
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 352, Number 3, Pages 1381–1403
S 0002-9947(99)02345-4
Article electronically published on October 15, 1999

THE DIXMIER-MOEGLIN EQUIVALENCE
IN QUANTUM COORDINATE RINGS
AND QUANTIZED WEYL ALGEBRAS

K. R. GOODEARL AND E. S. LETZTER

Abstract. We study prime and primitive ideals in a unified setting applicable
to quantizations (at nonroots of unity) of n × n matrices, of Weyl algebras,
and of Euclidean and symplectic spaces. The framework for this analysis is
based upon certain iterated skew polynomial algebras A over infinite fields
k of arbitrary characteristic. Our main result is the verification, for A, of a
characterization of primitivity established by Dixmier and Moeglin for complex
enveloping algebras. Namely, we show that a prime ideal P of A is primitive if
and only if the center of the Goldie quotient ring of A/P is algebraic over k, if
and only if P is a locally closed point – with respect to the Jacobson topology
– in the prime spectrum of A.

These equivalences are established with the aid of a suitable group H act-
ing as automorphisms of A. The prime spectrum of A is then partitioned
into finitely many “H-strata” (two prime ideals lie in the same H-stratum if
the intersections of their H-orbits coincide), and we show that a prime ideal
P of A is primitive exactly when P is maximal within its H-stratum. This
approach relies on a theorem of Moeglin-Rentschler (recently extended to pos-
itive characteristic by Vonessen), which provides conditions under which H
acts transitively on the set of rational ideals within each H-stratum. In addi-
tion, we give detailed descriptions of the strata that can occur in the prime

spectrum of A.
For quantum coordinate rings of semisimple Lie groups, results analogous

to those obtained in this paper already follow from work of Joseph and Hodges-
Levasseur-Toro. For quantum affine spaces, analogous results have been ob-
tained in previous work of the authors.

1. Introduction

For several classes of finitely generated noncommutative algebras, a long-standing
common goal has been to classify the primitive ideals. Toward this end it has often
been necessary to first identify the primitive ideals within the larger set of prime
ideals, and one of the most famous results along these lines was proved by Dixmier
[8] and Moeglin [29]: If U is the enveloping algebra of a finite dimensional complex
Lie algebra, and P is a prime ideal of U , then P is primitive if and only if it is
rational (i.e., C is the center of the Goldie quotient ring of U/P ), if and only if P
is a locally closed point in the prime spectrum of U . Following [40], we will say
that any noetherian algebra whose primitive ideals can be classified in this fashion
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1382 K. R. GOODEARL AND E. S. LETZTER

satisfies the Dixmier-Moeglin Equivalence; over an arbitrary field k, rationality oc-
curs when the center of the appropriate Goldie quotient ring is algebraic over k (cf.
[19], [20], [38]). Our first aim in this paper is to verify the equivalence for a class of
iterated skew polynomial rings that includes quantum matrices and quantum Weyl
algebras, both considered here in the “non-root-of-unity” case; other examples in-
clude quantizations of affine, symplectic, and euclidean spaces. This result can be
viewed as an analog of the Dixmier-Moeglin Equivalence for enveloping algebras of
solvable Lie algebras, whose proof preceded the general case (cf. [9, 4.5.7]), because
such enveloping algebras may be constructed as iterated differential operator rings.

Another motivating context for our work arises from quantizations of the func-
tion algebra on a complex connected semisimple Lie group G. Recently, detailed
descriptions of the prime and primitive spectra have been obtained by Joseph [23],
[24], [25] for Rq[G] and by Hodges-Levasseur-Toro [17] for Cq,p[G]; both of these
studies follow the earlier conjectures in [15], [16] and are concerned with the case
when the parameter q is not a root of unity. A key qualitative feature of these
algebras is that the prime spectrum of the algebra divides into finitely many “H-
strata” (see also [6, 2.4]), where H is a maximal torus of G acting as algebra
automorphisms, and where two prime ideals are in the same stratum exactly when
their H-orbits have the same intersection. It is further proved by these authors
that H acts transitively on each stratum of primitive ideals (in the algebraically
closed case) and that a prime ideal is primitive if and only if it is maximal within
its stratum. For the iterated skew polynomial rings mentioned in the first para-
graph, we establish a similar description, which turns out to be an intermediate
step toward proving the Dixmier-Moeglin Equivalence in our desired setting. For
Rq[G] or Cq,p[G], the equivalence follows directly from the results of Joseph and
Hodges-Levasseur-Toro; see (2.4).

Our approach can be divided into two main steps. In the first we consider
an affine algebraic group H acting rationally (cf. (2.5)) by automorphisms on a
noetherian algebra A. We then assume that there exist only finitely many H-strata
in Spec A, and we prove that the remaining qualitative properties discussed in the
preceding paragraph follow for A. More precisely, we establish the equivalence of
the following four conditions for prime ideals P of A:

(1) P locally closed in Spec A;
(2) P primitive;
(3) P rational;
(4) P maximal within its H-stratum.

It is well known that (1) =⇒ (2) in Jacobson rings, and that (2) =⇒ (3) in the
presence of the Nullstellensatz. Under the assumption that Spec A contains only
finitely many H-strata, it is easy to show that (4) =⇒ (1). Thus our main effort is
devoted to establishing (3) =⇒ (4) under suitable additional hypotheses. Our proof
of this implication rests upon a result of Moeglin and Rentschler, asserting – given
certain extra restrictions – that H must act transitively on each stratum of rational
ideals; included among the required added hypotheses here is the assumption of
an algebraically closed base field of characteristic zero. (A positive characteristic
version of this theorem has recently been obtained by Vonessen [46].) Descent
techniques, partly modelled on those of Irving and Small [20], now allow us to obtain
the equivalence of (1)–(4) for suitable algebras and groups over non-algebraically-
closed fields. (Over algebraically closed fields of characteristic zero, the implication
(3) =⇒ (1) is already present in unpublished work of Moeglin and Rentschler [31];
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our paper does not rely on the results therein, and the methods we employ are
different.) In the second main step, finally, we use techniques from [12] to prove
that the skew polynomial algebras in our setting have only finitely many H-ideals,
and so only finitely many H-strata, where H is a suitable affine algebraic group
acting rationally by automorphisms.

For rational torus actions we are able to prove, furthermore, that the strata are
homeomorphic to the spectra of commutative Laurent polynomial algebras occur-
ring naturally as the centers of suitable localizations; see Section 6.

Examples of finitely generated noetherian algebras that do not satisfy the
Dixmier-Moeglin Equivalence may be found in [19] and references therein.

We are grateful to the referee for suggesting that we include quantum symplectic
and euclidean spaces in this study.

2. Finite Stratification

The first goal of this section is to prove, under suitable hypotheses, that an al-
gebra with finitely stratified prime spectrum satisfies the Dixmier-Moeglin Equiv-
alence. This part of our analysis does not explicitly require a rational action of an
algebraic group; the major nontrivial assumption of the first theorem is that the
group giving the stratification acts transitively on the rational ideals within each
stratum. In the second part of the section, we appeal to work of Moeglin-Rentschler
and Vonessen to obtain this hypothesis in the algebraically closed case, under cer-
tain additional assumptions, where now the acting group is assumed to be affine
algebraic. In characteristic zero, results of Irving and Small then show that the
Dixmier-Moeglin Equivalence descends to the non-algebraically closed case. We
provide an alternate argument, based on algebraic group actions, which allows de-
scent also in positive characteristic. Over algebraically closed fields of characteristic
zero, it already follows from an unpublished paper of Moeglin and Rentschler [31]
that the Dixmier-Moeglin Equivalence holds when the prime spectrum is finitely
stratified by a rational action of an affine algebraic group.

2.1 Notation and Preliminaries. Throughout this section, A will denote a noe-
therian algebra, over a field k, equipped with a group H acting on A by k-algebra
automorphisms. The group of all k-algebra automorphisms of A will be denoted
Autk A.

(i) Tensor products will be assumed over k, unless indicated otherwise. If k′

is a field extension of k, then we will always identify A with its image A ⊗ 1 in
A⊗ k′. Observe in this setting that if P is a prime ideal of A⊗ k′, then P ∩A is a
prime ideal of A. Further information concerning extensions of scalars and prime
ideals may be found, for example, in [43]. The reader is referred to [9] and [28] for
additional background information.

(ii) The set of (left) primitive ideals of A will be denoted PrimA, and the set of
prime ideals of A will be referred to as Spec A. Both PrimA and Spec A will be
equipped with the Jacobson topology. As before, a prime ideal P of A is rational if
the center of the Goldie quotient ring of A/P is algebraic over k, and P is said to
be locally closed if it is a locally closed point of Spec A. (In other words, P is locally
closed if and only if it is strictly contained in the intersection of all those prime
ideals that properly contain it – following the convention that the intersection of
an empty set of ideals is equal to A). The set of rational ideals of A will be denoted
RatA and will also be provided the Jacobson topology (i.e., Rat A is a subspace
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of Spec A). Crucial to the analysis below are the induced actions of H on Spec A,
PrimA, and RatA.

