IJ etc. excitation operators. Using a shorthand no-

tation the cluster operator may be expressed as

T =
∑

μ

tμτμ. (A7)

The coupled cluster Lagrangian is variational with re-
spect to the cluster amplitudes and multipliers and the equa-
tions for determining these thus becomes

∂LCC

∂t̄ν
= 〈ν| exp(−T )H exp(T )|HF〉 = 0, (A8)

∂LCC

∂tν
= 〈HF|Hτν exp(T )|HF〉

+
∑

μ

t̄μ〈μ| exp(−T )[H, τν] exp(T )|HF〉 = 0.

(A9)

The advantage of using the energy expression LCC compared
to ECC is that when LCC is used the error in the energy will
be bilinear in the error in the amplitudes and multipliers. To
see this assume that we have determined a set of approximate
amplitudes tAμ and multipliers t̄Aμ and have expressed these
in terms of the optimized amplitudes t∗μ and multipliers t̄∗μ
(which satisfy Eqs. (A8) and (A9)) and some correction terms

tAμ = t∗μ + δtμ, (A10)

t̄Aμ = t̄∗μ + δt̄μ. (A11)

Evaluating the energy for the approximate amplitudes and
multipliers using Eq. (A1) gives

LA
CC = 〈HF|H exp(T ∗ + δT )|HF〉 +

∑

μ

(t̄∗μ + δt̄μ)

×〈μ| exp(−T ∗ − δT )H exp(T ∗ + δT )|HF〉

= 〈HF|H exp(T ∗)|HF〉 +
∑

μ

(t̄∗μ + δt̄μ)

×〈μ| exp(−T ∗)H exp(T ∗)|HF〉
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+〈HF|HδT exp(T ∗)|HF〉

+
∑

μ

t̄∗μ〈μ| exp(−T ∗)[H, δT ] exp(T ∗)|HF〉

+O(δt2, δt̄2, δtδt̄), (A12)

where T* and δT are cluster operators that contain the opti-
mized amplitudes and correction amplitudes respectively. We
have used that T* and δT commute and performed a Baker-
Campbell-Hausdorff expansion of exp ( − δT)Hexp (δT). The
second term in Eq. (A12) is zero because it contains the am-
plitude equation in Eq. (A8) for optimized amplitudes. Using
δT =

∑
νδtντ ν the third and fourth term in Eq. (A12) may

be expressed in terms of the multiplier equation in Eq. (A9)
and they therefore vanish. Equation (A12) may therefore be
expressed as

LA
CC = L∗

CC + O(δt2, δt̄2, δtδt̄), (A13)

where L∗
CC = E∗

CC is the energy for the optimized ampli-
tudes and multipliers. From Eq. (A13) we see that the CC
Lagrangian has a bilinear precision in the errors in the am-
plitudes and multipliers. Thus, if the coupled cluster energy
is known to have an error which is proportional to δ then the
errors in the amplitudes and multipliers will be approximately
proportional to δ

1
2 . We note that for MP2 the amplitude and

multiplier equations are identical in the spin orbital basis.41

The error in the Lagrangian correlation energy is therefore
quadratic in the errors in the amplitudes for MP2.

APPENDIX B: ORBITAL INVARIANCE OF THE
COUPLED CLUSTER ENERGY

1. Orbital invariance of the standard coupled cluster
energy

In this section, we summarize the proof that the standard
coupled cluster energy is invariant with respect to rotations
among the occupied and/or virtual HF orbitals, and that it is
termwise so. This proof is important for understanding orbital
rotation invariance properties for atomic site and pair interac-
tion energies entering the DEC scheme.

Consider initially the amplitude equations in a HF spin
orbital basis where an orthogonal transformation has been car-
ried out among the occupied and virtual HF orbitals. Opera-
tors and states in the rotated basis are denoted with a tilde, i.e.,
the creation and annihilation operators in the rotated basis are
given by41

ã
†
A = exp(−κ)a†

A exp(κ) =
∑

C

a
†
C[exp(−κ)]CA, (B1)

ãI = exp(−κ)aI exp(κ) =
∑

K

aK [exp(−κ)]KI , (B2)

where κ is a real anti-symmetric matrix and κ an anti-
Hermitian orbital rotation operator

κ =
∑

K>L

κKL

(
a
†
KaL − a

†
LaK

)
+

∑

C>D

κCD

(
a
†
CaD − a

†
DaC

)
.

