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Abstract We study the relativistic quantum dynamics of a
DKP oscillator field subject to a linear interaction in cosmic
string space-time in order to better understand the effects of
gravitational fields produced by topological defects on the
scalar field. We obtain the solution of DKP oscillator in the
cosmic string background. Also, we solve it with an ansatz
in the presence of a linear interaction. We obtain the wave
functions and the energy levels of the relativistic field in that
background.

1 Introduction

The Duffin–Kemmer–Petiau (DKP) equation is a linear wave
equation that enables theoretical physicists to investigate
both spin-0 and spin-1 fields with a single equation in the rel-
ativistic regime [1–4]. It is a direct generalization of the Dirac
equation based on the so-called DKP algebra [5]. This alge-
bra admits three irreducible representations more commonly
utilised in physics: a one-dimensional trivial representation, a
five-dimensional representation for spin-0 fields, and a ten-
dimensional representation that describes spin-1 fields [6].
The DKP equation is more applicable and much richer than
the Klein–Gordon and Proca equations which describe spin-0
and spin-1 particles, respectively, therefore the DKP equa-
tion is rather more famous. However, the DKP equation has
wide applications on different areas including meson spec-
troscopy, cosmology and nuclear–hadron interactions [7–9].
The DKP equation has been studied with various types of
potentials for spin-0 and spin-1 particles [10–17]. The DKP
theory has been applied to the quark confinement problem of
quantum chromodynamics [18] and to covariant Hamiltonian
dynamics [19]. The theory has also been studied in the casual

a e-mail: hosseinpour.mansoureh@gmail.com
b e-mail: hha1349@gmail.com
c e-mail: fmandrade@uepg.br

approach [20,21], in the context of five-dimensional Galilean
invariance [22] and in the scattering of the K+ nucleus [23].
This equation has been successful in describing high-energy
interactions of hadrons with nuclei and other branches of
physics. The DKP equation has already been used to study
deuteron–nucleus scattering [9], meson nuclear interaction
[7] and a-nucleus elastic scattering [8]. It has also been used
in deuteron–nucleus scattering [9].

On the other hand, the Dirac equation including a lin-
ear harmonic potential was initially studied by Ito et al. [24],
Cook [25] and Ui et al. [26]. This system was latterly called by
Moshinsky and Szczepaniak as Dirac oscillator [27]. More
specifically, they suggested to substitute in the free Dirac
equation the momentum operator �p → �p − imωβ�r . Their
construction lead to a system in which the spectrum is very
similar to that of the non-relativistic harmonic oscillator [27].
Physically, it can be shown that the Dirac oscillator interac-
tion is a physical system, which can be interpreted as the
interaction of the anomalous magnetic moment with a linear
electric field [28,29].

As a relativistic quantum mechanical system, the Dirac
oscillator has been widely studied. Because it is an exactly
solvable model, several investigations have been developed
in the context of this theoretical framework in the last
years. Although the Dirac oscillator is normally introduced
within the context of many body theory, relativistic quan-
tum mechanics and quantum chromodynamics (in particular
as an interquark potential and also as the confining part of
the phenomenological Cornell potential). The interest in this
issue appears in different contexts such as quantum optics
[30–32], supersymmetry [28,33,34], nuclear reactions [35],
the hadronic spectrum using the two-body Dirac oscillator
[36,37] a new representation for its solutions using the Clif-
ford algebra [38,39], non-commutative space [40,41], ther-
modynamic properties [42], Lie algebra symmetries [43],
supersymmetric (non-relativistic) quantum mechanics [44]
the super symmetric path integral formalism [45] the chiral
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phase transition in presence of a constant magnetic field [31],
the relativistic Landau in the presence of external magnetic
field [46] the Aharonov–Bohm effect [47,48] condensed mat-
ter physical phenomena and graphene [49]. The DKP oscil-
lator is an analogous to Dirac oscillator [27].

The DKP oscillator is a kind of tensor coupling with a lin-
ear potential which leads to the harmonic oscillator problem
in the weak-coupling limit. Also, a sort of vector DKP oscil-
lator (non-minimal vector coupling with a linear potential)
has been a topic of recent investigation [50–54]. Vector DKP
oscillator is the name given to the system with a Lorentz vec-
tor coupling which exhibits an equally spaced energy spec-
trum in the weak-coupling limit. The name distinguishes it
from the system called a DKP oscillator with Lorentz tensor
couplings of Refs. [11,12,16,55–66]. By using an external
linear potential, the DKP equation for spin-0 representation
leads to the harmonic oscillator with a strong spin-orbit cou-
pling of the Thomas form for vector bosons. The latter system
is called the DKP oscillator.