As previously stated, A satisfies the Dixmier-Moeglin Equivalence provided the
sets of rational, locally closed, and primitive ideals all coincide. Note that in [30],
a prime ideal P of A is called “rational” only if Z(Fract(A/P )) coincides with k
(rather than allowing this field to be any algebraic extension of k). However, the
theorem we shall use from that paper, namely [30, 2.12ii] and its extension in [46],
will only be applied in the case when k is algebraically closed. Hence, the conflict
in terminology does not affect our work here.

(iii) Following [28, Chapter 9], we will say that A satisfies the Nullstellensatz
(over k) if A is a Jacobson ring and if all of the endomorphism rings of simple
A-modules are algebraic over k. It follows from [9, 4.1.6], when A satisfies the
Nullstellensatz, that every primitive ideal of A is rational. It is immediate, of
course, that a locally closed prime ideal in a Jacobson ring must be primitive.

(iv) An H-stable ideal (or, more briefly, H-ideal) I is said to be H-prime when
I contains no product of H-ideals that all properly contain it. Next, if J is an ideal
of A, set

(J : H) =
⋂

h∈H
h(J) .

When P is a prime ideal of A, it is easy to verify that (P : H) is an H-prime
ideal of A. Conversely, every H-prime ideal I of A is the intersection of the (finite)
H-orbit of prime ideals minimal over I (cf. [10, Remarks 4*, 5*, p. 338]). The set
of H-prime ideals of A is denoted H -Spec A.

The H-stratum in Spec A of a prime ideal P is then the set of prime ideals P ′

for which (P ′ : H) = (P : H). The H-strata in RatA and PrimA are similarly
defined. Note that every H-stratum in Spec A is a union of H-orbits.

2.2. (i) Assume that A is a Jacobson ring. Set Y = { (P : H) | P ∈ PrimA }. By
(2.1iv), Y is a subset of H -Spec A. Now let I be an H-prime ideal of A, and set J
equal to the intersection of all of the ideals in Y that properly contain I. Assume
further that I is strictly smaller than J ; this assumption will be valid, for example,
when Y is finite. Since I is a semiprime ideal and A is a Jacobson ring, we may now
choose a primitive ideal Q that contains I but does not contain J . Thus I = (Q : H),
and so I ∈ Y . It follows, for example, that if Y is finite, then Y = H -SpecA; hence,
Y is finite if and only ifH -Spec A is finite. In particular,H -Spec A is finite if PrimA
consists of only finitely many H-orbits; a partial converse to this assertion will be
discussed in (2.7).

(ii) Assume now that H -Spec A is finite (but that A is not necessarily a Jacobson
ring). Let P be a prime ideal that is maximal within its H-stratum, and set
I = (P : H). Letting J denote the intersection of all the H-prime ideals of A that
properly contain I, it follows that I is strictly contained in J . Observe that every
prime ideal of A that properly contains P also contains J , and so P is locally closed.

2.3 Proposition. Assume that A satisfies the Nullstellensatz, that H acts transi-
tively on each H-stratum in RatA, and that H -SpecA is finite.

(i) A satisfies the Dixmier-Moeglin Equivalence.
(ii) In A, an arbitrary prime ideal is primitive if and only if it is maximal within

its H-stratum.
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Proof. Let P be a prime ideal of A. It follows from (2.1iii) and (2.2ii) that P
is locally closed if it is maximal within its H-stratum, that P is primitive if it is
locally closed, and that P is rational if it is primitive. It remains to show that if P
is rational, then P is maximal within its H-stratum.

Choose a prime ideal P ′ ⊇ P maximal within the H-stratum of P . It follows
from (2.2ii) that P ′ is locally closed, and from (2.1iii) that it is rational. Because
P and P ′ are rational ideals in the same H-stratum, they are contained within the
same H-orbit. Hence, P = P ′, and therefore P is maximal within its H-stratum,
as desired. (The last equality follows, for example, from the fact that the classical
Krull dimensions of the isomorphic algebras A/P and A/P ′ must be the same.)

2.4 Remarks. Let G be a connected, simply connected, semisimple, complex Lie
group with maximal torus H .

(i) Define the quantum function algebra R = Rq[G] over k(q), as in [25, Chapter
9]. In particular, R is a noetherian k(q)-algebra satisfying the Nullstellensatz [25,
9.2.2], where k is assumed to have characteristic zero. An explicit structure theory
for PrimR has been established by Joseph [23], [24], [25, Chapters 9, 10], following
conjectures (verified for Cq[SLn]) by Hodges-Levasseur [15], [16]. Key to these
results is the action on R, by its character group R∧, via “winding” automorphisms
[25, 1.3.4]. Furthermore, R∧ may be identified with H [25, 10.3.12]. From [25,
10.3.2, 10.3.11] it follows that H acts transitively on each H-stratum in Rat R and
that there are only finitely many H-orbits in RatR. Consequently, Rq[G] satisfies
the hypotheses of (2.3), recalling (2.1iii) and (2.2i). However, the second conclusion
of the proposition, that the primitive ideals are exactly those prime ideals maximal
within their H-strata, is already a fundamental part of the theory [25, 10.3.2,
10.3.7]. Moreover, from [25, 10.3.4, 10.3.7] it follows that every rational ideal of
R is primitive, and by arguing as in [15, proof of 4.3.1], one can deduce from [25,
10.3.2] (cf. [4, 5.6]) that every primitive ideal of R is locally closed.

(ii) Considerations similar to (i) apply to the multiparameter quantum function
algebras Cq,p[G], studied by Hodges-Levasseur-Toro [17]. In particular, H acts tran-
sitively on each H-stratum of rational ideals [17, 4.14], and there are only finitely
many H-strata of rational ideals [17, 4.16]. The Dixmier-Moeglin Equivalence fol-
lows from [17, Section 4], arguing as in [15, 4.4.1], [16, 4.2].

(iii) Quantum function algebras at roots of unity (cf. [7]) are affine PI alge-
bras, and so the primitive ideals are precisely the maximal ideals. These coincide
with the rational ideals (see, e.g., [45, 2.6]), and the Dixmier-Moeglin Equivalence
immediately follows.

2.5. We now recall the definition of a rational action of an algebraic group. In order
to include the case of the group of k-rational points of an algebraic group defined
over the algebraic closure k, assume only that H is a Zariski-closed subgroup of
GLn(k) for some n. The action of H on A is then said to be rational provided
A is a union of finite dimensional H-invariant linear subspaces W` for which the
induced group homomorphisms H → GL(W`) are morphisms of algebraic varieties.
In particular, rational actions are locally finite, but the converse does not hold. For
example, given any group homomorphism φ : k× → k×, there is a locally finite
action of k× on the polynomial ring k[X ] by k-algebra automorphisms such that
α.X = φ(α)X for α ∈ k×. This action is rational only if φ is given by φ(α) = αn

for some n ∈ Z.
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2.6 Theorem. (Moeglin-Rentschler, Vonessen) Assume that the field k is alge-
braically closed, and that the k-algebra A is noetherian. Suppose further that H
is a k-affine algebraic group and that its action on A is rational. Then H acts
transitively on each H-stratum of RatA.

Proof. The original version of this result is proved in [30, 2.12ii] (cf. [40, §2]) under
several additional assumptions: that k has characteristic zero, that A is finitely
generated as a k-algebra, that A ⊗ k′ is noetherian for all extension fields k′ of k,
and that H is connected. The final assumption is easily removed, given that the
identity component of H is a closed, connected, normal subgroup of finite index
(e.g., [3, I.1.2]). Vonessen [46] has recently shown that the theorem as stated can
be proved by a combination of Moeglin and Rentschler’s methods together with
techniques he developed in [45].

Combining (2.2), (2.3), and (2.6), we obtain the following corollary; when the
base field has characteristic zero, part (ii) may be deduced from [31].

2.7 Corollary. Retain the hypotheses of (2.6), and assume that A satisfies the
Nullstellensatz over k = k.

(i) The set of H-orbits in PrimA is finite if and only if H -Spec A is finite. When
H -Spec A is finite, the assignment P 7→ (P : H) induces a bijection from the set of
H-orbits in PrimA onto H -Spec A.

(ii) Suppose that H -Spec A is finite. Then A satisfies the Dixmier-Moeglin Equiv-
alence, and the primitive ideals of A are precisely the prime ideals maximal within
their H-strata.

The remainder of this section is devoted to showing, in certain situations, that
(2.7ii) descends to non-algebraically-closed fields. Descent of the Dixmier-Moeglin
Equivalence in characteristic zero already follows from the work of Irving-Small
[20]; see [43, §8.4] for a more general exposition. In our situation, these results
will not be needed, because the Dixmier-Moeglin Equivalence will follow from the
maximality of rational ideals within their H-strata.