(B3)

The rotated Hartree–Fock state and the rotated excitation
manifold are connected to the non-rotated HF state and ex-
citation manifold as

|H̃F〉 = exp(−κ)|HF〉 = |HF〉, (B4)

|μ̃〉 = exp(−κ)|μ〉, (B5)

where we have used that κ|HF〉 = 0 to obtain Eq. (B4). The
CC amplitude equations in the rotated basis read

〈μ̃| exp(−T̃ )H exp(T̃ )|H̃F〉 = 0. (B6)

Equation (B6) holds for any state 〈μ̃| in the rotated basis,
and it therefore also holds for any linear combination of ex-
cited states in the rotated basis. In particular, since there is a
non-singular transformation matrix κ connecting |μ̃〉 and |μ〉,
Eq. (B6) is also satisfied for |μ〉, i.e.,

〈μ| exp(−T̃ )H exp(T̃ )|HF〉 = 0, (B7)

where we also have used Eq. (B4). The cluster operator in the
transformed basis T̃ may be expressed in terms of operators
in the untransformed basis. Consider initially the singles ex-
citation operator. Using Eqs. (B1) and (B2), we obtain

T̃1 =
∑

CK

t̃CK ã
†
C ãK =

∑

AICK

t̃CKa
†
A[exp(−κ)]ACaI [exp(−κ)]IK

=
∑

AI

( ∑

CK

t̃CK [exp(−κ)]AC[exp(−κ)]IK

)
a
†
AaI . (B8)

The amplitudes entering the non-rotated basis in Eq. (A8) and
in Eq. (B7) are both solutions to the amplitude equations, and
therefore T̃1 must be identical to T1 term by term when the
amplitudes are expressed in the same basis. By comparing
Eqs. (A4) and (B8), it thus follows that

tAI =
∑

CK

t̃CK [exp(−κ)]AC[exp(−κ)]IK . (B9)

Equation (B9) shows how the cluster singles amplitudes in
the rotated basis is connected to cluster amplitudes in the non-
rotated basis. Likewise for the higher excitation operators, i.e.,
Tn = T̃n for n = 1, 2, . . . , and therefore T and T̃ are identical,

T = T̃ . (B10)

Using Eqs. (B4) and (B10), it now follows that the cou-
pled cluster energy in Eq. (A2) is invariant with respect to
an orthogonal transformation among the occupied and among
the virtual HF orbitals,

ẼCC = 〈H̃F|H exp(T̃ )|H̃F〉 = 〈HF|H exp(T )|HF〉 = ECC.

(B11)

The correlation energy in Eq. (A2) may be expressed as

ECC = 〈HF|[H, T2] +
1

2

[
[H, T1], T1

]
|HF〉. (B12)

From Eq. (B11) it follows that the individual terms in the cor-
relation energy are invariant with respect to a rotation between
the occupied and/or virtual orbitals. MP2 is a subset of cou-
pled cluster, and therefore the MP2 energy is also invariant
with respect to rotations among occupied and among virtual
orbitals.
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The invariance of the CC energy is also valid when ro-
tations are considered only among the occupied orbitals or
only among the virtual orbitals. This is easily seen since rota-
tions only among occupied orbitals is accomplished by using
[exp ( − κ)]AC = δAC, and similarly [exp ( − κ)]IK = δIK for
rotations only among the virtual orbitals. This means that for
a given subset of the occupied orbitals, one may still rotate
freely among the full set of virtual orbitals, and vice versa.
For example, the T2 atomic site energy contribution

Eo
P(T2) =

1

2

∑

IJ∈P

∑

AB

〈HF|
[
H, a

†
AaIa

†
BaJ

]
|HF〉tAB

IJ (B13)

is invariant with respect to rotations among virtual orbitals.
Likewise,

Ev
P(T2) =

1

2

∑

IJ

∑

AB∈P

〈HF|
[
H, a

†
AaIa

†
BaJ

]
|HF〉tAB

IJ (B14)

is invariant with respect to rotations among occupied orbitals.