2.8. Let A′ be an over-ring of A, and let H′ be a group acting by automorphisms
on A′. If H is a subgroup of H′, and if the action of each element h ∈ H on A′

restricts to the given action of h on A, then we say that the action of H′ on A′

extends the action of H on A. For instance, the canonical action of a torus (k×)n

on a polynomial ring k[x1, . . . , xn] extends to the canonical action of (K×)n on
K[x1, . . . , xn] whenever K is a field extension of k. We shall further say that the
action of H′ densely extends that of H if (P : H′) = (P : H) for all P ∈ Spec A′.
In the example above, the action of (K×)n densely extends that of (k×)n as long
as k is infinite.

2.9 Lemma. Assume that k′ is an algebraic field extension of k, and that A′ =
A⊗ k′ is noetherian. Suppose that the action of H on A extends to an action of a
group H′ on A′ by k′-algebra automorphisms. IfH -Spec A is finite, then H′- Spec A′

is finite.

Proof. Let Q be a prime ideal of A, and let P1, . . . , Pt denote the prime ideals of A′

minimal over Q⊗ k′. Next, recall that every prime ideal of A′ contracts to a prime
ideal of A (e.g., [43, 2.12.39]). Hence, since Q contains a product of the Pi ∩ A, it
follows that at least one of the Pi contracts to Q. Furthermore, every prime ideal of
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A′ contracting to Q contains Q⊗ k′, and so from Incomparability (cf. [43, 3.4.13′])
it follows that every prime ideal of A′ contracting to Q is in the set {P1, . . . , Pt}.
We have just shown that intersection with A produces a finite-to-one surjection
from Spec A′ onto Spec A. (Cf. [47].)

As noted in (2.1iv), the H-prime ideals of A are exactly the intersections of
finite H-orbits in Spec A, and a similar statement holds for the H′-prime ideals of
A′. It therefore follows from our assumptions that there exist only finitely many
finite H-orbits in Spec A. Also, to prove the lemma it suffices to show that there
exist only finitely many finite H′-orbits in Spec A′. However, it follows from the
preceding paragraph that contraction to A induces a finite-to-one surjection from
the set of finite H′-orbits in Spec A′ onto the set of finite H-orbits in Spec A. The
lemma follows.

2.10 Lemma. Assume that A′ = A⊗ k is noetherian, and suppose that the action
of H on A extends densely to an action, by k-algebra automorphisms, of a group H′

on A′. If every k-rational ideal in A′ is maximal within its H′-stratum in Spec A′,
then every rational ideal of A is maximal within its H-stratum in Spec A.

Proof. Suppose to the contrary that Q0 is a rational ideal of A which is properly
contained in a prime ideal Q1 lying within the same H-stratum. Set E0 equal to the
Goldie quotient ring of A/Q0. Observe that E0 = E0 ⊗k k is an Ore localization of
its noetherian subring (A/Q0)⊗k k, because E0 is obtained therefrom by inverting
regular elements of the form s⊗ 1. Consequently, E0 is noetherian.

By the rationality of Q0, we may regard Z = Z(E0) as a subfield of k, and so we
may set F0 = E0⊗Z k. Since E0 maps surjectively onto F0, the latter is noetherian,
and it follows from a standard lemma (e.g., [43, 1.7.27]) that F0 is simple. We claim
that F0 is its own Goldie quotient ring, which can be proved as follows. Given a
regular element r of F0, choose a field k′ ⊆ k such that k′ is finite over Z and such
that r ∈ E′

0 = E0 ⊗Z k′ ⊆ F0. Since E′
0 is artinian, and since r is regular in E′

0, it
follows that r is invertible in E′

0. Thus every regular element of F0 is invertible (in
F0), and the claim is established.

Now let P0 denote the kernel of the composition of canonical maps

A′ → (A/Q0)⊗k k → E0 → F0,

and observe that P0∩A = Q0. Because the first and third maps in the composition
are surjective and the second is an Ore localization, it follows from the preceding
paragraph that P0 is prime and that F0 is the Goldie quotient ring of A′/P0. Next,
observe (by, e.g., [43, 1.7.24]) that Z(F0) = k. Hence P0 is k-rational.

By [43, 2.12.50], there exists a prime ideal P1 of A′ such that P1 ∩ A = Q1 and
P0 ⊂ P1. From our assumptions on A′ it follows that P0 and P1 are not in the same
H′-stratum.

For i ∈ {0, 1}, set Ji equal to the H′-prime ideal (Pi : H′). As in (2.1iv), we may
choose a prime ideal Mi minimal over Ji such that Ji = (Mi : H′); the finitely many
prime ideals of A′ minimal over Ji are precisely the ideals comprising the H′-orbit of
Mi. However, any product of all of the prime ideals minimal over J0 is contained in
M1, and so – without loss of generality – we may assume that M0 ⊆ M1. Moreover,
M0 ( M1, because J0 ( J1.

Because the action of H′ densely extends that of H, we have

Ji ∩A = (Pi : H′) ∩A = (Pi : H) ∩ A = (Pi ∩A : H) = (Qi : H).
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1388 K. R. GOODEARL AND E. S. LETZTER

Similarly, setting Ni = Mi∩A we have Ji∩A = (Mi : H′)∩A = (Ni : H). Since the
H′-orbit of Mi is finite, so is the H-orbit of Ni, whence Ni is minimal over Ji ∩A.
Therefore, since J0 ∩ A ⊆ N0 ⊆ N1, it follows that J0 ∩ A = J1 ∩ A if and only if
N0 = N1. By Incomparability (cf. [43, 3.4.13′]), M0 ( M1 implies that N0 ( N1,
and so J0 ∩A ( J1 ∩A. But Ji ∩ A = (Qi : H), and we assumed at the beginning
of the proof that (Q0 : H) = (Q1 : H). This contradiction proves the lemma.

2.11. Set A′ = A ⊗ k, and suppose that H′ is a k-affine algebraic group acting
rationally (by k-algebra automorphisms) on A′. Moeglin and Rentschler proved,
for any rational ideal Q of A′, that the map H′ → Ratk A′ given by h′ 7→ h′(Q), for
h′ ∈ H′, is continuous [30, 1.5]. We shall need the corresponding fact for arbitrary
prime ideals:

Lemma. For any Q ∈ Spec A′, the map H′ → Spec A′, given by h′ 7→ h′(Q) for
h′ ∈ H′, is continuous.

Proof. It suffices to show, for any ideal I of A′, that the set

X = {h ∈ H′ | h(Q) ⊇ I}
is closed in H′. Write A′ =

⋃
j∈J Vj for some finite dimensional H′-invariant k-

subspaces Vj . Then X equals the intersection of the sets

Xj = {h ∈ H′ | h(Q ∩ Vj) ⊇ I ∩ Vj},
and so it is enough to show that the Xj are all closed in H′.

Fix j ∈ J , and choose idempotents ej, fj ∈ Endk(Vj) with images Q ∩ Vj and
I ∩ Vj respectively. The set

{g ∈ GL(Vj) | (1− ej)g−1fj = 0}
is clearly closed in GL(Vj). Since the restriction map H′ → GL(Vj) is continuous
by hypothesis, it follows that Xj is closed in H′, as desired.

We now (partially) generalize (2.7ii) to arbitrary infinite fields.

2.12. Suppose that k is infinite, that A⊗ k is noetherian and satisfies the Nullstel-
lensatz over k, and that H is the group of k-rational points of a k-affine algebraic
group H′. (Thus H′ is a Zariski-closed subgroup of some GLn(k), the polynomials
defining H′ can be chosen with coefficients from k, and H = H′ ∩ GLn(k).) We
further assume that the action of H on A is rational; equivalently, this action arises
from a right comodule structure µ : A → A⊗O(H), where O(H) denotes the coordi-
nate ring of H over k (see, e.g., [21, 2.8]). That H acts as k-algebra automorphisms
means that µ must be a k-algebra homomorphism (cf. [30, 1.1]), i.e., A is a right
O(H)-comodule algebra via µ.

Theorem. Suppose that either k is perfect or H′ is reductive. If H -Spec A is finite,
then A satisfies the Dixmier-Moeglin Equivalence, and the primitive ideals of A are
precisely the prime ideals maximal within their H-strata.

Proof. By (2.1iii) and (2.2ii), it suffices to prove that the rational ideals of A are
maximal within their H-strata in Spec A. Set A′ = A ⊗ k. Tensoring the co-
module structure map µ : A → A⊗O(H) with k and composing with the identity
map tensored with the natural inclusion O(H) → O(H′), we obtain a k-algebra
homomorphism

µ′ : A′ → A′ ⊗k O(H) → A′ ⊗k O(H′) → A′ ⊗k O(H′),
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which gives A′ the structure of a right O(H′)-comodule algebra. This yields a
rational action of H′ on A′ by k-algebra automorphisms, which extends the action
of H on A, in the sense of (2.8). In view of (2.9), H′- Spec A′ is finite.