2. Orbital invariances of the Lagrangian coupled
cluster energy

In this section, we discuss orbital invariances of the La-
grangian coupled cluster energy. We consider initially the La-
grangian multiplier equation in Eq. (A9) in the rotated HF
basis,

〈H̃F|Hτ̃ν exp(T̃ )|H̃F〉 +
∑

μ̃

t̄μ̃〈μ̃| exp(T̃ )[H, τ̃ν]

× exp(T̃ )|H̃F〉 = 0, (B15)

where t̄μ̃ denotes a multiplier in the rotated basis. Equation
(B15) holds for any excitation operator τ̃ν and therefore also
for τ ν since there is a non-singular orbital transformation con-
necting τ̃ν and τ ν . Using Eqs. (B4) and (B10), we may there-
fore express Eq. (B15) as

〈HF|Hτν exp(T )|HF〉 +
∑

μ̃

t̄μ̃〈μ̃| exp(−T )[H, τν]

× exp(T )|HF〉 = 0. (B16)

Comparing Eq. (B16) and Eq. (A9), it follows that
∑

μ

t̄μ〈μ| =
∑

μ̃

t̄μ̃〈μ̃|. (B17)

Using Eqs. (B4), (B10), and (17) we thus see that the
Lagrangian energy is invariant with respect to an orthogonal
transformation among the occupied and/or virtual orbitals

L̃CC = 〈H̃F|H exp(T̃ )|H̃F〉

+
∑

μ̃

t̄μ̃〈μ̃| exp(−T̃ )H exp(T̃ )|H̃F〉

= 〈HF|H exp(T )|HF〉

+
∑

μ

t̄μ〈μ| exp(−T )H exp(T )|HF〉 = LCC.

(B18)

The coupled cluster Lagrangian energy may be expressed
as

LCC = 〈HF|[H, T2] +
1

2
[[H, T1], T1]|HF〉

+
∑

μ

t̄μ〈HF|τ †
μ

(
H + [H, T ] +

1

2
[[H, T ], T ]

+
1

6
[[[H, T ], T ], T ] +

1

24
[[[[H, T ], T ], T ], T ]

)
|HF〉.

(B19)

From Eq. (B18) it follows that the individual contribu-
tions in Eq. (B19) are invariant with respect to an orthogo-
nal transformation among the occupied and/or virtual orbitals.
Further if in Eq. (B19) H is replaced by the Fock operator each
individual contribution will be invariant with respect to an or-
thogonal transformation among the occupied and/or virtual
orbitals.

The term
∑

μ t̄μ〈HF|τ †
μ[F, T ]|HF〉 corresponds to the

second and fourth terms in Eq. (12). Since F has an occupied-
occupied and virtual-virtual block structure, an argument sim-
ilar to the one leading to Eqs. (B13) and (B14) shows that the
contributions from the second term in Eq. (12) is invariant
with respect to rotation among the virtual orbitals, while the
fourth term in Eq. (12) is invariant with respect to rotations
among the occupied orbitals.

APPENDIX C: DISTANCE DEPENDENCE OF PAIR
INTERACTION ENERGIES

In this appendix, we demonstrate that – for a local HF
basis – the pair interaction energies decay with the inverse pair
distance to the sixth power. For simplicity in the following
analysis we now consider only the MP2 model and therefore
the singles contributions are omitted. Eqs. (13) and (14) may
then be written as

�Eo
PQ =

∑

i∈P
j∈Q

∑

ab

tab
ij (2giajb − gibja)

+
∑

i∈Q

j∈P

∑

ab

tab
ij (2giajb − gibja) (C1)

and

�Ev
PQ =

∑

a∈P
b∈Q

∑

ij

tab
ij (2giajb − gibja)

+
∑

a∈Q

b∈P

∑

ij

tab
ij (2giajb − gibja), (C2)

where the MP2 amplitudes are determined from the MP2 am-
plitudes equations
∑

c

tcbij Fac +
∑

c

tac
ij Fbc −

∑

k

tab
kj Fki −

∑

k

tab
ik Fkj = −giajb,

(C3)
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where F is the Fock matrix. The Fock matrix is block diag-
onal with vanishing occupied-virtual matrix elements due to
the HF orbital optimization condition.