Now let H′
0 denote the identity component of H′, a (closed connected) normal

subgroup in H′ of finite index (cf. [3, I.1.2b]). Also, H′
0 is defined over k [ibid.].

Note, moreover, that the finiteness of H′- Spec A′ ensures that H′
0- Spec A′ is finite.

Setting H0 = H′
0(k) = H′

0 ∩ H, it follows that H0 is a normal subgroup in H of
finite index.

Because either k is perfect or H′ is reductive, it follows from [3, V.18.3] that H0

is dense in H′
0. We claim that the action of H′

0 on A′ densely extends that of H0

on A, in the sense of (2.8). To prove the claim, consider P ∈ Spec A′, and write
X = {P1 ∈ Spec A′ | P1 ⊇ (P : H0)}, a closed subset of Spec A′. By the continuity
of the map h′ 7→ h′(P ) (see (2.11)), the set Y = {h′ ∈ H′

0 | h′(P ) ∈ X} is closed
in H′

0. Since Y contains the dense subgroup H0, it follows that Y must equal H′
0,

and so (P : H0) = (P : H′
0). The claim is thus proved. It now follows from (2.7ii)

and (2.10) that every rational ideal of A is maximal within its H0-stratum.
Finally, let Q0 and Q1 be prime ideals of A, lying in the same H-stratum, such

that Q0 is rational and Q0 ⊆ Q1. Let {h1, . . . , hn} be a transversal for H0 in H,
and observe that

n⋂
i=1

hi(Q1 : H0) = (Q1 : H) = (Q0 : H) ⊆ (Q0 : H0).

Further, each hi(Q1 : H0) = (hi(Q1) : H0), an H0-ideal of A (this uses the nor-
mality of H0 in H). Since (Q0 : H0) is an H0-prime ideal (2.1iv), it follows that
hi(Q1 : H0) ⊆ (Q0 : H0) for some i. But (Q0 : H0) ⊆ (Q1 : H0) because Q0 ⊆ Q1,
and hi(Q1 : H0) cannot be properly contained in (Q1 : H0) because A is noetherian.
Hence, hi(Q1 : H0) = (Q0 : H0) = (Q1 : H0); in particular, Q0 and Q1 belong to
the same H0-stratum. It follows from the preceding paragraph that Q0 = Q1, and
therefore Q0 is maximal within its H-stratum.

3. Skew Polynomial Rings in One Variable

In order to apply the results of the previous section to quantum matrices and
quantized Weyl algebras, we must exhibit rational actions of algebraic groups H
on these algebras such that the number of H-prime ideals is finite. Our approach
to the latter condition relies on the (known) structure of the given algebras as
iterated skew polynomial rings. The purpose of the present section is to provide
the induction step, i.e., to develop conditions under which finiteness of H -Spec
passes from an algebra R to a skew polynomial extension R[y; τ, δ].

3.1 Notation and Preliminaries. Throughout this section, R will denote a noe-
therian algebra over a field k, and S = R[y; τ, δ] a skew polynomial extension of R.
We will follow the conventions of [12, Chapter 2].

(i) We assume that τ is a k-algebra automorphism of R, and that δ is a k-linear
left τ -derivation of R. Recall that the multiplication in S is determined by the rule
yr = τ(r)y + δ(r), and that S is noetherian [28, 1.2.9iv].

(ii) Let H denote a group acting on S by k-algebra automorphisms. Assume
that R is H-stable, that y is an H-eigenvector, and that τ coincides with the action
on R of some h0 ∈ H. Let λ : H → k× denote the H-eigenvalue of y, that is, the
character of H such that h(y) = λ(h)y for h ∈ H.
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(iii) It is convenient to denote by q the reciprocal of the h0-eigenvalue of y, so
that h0(y) = q−1y. For r ∈ R, observe that

τδ(r) = h0

(
yr − τ(r)y

)
= q−1yh0(r)− h2

0(r)q
−1y

= q−1
(
yτ(r) − τ2(r)y

)
= q−1δτ(r).

Thus δτ = qτδ, and so the pair (τ, δ) is a q-skew derivation in the sense of [12]. As
in [12, 2.4ii], it follows that we may extend τ to an automorphism of S such that
τ(y) = q−1y. In the present setting, this extension is given by the action of h0.

(iv) For d ∈ R, the inner τ -derivation r 7→ dr − τ(r)d on R will be denoted δd.

3.2 Lemma. If q is not a root of unity, then every H-prime ideal of S contracts
to a δ-stable H-prime ideal of R.

Proof. Let I be an H-prime ideal of S. Then I ∩ R is an H-stable ideal of R and
in particular is τ -stable. It follows that I ∩R is also δ-stable [12, 2.1v].

Choose a prime ideal P minimal over I; then the H-orbit of P is finite, and
(P : H) = I. Now choose Q ∈ Spec R minimal over P ∩R. The prime ideals h(Q),
for h ∈ H, are minimal over the ideals h(P ) ∩R. But there are only finitely many
ideals of the form h(P ) ∩ R, and there are only finitely many prime ideals in R
minimal over each such ideal. Thus the H-orbit of Q is finite. In particular, the
τ -orbit of Q is finite.

By [12, 10.3], P contracts to either Q or the ideal J = (Q : τ). Hence, I ∩ R =
(P ∩R : H) equals either (Q : H) or (J : H). However, (Q : H) = (J : H), because
τ ∈ H. Therefore I ∩R = (Q : H) is H-prime.

Recall that R is said to be H-simple when its only H-stable ideals are 0 and
itself.

3.3 Lemma. Assume that q is not a root of unity. Suppose that R is H-simple but
S is not.

(i) There is a unique element d ∈ R such that δ = δd and h(d) = λ(h)d for all
h ∈ H.

(ii) There are precisely two H-prime ideals in S, namely 0 and (y − d)S.

Proof. (i) Let I be a proper nonzero H-ideal in S, and let n be the minimum degree
for nonzero elements of I. The set consisting of 0 and the leading coefficients of
the elements in I of degree n is then a nonzero H-ideal of R and so equals R.
Hence, there exists a monic polynomial s ∈ I with degree n, say s = yn + cyn−1 +
[lower terms].

The usual analysis (as, e.g., in [11, 3.5]) of sa − τn(a)s, for a ∈ R, shows that
δ = δd, where d = −(

n
1

)−1

q
qn−1c. For h ∈ H, we have

h(s) = λ(h)nyn + λ(h)n−1h(c)yn−1 + [lower terms].

Then h(s) − λ(h)ns is an element of I of degree < n, whence h(s) = λ(h)ns, and
consequently h(c) = λ(h)c. Thus h(d) = λ(h)d for all h ∈ H.

Suppose also that e ∈ R, with δ = δe and h(e) = λ(h)e, for all h ∈ H. Set
f = d − e. Then h(f) = λ(h)f for all h ∈ H, and fa = τ(a)f for all a ∈ R.
Hence, fR = Rf is an H-ideal of R, and so f is either zero or a unit. However,
τ(f) = q−1f , and so f2 = q−1f2, whence f2 = 0. Therefore f = 0, and so e = d.
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(ii) Set z = y − d; then S = R[z; τ ], and h(z) = λ(h)z for all h ∈ H. Then
zS is an H-ideal of S, and there is an H-equivariant ring isomorphism S/zS ∼= R.
Therefore, S/zS is an H-simple ring, and so zS is an H-prime ideal of S. As in the
proof of part (i), every nonzero H-ideal of S contains a monic polynomial. Since
the product of two monic polynomials is always nonzero, S is an H-prime ring; that
is, 0 is an H-prime ideal of S.

Now let P be a nonzero H-prime ideal of S, and let n be the minimum degree
for nonzero elements of P . As in part (i), there is a monic (in z) polynomial p ∈ P
of degree n, say p = zn + pn−1z

n−1 + · · ·+ p1z + p0. Since p is monic, the Division
Algorithm applies, showing that P = pS = Sp. Note that P ∩R is a proper H-ideal
of R, whence P ∩R = 0. Thus n ≥ 1.

For a ∈ R, observe that pa− τn(a)p is an element of P with degree less than n,
whence pa = τn(a)p. Thus pn−ia = τ i(a)pn−i for all a ∈ R and all i = 1, . . . , n.
Similarly, given h ∈ H, observe that h(p)− λ(h)np is an element of P with degree
less than n, whence h(p) = λ(h)np. Thus h(pn−i) = λ(h)ipn−i for all h ∈ H and
all i = 1, . . . , n. Now each pn−iR = Rpn−i is an H-ideal of R, and therefore pn−i

is either zero or a unit.
We next compute that

zp = zn+1 + τ(pn−1)zn + · · ·+ τ(p1)z2 + τ(p0)z

= zn+1 + q−1pn−1z
n + · · ·+ q−n+1p1z

2 + q−np0z,

and so zp− pz = (q−1 − 1)pn−1z
n + · · · + (q−n+1 − 1)p1z

2 + (q−n − 1)p0z. Since
zp − pz is an element in P of degree n, it must follow that zp − pz = ap, where
a = (q−1−1)pn−1. Thus (q−i−1)pn−i = apn−i+1, for all i = 1, . . . , n, and ap0 = 0.

Suppose that p0 is a unit. Then a = 0, and since q is not a root of unity, it
follows that pn−i = 0 for all i. Thus p = zn. Furthermore, because zS = Sz is an
H-ideal and P is H-prime, z ∈ P . Therefore, n = 1 in this case, whence p = z and
P = zS.

Now assume that p0 = 0. Then p = fz, where f = zn−1 + pn−1z
n−2 + · · ·+ p1.

By the minimality of n, f /∈ P . Since zS is an H-ideal, it follows that z ∈ P , and
we conclude – as in the previous case – that P = zS.

3.4 Proposition. Assume that q is not a root of unity.
(i) There are at most twice as many H-prime ideals in S as in R.
(ii) If all H-prime ideals of R are prime (completely prime), then the same is

true for S.

Proof. (i) By (3.2), every H-prime ideal of S contracts to a δ-stable H-prime ideal
of R. Hence, it suffices to show that at most two H-prime ideals of S can contract
to any given δ-stable H-prime ideal Q in R. After passing to R/Q and localizing
(see, e.g., [12, 2.3]), we may assume that R is an H-simple artinian ring. If S is
H-simple, then S has just one H-prime ideal, namely 0. If S is not H-simple, then
by (3.3), S has just two H-prime ideals.

(ii) As in part (i), we can reduce to the case that R is H-simple artinian. If R
is prime (completely prime), the same is true of S; see, for example, [28, 1.2.9].
If there exists a nonzero H-prime ideal P in S, then by (3.3), P is of the form
(y − d)S, and S/P ∼= R. In this case, P is prime (completely prime) if and only if
R is a prime (completely prime) ring, and we are done.
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4. Iterated Skew Polynomial Rings

Finite stratification is proved for certain iterated skew polynomial extensions in
(4.2), and the Dixmier-Moeglin Equivalence is established for them in (4.4) and
(4.7).

4.1 Notation and Assumptions. Let A = k[y1][y2; τ2, δ2] · · · [yn; τn, δn] be an
iterated skew polynomial ring over the field k. Let H denote a group, acting as
k-algebra automorphisms of A, for which y1, . . . , yn are all H-eigenvectors. (Note
that the image of H in Autk A must therefore be abelian.) For 1 ≤ i ≤ n, set
Ai = k[y1][y2; τ2, δ2] · · · [yi; τi, δi].

We make the following three assumptions:
(a) There are infinitely many distinct eigenvalues for the action ofH on y1. (This

of course implies that k must be infinite.)
(b) Each τi is a k-algebra automorphism of Ai−1 and each δi is a k-linear τi-

derivation of Ai−1.
(c) For 2 ≤ i ≤ n, there exists hi ∈ H such that the restriction of hi to Ai−1

coincides with τi and the hi-eigenvalue of yi is not a root of unity.

4.2 Proposition. The H-prime ideals of A are all completely prime, and there are
at most 2n of them.

Proof. By assumption (a), the only H-prime ideals of A1 are 0 and y1A1. Thus
the desired conclusions hold for A1, and they follow for A by inductively applying
(3.4).

The fact that the H-prime ideals of A are completely prime will allow us, in
Section 6, to develop an explicit picture of the H-strata in Spec A.

4.3. If k′ is an arbitrary field extension of k, then A⊗ k′ is a noetherian k′-algebra
satisfying the Nullstellensatz; see, for example, [28, 1.2.9iv, 9.4.21] for details.

4.4 Theorem. Assume that H is the group of k-rational points of a k-affine al-
gebraic group H′, and that the action of H on A is rational. Suppose further that
either k is perfect or H′ is reductive. Then A satisfies the Dixmier-Moeglin Equiv-
alence, and the primitive ideals of A are precisely the prime ideals maximal within
their H-strata.

Proof. By (4.2) and (4.3), the desired conclusions follow from (2.12).

4.5. In our applications (Section 5), H will be a torus of the form (k×)m, and
so we can take H′ = (k

×
)m, which is linearly reductive (see, e.g., [34, Chapter 5,

Theorem 36]). Thus, we shall be able to apply (4.4) in arbitrary characteristic.
Furthermore, we can always reduce the situation of (4.1) to a case in which H

is replaced by a closed subgroup of a torus. While this process (explained in the
next paragraph) may change the H-strata, it has no effect on the validity of the
Dixmier-Moeglin Equivalence, and so we will obtain the equivalence whenever the
hypotheses of (4.1) are satisfied.

4.6. Assuming – as we can – that the action of H on A is faithful, there is an
embedding of H into the torus D = (k×)n such that the closure of H also acts via
automorphisms of A. To start, observe that the ordered monomials ym1

1 ym2
2 · · · ymn

n

form a k-basis for A. Hence, there is a faithful and rational action of D on A by
vector space automorphisms, where each ordered monomial ym1

1 ym2
2 · · · ymn

n is an
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eigenvector whose eigenvalue is the character (α1, . . . , αn) 7→ αm1
1 αm2

2 · · ·αmn
n . We

identify H and D with their images in the group of vector space automorphisms of
A, and we set E = D ∩Autk A. Then H ⊆ E .

Observe, for a, b ∈ A, that the set {φ ∈ D | φ(ab) = φ(a)φ(b)} is Zariski-closed
in D. Therefore E is a closed subgroup of D, acting rationally on A by k-algebra
automorphisms. Further, E equals the group of k-rational points of an appropriate
k-affine closed subgroup E ′ ⊆ (k

×
)n, namely (k

×
)n ∩ Autk(A ⊗k k), and E ′ is

(linearly) reductive [ibid.]. Since H ⊆ E , we may replace H by E , thus obtaining
the extra hypotheses of (4.4). Hence, we have proved the following theorem:

4.7 Theorem. Let A be an iterated skew polynomial ring over the field k, equipped
with a group H acting via k-algebra automorphisms, as in (4.1). Then A satisfies
the Dixmier-Moeglin Equivalence.

5. Applications

Assume throughout this section that k is an infinite field. We discuss various
quantized algebras for which the Dixmier-Moeglin Equivalence can be obtained via
(4.4).

5.1 Quantum Affine Space. Let A = Oq (kn) be the multiparameter coordinate
ring of quantum affine n-space over k, where q = (qij) is a multiplicatively antisym-
metric n×n matrix over k; that is, qii = 1 and qji = q−1

ij for all i, j. The k-algebra
A is generated by elements y1, . . . , yn subject only to the relations yiyj = qijyjyi

for i, j = 1, . . . , n. There is a natural action of the torus H = (k×)n by k-algebra
automorphisms on A such that (α1, . . . , αn).yi = αiyi for (α1, . . . , αn) ∈ H and all
i. It is already known that the Dixmier-Moeglin Equivalence holds in A [13, 2.5],
and it follows from [13, 2.3, 2.11] that the primitive ideals of A are precisely the
prime ideals maximal in their H-strata. In case k contains a non-root of unity,
these results can also be obtained from (4.4); we leave the details to the reader.

5.2 Quantum Symplectic Space. (i) Next, let A = Oq(sp k2n) be the one-
parameter coordinate ring of quantum symplectic 2n-space over k as in [42, Defini-
tion 14] or [32, 1.1], where q is a nonzero element of k. (To our knowledge, precise
relations for multiparameter quantum symplectic spaces have not appeared in the
literature, although such algebras surely exist.) The algebra A is generated by ele-
ments y1, . . . , y2n satisfying relations originally worked out in [42, p. 210]. We give
the equivalent, simpler set of relations found by Musson [32, 1.1] (cf. [35, 1.1]):

yiyj = qyjyi (i < j; j 6= i′),

yiyi′ = q2yi′yi + (q2 − 1)
i−1∑
l=1

ql−iylyl′ (i ≤ n),

where i′ = 2n + 1− i.
(ii) For each n-tuple α ∈ (k×)n, there is a k-algebra automorphism ω(α) of

A such that ω(α)(yi) = αiyi and ω(α)(yi′ ) = α−1
i yi′ , for all i = 1, . . . , n. In

particular, this gives a faithful rational action of the torus H = (k×)n on A by
k-algebra automorphisms.

(iii) Musson has shown that A can be presented as an iterated skew polynomial
ring of the form

k[y1][y1′ ; τ ′1][y2; τ2][y2′ ; τ ′2, δ
′
2] · · · [yn; τn][yn′ ; τ ′n, δ′n],
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where the k-algebra automorphisms τi, τ
′
i and the k-linear τ ′i -derivations δ′i are

determined as follows:

τi(yj) =

{
q−1yj

qyj

τ ′i(yj) =


q−1yj

qyj

q−2yj

δ′i(yj) =

{
0
(q−2 − 1)

∑i−1
l=1 ql−iylyl′

(j < i),

(j > i′),

(j < i),

(j > i′),

(j = i),

(j 6= i),

(j = i),

[32, 1.2] (cf. [35, 1.10]). Here we have interchanged q and q−1 relative to [32,
1.2] due to our conventions for skew polynomial rings. Observe that τi and τ ′i
coincide with the restrictions to the subalgebras k〈y1, y1′ , . . . , yi−1, y(i−1)′〉 and
k〈y1, y1′ , . . . , yi−1, y(i−1)′ , yi〉 of automorphisms of the form

hi = ω(q−1, q−1, . . . , q−1),

h′i = ω(q−1, q−1, . . . , q−1, q−2, 1, 1, . . . , 1).