We now examine the decay of �Eo
PQ for large distances

between atomic sites P and Q, i.e., for large rPQ. For a diago-
nally dominant Fock matrix the cluster amplitudes in Eq. (C3)
may be approximated as

tab
ij ≈ −giajb

(
�F ab

ij

)−1
, (C4)

where

�F ab
ij = Faa + Fbb − Fii − Fjj (C5)

and the dominant contribution to �Eo
PQ in Eq. (C1) arising

from the first term is

MPQ = −
∑

i∈P
j∈Q

∑

ab

giajb(2giajb − gibja)
(
�F ab

ij

)−1
. (C6)

A similar contribution arises from the second term in Eq. (C1)
where i resides on Q and j on P. For local HF orbitals the first
integral giajb entering Eq. (C6) is only nonzero if φa is local
to φi and φb is local to φj. For large rPQ distances the charge
distributions φ∗

i φb and φ∗
j φa will thus be vanishing since φb

(φa) cannot be simultaneously local to both φi and φj. Hence,
the contributions from gibja in Eq. (C6) can be neglected, and
the dominant contribution in Eq. (C6) may be expressed as

MPQ ≈ −
∑

i∈P
j∈Q

∑

ab

2g2
iajb

(
�F ab

ij

)−1
. (C7)

We now investigate how MPQ decays as a function of rPQ

by carrying out a multipole expansion of the integral giajb. In-
troducing the charge distributions 
ia = φ∗

i φa centered at X
and 
jb = φ∗

j φb centered at Y and following Ref. 41 a multi-
pole expansion of giajb can be expressed as

giajb =
∞∑

l=0

l∑

m=−l

∞∑

k=0

k∑

n=−k

q ia
lm(X)Tlm,kn(rXY )qjb

kn (Y ). (C8)

The multipole moments of the charge distribution 
ia are
given as

q ia
lm(X) =

∫

ia(r)Rlm(rX)d r, (C9)

where the integration variable r refers to an electronic coor-
dinate, and where

Rlm(rX) =
1

√
(l − m)!(l + m)!

r l
XClm(θ, φ), (C10)

and Clm are complex solid harmonics in Racah’s normaliza-
tion. The multipole moment for the charge distribution 
jb is
given in a similar way. The interaction matrix in Eq. (C8) is
defined as

Tlm,kn(rXY ) = (−1)kI ∗
l+k,m+n(rXY ), (C11)

where

Ilm(rXY ) =
√

(l − m)!(l + m)!r
−l−1
XY Clm(θ, φ). (C12)

Since R00 = 1 and the HF orbitals are orthonormal, it follows
that

q ia
00(X) =

∫

ia(r)R00(rX)d r =

∫

ia(r)dr

=
∫

φ∗
i (r)φa(r)d r = 0, (C13)

and similarly q
jb

00 (Y ) = 0. The multipole expansion in Eq.
(C8) thus starts out with l = 1 and k = 1, and the first
non-vanishing contribution in the interaction matrix becomes
I ∗
l+k,m+n(rXY ) = I ∗

2,m+n(rXY ). Consequently, it follows from
Eq. (C12) that the lowest order contribution to giajb decays as
r−3

XY. The dominant contributions to the pair interaction energy
in Eq. (C6) contain g2

iajb and will hence decay as r−6
XY. For lo-

cal HF orbitals, rXY may be approximated by rPQ and the pair
interaction energies will thus decay as r−6

PQ as expected for
dispersion effects. The smaller non-diagonal contributions to
�Eo

PQ may likewise be shown to decay as r−6
PQ . Using a similar

analysis it may similarly be shown that �Ev
PQ in Eq. (C2) also

decays as r−6
PQ . We note that the r−3

XY decay of giajb was used by
Hetzer, Pulay and Werner in their multipole approximation to
distant pair energies in local MP2 calculations.44
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