With these choices, the hi-eigenvalue of yi is q−1, and the h′i-eigenvalue of yi′ is q2.

In view of (5.2), we may now conclude the following from (4.2) and (4.4):

5.3 Theorem. Let A = Oq(sp k2n) as in (5.2i), and let the torus H = (k×)n act
on A as in (5.2ii). Assume that q is not a root of unity.

(i) The H-prime ideals of A are all completely prime, and there are at most 22n

of them.
(ii) The Dixmier-Moeglin Equivalence holds for A, and its primitive ideals are

precisely the prime ideals maximal within their H-strata.

5.4 Quantum Euclidean Space. Let A = Oq(o kn) be the one-parameter coor-
dinate ring of quantum euclidean n-space as in [42, Definition 12], with generators
y1, . . . , yn. (In case n is odd, we must require that q has a square root in k.) As
in the case of quantum symplectic space, a simpler set of relations is given in [32,
2.1, 2.2], [36, 1.1], and an iterated skew polynomial ring presentation is given in
[32, 2.3], [36, 1.2]; we do not write out the details here.

Let m = bn/2c denote the integer part of n/2. For α ∈ H = (k×)m, there is a k-
algebra automorphism ω(α) of A such that ω(α)(yi) = αiyi and ω(α)(yi′ ) = α−1

i yi′

for i = 1, . . . , m, and such that ω(ym+1) = ym+1 if n is odd. (Here i′ = n + 1− i.)
This gives a rational action of H on A, and one checks easily that the automor-
phisms appearing in the iterated skew polynomial presentation of A coincide with
restrictions of automorphisms ω(α) satisfying (4.1c). Hence, we obtain the following
analog of (5.3) from (4.2) and (4.4):

5.5 Theorem. Let A = Oq(o kn) as in (5.4), and let the torus H = (k×)bn/2c act
on A as in (5.4). Assume that q is not a root of unity.

(i) The H-prime ideals of A are all completely prime, and there are at most 2n

of them.
(ii) The Dixmier-Moeglin Equivalence holds for A, and its primitive ideals are

precisely the prime ideals maximal within their H-strata.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DIXMIER-MOEGLIN EQUIVALENCE IN QUANTIZED ALGEBRAS 1395

5.6 Quantum Matrices. (i) Let A = Oλ,p(Mn(k)) be the multiparameter coor-
dinate ring of quantum n × n matrices over k, as studied in [2], [27], [41], [44].
Here, p = (pij) is a multiplicatively antisymmetric n× n matrix over k, and λ is a
nonzero element of k not equal to −1. The k-algebra A is generated by variables
y11, y12, . . . , ynn subject only to the following relations:

y`myij =


p`ipjmyijy`m + (λ− 1)p`iyimy`j when ` > i and m > j,

λp`ipjmyijy`m when ` > i and m ≤ j,

pjmyijy`m when ` = i and m > j.

(ii) Given any n-tuples α = (α1, . . . , αn) and β = (β1, . . . , βn) in (k×)n, there
are k-algebra automorphisms θl(α) and θr(β) of A such that θl(α)(yij) = αiyij and
θr(β)(yij) = βjyij for all i, j. Set H = (k×)n× (k×)n. There is an action of H on A
defined by mapping H → Autk A according to the rule (α, β) 7→ θl(α)θr(β). This
action is clearly rational.

(iii) Apply the lexicographic ordering to the double indices 11, 12, . . . , nn. If the
variables yij are adjoined in this order, A can be presented as an iterated skew
polynomial ring

k[y11][y12; τ12] · · · [yij ; τij , δij ] · · · [ynn; τnn, δnn],

as shown in [2, pp. 890-891]. Choose `m ∈ {11, . . . , nn}. Let Rlm denote the
k-subalgebra of A generated by {yij | ij < `m}, and let S`m denote the subalgebra
generated by R`m ∪ {y`m}. Then S`m = R`m[y`m; τ`m, δ`m], where τ`m and δ`m

are a k-algebra automorphism and a k-linear τ`m-derivation of R`m determined by
their actions on the generators of R`m as follows:

τ`m(yij) =

{
p`ipjmyij

λp`ipjmyij

δ`m(yij) =

{
(λ− 1)p`iyimy`j

0

when ` ≥ i and m > j,

when ` > i and m ≤ j,

when ` > i and m > j,

otherwise.

Observe that τ`m coincides with the restriction to R`m of the automorphism

h`m = θl(p`1, . . . , p`n)θr(p1m, . . . , pm−1,m, λpmm, λpm+1,m, . . . , λpnm),

and that the h`m-eigenvalue of y`m is λ.

5.7. Let A and H be as in (5.6).
(i) It follows from (4.2), when λ is not a root of unity, that the H-prime ideals

of A are completely prime, and that there are no more than 2n2
of them. (For

instance, when n = 2 there are 14.)
(ii) Note that (i) holds in some cases when the prime ideals of A are not all

completely prime: If n = 2 and p12 = p21 = −1, then

A/〈y21, y22〉 ∼= k〈y11, y12〉/〈y11y12 + y12y11〉.
Hence, 〈y21, y22, y

2
11 − 1〉 is a prime ideal of A that is not completely prime.

(iii) There is a Z×Z-grading on A arising from the double indexing of the vari-
ables yij , and it is straightforward to verify that all of the H-prime ideals of A
are homogeneous with respect to this grading. Now assume that k is algebraically
closed. Then H is a divisible group, and so the only finite H-orbits in Spec A are
singletons. It therefore follows directly from (2.1iv), in the algebraically closed case,
that every H-prime ideal is prime.
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Combining (4.4) and (5.7i), we now obtain:

5.8 Theorem. Let A = Oλ,p(Mn(k)) as in (5.6i), assuming that λ is not a root of
unity. Let the torus H = (k×)n × (k×)n act on A as in (5.6ii). Then the Dixmier-
Moeglin Equivalence is satisfied by A, and its primitive ideals are precisely the prime
ideals maximal within their H-strata.

5.9 Remarks. (i) The multiparameter quantum group Oλ,p(GLn(k)) is obtained
by inverting the quantum determinant of Oλ,p(Mn(k)), which is a normal (but
not necessarily central) element of Oλ,p(Mn(k)); see, e.g., [2, Theorem 3]. Also,
the action of H extends to Oλ,p(GLn(k)), since the quantum determinant is an
H-eigenvector. It is now easy to see that the conclusions of (5.8), again assuming
that λ is not a root of unity, extend to Oλ,p(GLn(k)).

(ii) The Dixmier-Moeglin Equivalence also holds for A = Oλ,p(Mn(k)) when λ is
a root of unity – see [13, 3.2]. This case cannot be handled with the methods used
above, since A can have infinitely many H-prime ideals. For example, let n = 2
and let q be a primitive t-th root of unity (in k) for some odd integer t > 1; then
take λ = q−2 and p =

(
1 q−1

q 1

)
. (Then A reduces to the standard one-parameter

case, often denoted Oq(M2(k)).) In this case, yt
ij is central for all i, j [37, 7.2.1].

Now consider the H-ideals Jα = 〈yt
11y

t
22 − αyt

12y
t
21〉, for α ∈ k. Any prime ideal P

containing two different Jα’s must contain both yt
11y

t
22 and yt

12y
t
21. Since y12 and

y21 are normal in A, and since y11 and y22 are normal modulo either 〈y12〉 or 〈y21〉,
it follows that P must contain one of y12, y21 and one of y11, y22; hence, P has
height at least 2. On the other hand, any prime minimal over a Jα has height 1 by
the Principal Ideal Theorem for normal elements [28, 4.1.11]. Therefore no prime
ideal of A can be minimal over two different Jα’s. Consequently, if we choose an
H-prime ideal Pα minimal over Jα for each α, we obtain infinitely many distinct
H-prime ideals in A.

5.10 Quantum Weyl Algebras. (i) Let A = AQ,Γ
n (k) be the multiparameter

quantized Weyl algebra over k as in [1], [5], [26]. Here, Q = (q1, . . . , qn) ∈ (k×)n,
and Γ = (γij) is a multiplicatively antisymmetric n×n matrix over k. The algebra
A is generated by elements x1, y1, . . . , xn, yn subject only to the following relations:

yiyj = γijyjyi (all i, j),
xixj = qiγijxjxi (i < j),
xiyj = γjiyjxi (i < j),
xiyj = qjγjiyjxi (i > j),
xjyj = 1 + qjyjxj +

∑
m<j(qm − 1)ymxm (all j).

(ii) For each α ∈ H = (k×)n, there is a k-algebra automorphism ω(α) of A such
that ω(α)(xi) = αixi and ω(α)(yi) = α−1

i yi, for all i. In particular, this gives a
faithful rational action of H on A by k-algebra automorphisms.

(iii) For ` = 1, . . . , n, let S2`−1 denote the k-subalgebra of A generated by y1, x1,
. . . ,y`−1, x`−1,y`, and let S2` denote the subalgebra generated by y1, x1, . . . , y`, x`.
We can write A as an iterated skew polynomial ring,

A = k[y1][x1; τ2, δ2][y2; τ3][x2; τ4, δ4] · · · [yn; τ2n−1][xn; τ2n, δ2n],
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where the τ` and δ` are k-algebra automorphisms and k-linear τ`-derivations deter-
mined by their actions on generators as follows:

τ2`−1(yi) = γ`iyi (i < `),
τ2`−1(xi) = γi`xi (i < `),
τ2`(yi) = qiγi`yi (i ≤ `),
τ2`(xi) = q−1

i γ`ixi (i < `),
δ2`(yi) = 0 (i < `),
δ2`(y`) = 1 +

∑
m<`(qm − 1)ymxm

δ2`(xi) = 0 (i < `)

(cf. [22, 2.1, 2.8]). Observe that τ2` coincides with the restriction to S2`−1 of the
automorphism

h2` = ω(q−1
1 γ`1, . . . , q

−1
`−1γ`,`−1, q

−1
` , 1, . . . , 1),

and that τ2`−1 coincides with the restriction to S2`−2 of

h2`−1 = ω(γ1`, . . . , γ`−1,`, q
−1
` , 1, . . . , 1).

With these choices, the h2`-eigenvalue of x` is q−1
` , and the h2`−1-eigenvalue of y`

is q`.

In view of (5.10), we may now conclude the following from (4.2) and (4.4):

5.11 Theorem. Let A = AQ,Γ
n (k) as in (5.10i), and let the torus H = (k×)n act

on A as in (5.10ii). Assume that q1, . . . , qn are not roots of unity.
(i) The H-prime ideals of A are all completely prime, and there are at most 22n

of them.
(ii) The Dixmier-Moeglin Equivalence holds for A, and its primitive ideals are

precisely the prime ideals maximal within their H-strata.

6. Strata Under Torus Actions: The Completely Prime Case

In the previous section we considered certain algebras, equipped with actions by
tori H, for which all of the H-prime ideals are completely prime. In this section we
present a detailed description of the strata occurring in such cases.

6.1. Let A be a noetherian algebra over an infinite field k (of arbitrary character-
istic), and let H = (k×)r be a torus, of (finite) rank r over k, acting rationally on
A by k-algebra automorphisms. (For example, A and H can be assumed to be as
described in (5.1), (5.2), (5.4), (5.6), or (5.10).) Let Ĥ denote the group of rational
characters of H, that is, the set of algebraic group morphisms H → k× under the
operation of pointwise multiplication. Since k is infinite, Ĥ is free abelian of rank
r, with a basis consisting of the component projections (k×)r → k×.

Because H acts rationally, A is spanned by its H-eigenvectors [34, Ch. 5,
Corollary to Theorem 36], and the corresponding eigenvalues lie in Ĥ. Thus
A =

⊕
x∈ĤAx, where Ax denotes the x-eigenspace of A. Further, AxAy ⊆ Axy for

x, y ∈ Ĥ, and so A is graded by the group Ĥ. (Conversely, any grading of A by Zr

arises from a rational action of (k×)r on A, as noted in [39, p. 784].)
In order to analyze the stratum of Spec A corresponding to a particular H-prime

ideal J (not yet assumed to be completely prime), we first pass to the factor algebra
A/J , which is again graded by Ĥ. We then try to simplify the situation by passing
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to an appropriate localization. Unfortunately, a general “graded Goldie Theorem”
– an Ore localization with respect to the homogeneous regular elements, resulting in
a graded-semisimple ring – is not available (cf. [33, Part C, I.1.1]). However, for the
case in which J is completely prime, we need only a “graded Ore Theorem”, which
is quite easy to prove. (As mentioned above, the H-prime ideals of the algebras in
(5.1), (5.2), (5.4), (5.6), and (5.10) are all completely prime.)

6.2 Lemma. Let R be a right Ore domain, graded by a group G, and let E denote
the set of nonzero homogeneous elements of R. Then E is a right denominator
set in R, the localization R[E−1] is graded by G, and every nonzero homogeneous
element of R[E−1] is invertible.

Proof. (The reader is referred to [14] for definitions of unexplained terms.) To verify
that E is a right denominator set, only the right Ore condition needs to be checked,
since the remaining condition (right reversibility) is trivially true in a domain. To
prove that E is right Ore, one easily sees that it suffices to show that rE ∩ eR 6= ∅
for all e ∈ E and all homogeneous elements r ∈ R (cf. [33, Part A, I.6.1]). Since R
is a right Ore domain, there exist s, t ∈ R such that s 6= 0 and rs = et. Suppose
r ∈ Rx and e ∈ Ry, for some x, y ∈ G, and suppose s = s1 + · · ·+ sn, with si ∈ Rzi

for some distinct zi ∈ G. Then t = t1 + · · ·+ tn, for some ti ∈ Ry−1xzi
, such that

rsi = eti. Since some si 6= 0 (whence si ∈ E), this verifies the desired common
multiple condition.

Having verified that E is a right denominator set, we obtain the localization
R[E−1], and we observe that there is a well-defined G-grading on R[E−1] such that
re−1 has degree xy−1 for all r ∈ Rx and e ∈ E ∩ Ry (cf. [33, Part A, I.6.2]). It is
clear that every nonzero homogeneous element of R[E−1] is invertible.

6.3. Let R be a ring graded by a (multiplicative) group G, such that every nonzero
homogeneous element of R is invertible. One says in this situation that R is a
G-graded division ring [33, Part A, I.4]. Note that the identity component R1 is
then a division ring. Also note, for x, y ∈ G, that RxRy = Rxry for all nonzero
ry ∈ Ry; in particular, each Ry is either zero or a 1-dimensional vector space over
R1. Lastly, R is said to be strongly graded provided RxRy = Rxy, for all x, y ∈ G.

Lemma. Assume that G is abelian.
(a) The center Z(R) is a homogeneous subring of R, strongly graded by the

subgroup GZ = {x ∈ G | Z(R) ∩Rx 6= 0} of G.
(b) The ring R is a free Z(R)-module, in which Z(R) is a direct summand.
(c) Suppose that GZ is free abelian of finite rank, with basis {g1, . . . , gn}. Choose

a nonzero element zj ∈ Z(R) ∩Rgj for each j. Then Z(R) is equal to

(Z(R) ∩R1)[z±1
1 , . . . , z±1

n ],

a Laurent polynomial ring over the field Z(R) ∩R1.

Proof. Part (a) is obvious (cf. [33, Part A, I.4.5(3)]), and allows us to write Z(R) =⊕
x∈GZ

Z(R)x, where Z(R)x = Z(R) ∩Rx.
(b) Note that the set G′ = {x ∈ G | Rx 6= 0} is a subgroup of G. After replacing

G by G′, we may assume that Rx 6= 0 for all x ∈ G. (In particular, R is now
strongly graded by G.)

Observe that S =
⊕

x∈GZ
Rx is a homogeneous subalgebra of R containing Z(R)

and strongly graded by GZ . Choose a transversal T for GZ in G, with 1 ∈ T . For

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DIXMIER-MOEGLIN EQUIVALENCE IN QUANTIZED ALGEBRAS 1399

t ∈ T choose a nonzero element rt ∈ Rt, with r1 = 1. Since the multiplication map
GZ × T → G is bijective,

R =
⊕

x∈GZ

⊕
t∈T

Rxt =
⊕

x∈GZ

⊕
t∈T

Rxrt =
⊕
t∈T

Srt.

Thus R is a free left S-module with basis {rt | t ∈ T }, and since this basis includes
r1 = 1, we also see that S is a left S-module direct summand of R. Therefore it
suffices to show that S is a free Z(R)-module in which Z(R) is a direct summand.

Choose nonzero elements zx ∈ Z(R)x for x ∈ GZ . Since Z(R)1 is a field, we can
choose a basis B for S1 as a vector space over Z(R)1, with 1 ∈ B. Hence,

S =
⊕

x∈GZ

S1zx =
⊕
β∈B

⊕
x∈GZ

Z(R)1βzx =
⊕
β∈B

Z(R)β;

that is, S is a free Z(R)-module with basis B. Since 1 ∈ B, this also shows that
Z(R) is a direct summand of S, as desired.

(c) Since the monomials zi1
1 zi2

2 · · · zin
n are homogeneous with distinct degrees

gi1
1 gi2

2 · · · gin
n , it is clear that z1, . . . , zn are algebraically independent over Z(R)1.

For each x ∈ GZ , there exist unique m1, . . . , mn ∈ Z such that x = gm1
1 gm2

2 · · · gmn
n ,

and zx = zm1
1 zm2

2 · · · zmn
n is a nonzero element of Z(R)x. Therefore Z(R) =⊕

x∈GZ
Z(R)1zx = Z(R)1[z±1

1 , . . . , z±1
n ].

6.4 Proposition. Let G be an abelian group and R a G-graded division ring.
(a) If I is an ideal of R, then I = R(I ∩ Z(R)).
(b) If J is an ideal of Z(R), then J = (RJ) ∩ Z(R).

Proof. Part (b) is immediate from (6.3.b).
(a) Set J = I ∩ Z(R), and suppose that I 6= RJ . Choose an element r ∈ I \RJ

with support {x1, . . . , xn} of minimal cardinality. Then write r = r1 + · · ·+ rn for
some nonzero elements ri ∈ Rxi .

First, suppose there exists a nonzero element s ∈ I whose support is properly
contained in {x1, . . . , xn}. After possibly renumbering, we may assume that the
support of s is contained in {x1, . . . , xn−1} and includes x1. Write s = s1+· · ·+sn−1,
with each si ∈ Rxi and s1 6= 0. Now consider the element t = r−1

1 r − s−1
1 s, and

observe that t is an element in I with support contained in {x−1
1 x2, . . . , x

−1
1 xn}. By

the minimality of n, both s and t must lie in RJ . But then r = r1t + r1s
−1
1 s ∈ RJ ,

contradicting our assumptions.
Thus there cannot be any nonzero element in I whose support is properly con-

tained in {x1, . . . , xn}.
Now set r′ = r−1

1 r, which is an element of I with support {1, x−1
1 x2, . . . , x

−1
1 xn}

and identity component 1. Given any nonzero homogeneous element u ∈ R, observe
that u−1r′u has the same support as r′ (because G is abelian), and its identity
component is also 1. Hence, the difference u−1r′u − r′ has support contained in
{x−1

1 x2, . . . , x
−1
1 xn}, and so the element v = r1(u−1r′u − r′) is an element of I

with support contained in {x2, . . . , xn}. By the previous paragraph, v = 0, whence
u−1r′u = r′. Since u was an arbitrary nonzero homogeneous element of R, this last
equality implies that r′ ∈ Z(R). Hence, r = r1r

′ ∈ RJ , another contradiction.
Therefore I = RJ .

6.5 Corollary. If G is an abelian group and R a G-graded division ring, then
contraction and extension provide:
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(a) mutually inverse isomorphisms between the lattices of ideals of R and Z(R);
(b) mutually inverse homeomorphisms between Spec R and Spec Z(R).

We now return to the situation of (6.1) and apply (6.2)–(6.5), obtaining the
following description of the strata:

6.6 Theorem. Let A be a noetherian algebra over an infinite field k, and suppose
that a torus H = (k×)r acts rationally on A by k-algebra automorphisms. Let J be
a completely prime H-invariant ideal of A, and let

SJ = {P ∈ Spec A | (P : H) = J}
be the corresponding H-stratum of Spec A. Then there exists an Ore set EJ in the
algebra A/J such that:

(a) The localization map A → A/J → AJ = (A/J)[E−1
J ] induces a homeomor-

phism of SJ onto Spec AJ .
(b) Contraction and extension induce mutually inverse homeomorphisms between

Spec AJ and Spec Z(AJ).
(c) Z(AJ) is a commutative Laurent polynomial ring over an extension field of

k, in r or fewer indeterminates.

Proof. We may clearly assume that J = 0. As in (6.1), let Ĥ denote the group
of rational characters of H, and grade A by Ĥ. Let EJ denote the set of nonzero
homogeneous elements of A with respect to this grading. Then by (6.2), EJ is
an Ore set in A and the localization AJ = A[E−1

J ] is an Ĥ-graded division ring.
Observe that the prime ideals of A disjoint from EJ are precisely the prime ideals
that contain no nonzero H-eigenvectors. The set of such prime ideals is precisely
SJ , and therefore part (a) follows from standard localization theory (e.g., [14, 9.22],
[28, 2.1.16vii]). Part (b) is given by (6.5), and part (c) follows from (6.3).

6.7. The above description of the H-strata has been noted for certain quantized
algebras in [4, 4.5, 5.1–7]. In view of (5.3), (5.5), (5.7) and (5.11), this description
also holds for the H-strata of the algebras Oq(sp k2n), Oq(o kn), Oλ,p(Mn(k)) and
AQ,Γ

n (k) discussed in (5.2), (5.4), (5.6) and (5.10). We emphasize that these results
do not require k to be algebraically closed, as one might expect if one analyzed the
maximal portion of an H-stratum using the Moeglin-Rentschler-Vonessen transitiv-
ity theorem (2.6). Moreover, a transitivity result suitable for our purposes follows
easily from (6.2)–(6.5), as we now show.

6.8 Theorem. Let A, H, J , and SJ be as described in (6.6).
(a) Every rational ideal in SJ is maximal in SJ .
(b) If k is algebraically closed, then H acts transitively on SJ ∩ RatA.

Proof. We may obviously assume that J = 0 and that SJ∩RatA is nonempty. Now
A is a noetherian domain, graded by the character group Ĥ, which is free abelian
of rank r. Let E denote the set of nonzero homogeneous elements of A. By (6.2), E
is an Ore set in A, and A[E−1] is an Ĥ-graded division ring. Note that the action
of H on A extends naturally to a rational action by k-algebra automorphisms on
A[E−1], and that the H-grading on A[E−1] corresponding to this action coincides
with the one obtained from the localization process. By (6.6a), the localization
map A → A[E−1] induces a bijection from SJ onto Spec A[E−1].
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Consider a prime ideal P ∈ SJ . Since the Ore set E is disjoint from P , its image
in A/P consists of regular elements (e.g., [14, 9.21]). Hence,

Fract(A[E−1]/PA[E−1]) ∼= Fract(A/P ),

and so PA[E−1] is rational if and only if P is rational. Thus the bijection of SJ onto
Spec A[E−1] via localization restricts to a bijection of SJ ∩RatA onto RatA[E−1].
Therefore we may replace A by A[E−1], that is, we may assume that A is an Ĥ-
graded division ring and that SJ = Spec A.

Since Ĥ is free abelian of finite rank, so is the subgroup

GZ = {x ∈ Ĥ | Z(A)x 6= 0}.
Choose a basis {g1, . . . , gn} for GZ , and choose a nonzero element zj ∈ Z(A)gj

for j = 1, . . . , n. By (6.3.c), Z(A) is a Laurent polynomial ring of the form
Z(A)1[z±1

1 , . . . , z±1
n ].

(a) Let P ∈ RatA, and set Q = P ∩Z(A). Then the domain Z(A)/Q embeds in
the center of Fract(A/P ), which is algebraic over k by our assumption on P . Since
Z(A) is a Laurent polynomial ring over the field Z(A)1, it follows that Z(A)1 is
algebraic over k and that Z(A)/Q is a field. In particular, Q ∈ Max Z(A), and thus
P ∈ MaxA by (6.5).

(b) Let P1, P2 ∈ RatA, and set Qi = Pi ∩ Z(A). Since k is now assumed
to be algebraically closed, the observations of the preceding paragraph show that
Z(A)1 = k and that each Qi =

∑n
j=1 Z(A)(zj − αij) for some αij ∈ k×. Thus

by (6.4), each Pi =
∑n

j=1 A(zj − αij). Recall that each zj ∈ Z(A)gj and that the
gj are linearly independent characters of H. Hence, there exists h ∈ H such that
gj(h) = α1jα

−1
2j for all j [18, 16.2C]. Consequently,

h(zj − α1j) = gj(h)zj − α1j = α1jα
−1
2j (zj − α2j)

for all j, from which we conclude that h(P1) = P2.

We conclude by noting that (6.8) yields a direct proof of the special case of (2.12)
corresponding to our present situation.

6.9 Corollary. Let A and H be as in (6.1), and assume that A satisfies the Null-
stellensatz over k. Assume further that H -Spec A is finite, and that all H-prime
ideals of A are completely prime. Then A satisfies the Dixmier-Moeglin Equiva-
lence, and the primitive ideals of A are precisely the prime ideals maximal within
their H-strata.

Proof. By (6.8a), the rational ideals of A are maximal within their H-strata. The
corollary thus follows from (2.1iii) and (2.2ii).

Note added in proof (June 1999). The “graded Goldie Theorem” needed in Sec-
tion 6 to remove the complete primeness hypothesis in Theorem 6.6 has been proved
by the first author and J. T. Stafford [The graded version of Goldie’s theorem,
xxx.lanl.gov/abs/math.RA/9905098].
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