The DKP oscillator in the (1 + 2)-dimensional non-
commutative phase space for spin-0 particles has been inves-
tigated in the work of Guo et al. [65]. Yang et al. stud-
ied the DKP oscillator with spin-0 in a three-dimensional
non-commutative phase space [66]. A generalised bosonic
oscillator within the minimal length quantum mechanics has
been analysed in [62]. De Melo et al. released a higher-
dimensional formulation of Galilean covariance to consider
the non-commutative DKP oscillator [67]. Falek and Merad
presented both spin-0 and spin-1 DKP equations in non-
commutative space in the (1 + 3)-dimensional case [64].
Recently, there has been an increasing interest on the so-
called DKP oscillator [11,12,16,50,55–66,68].

Relativistic systems embedded in a magnetic cosmic
string background has inspired a great deal of research in last
years. A cosmic string is a linear defect that changes the topol-
ogy of the medium when viewed globally. The space-time
around a cosmic string is locally flat but not globally. The the-
ory of general relativity predicts that gravitation is manifested
as curvature of space-time. This curvature is characterised by
the Riemann tensor. There are connections between topolog-
ical properties of the space and local physical laws. The non-
trivial topology of space-time, as well as its curvature, leads
to a number of interesting gravitational effects. For example,
it has been known that the energy levels of an atom placed
in a gravitational field will be shifted as a result of the inter-
action of the atom with space-time curvature. Therefore, we
have to consider the topology of the space-time in order to
describe completely the physics of system.

There are good theoretical reasons for believing that these
exotic objects do exist, and reasonable prospects of detect-
ing the existence of cosmic strings. The cosmic strings are
sufficiently massive to have noticeable gravitational effects,
therefore the gravitational field of a cosmic string is quite

remarkable. A particle placed at rest around a straight, infi-
nite, static cosmic string will not be attracted to it, due to
the fact that there is no local gravity. The space-time around
a cosmic string is locally flat but not globally. The general
way to understand the interaction between relativistic quan-
tum mechanical particles and gravity is to solve the gen-
eral relativistic form of their wave equations. These solutions
are valuable tools for examining and improving models and
numerical methods for solving complicated physical prob-
lems. The external gravitational field due to a cosmic string
may be approximately described by a commonly called coni-
cal geometry. The nontrivial topology of this space-time leads
to a number of interesting measurable effects like, for exam-
ple, particle self-force [69,70] and gravitational lensing [71],
as well as for production of highly energetic particles [72–
74].

In this work, we examine the relativistic quantum dynam-
ics of the DKP oscillator in the presence of the linear interac-
tion, on the curved space-time of a cosmic string. From the
corresponding DKP equation, we analyse the influence of
the topological defect on the equation of motion, the energy
spectrum and the wave function. We stress, though, that we
do not have the intention here to give answers to the inter-
esting (and even hard) question of the detection of cosmic
strings. In Sect. 2, we introduce the covariant DKP equa-
tion. In Sect. 3 we present the covariant DKP oscillator in
cosmic string background and obtain the solution of DKP
oscillator In Sect. 4, we present solution of DKP oscillator
presence linear interaction. Finally, in the Sect. 5 we present
our conclusions.

2 Covariant form of the DKP equation in the cosmic
string background

The cosmic string space-time with an internal magnetic field
in cylindrical coordinates is described by the line element
(units such that h̄ = c = 1) [75,76]

ds2 = −dt2 + dr2 + α2r2dϕ2 + dz2, (1)

with −∞ < z < ∞, ρ ≥ 0 and 0 ≤ ϕ ≤ 2π . The angular
parameter α runs in the interval (0, 1] is related to the linear
mass density μ of the string as α = 1−4μ and corresponds to
a deficit angle γ = 2π(1−α). From the geometrical point of
view, the metric in Eq. (1) describes a Minkowski space-time
with a conical singularity.

Since we are working with curvilinear coordinates, it is
convenient to treat the DKP equation by using the mathemat-
ical formulation of this theory in curved space-time back-
ground. This geometry possess a conical singularity repre-
sented by the curvature tensor Rr,ϕ

r,ϕ = [(1 − α)/4α]δ2(�r),
where δ2(�r) is a two-dimensional delta function. This
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behaviour of the curvature tensor is denominated conical sin-
gularity. The conical singularity gives rise to the curvature
concentrated on the cosmic string axis, in all other places the
curvature is null. This configuration defines a conical singu-
larity.

Thus, we start by writing the DKP equation for a free
boson in curved space-time [1–3]

(iβμ∇μ − M)ψ = 0. (2)

The covariant derivative in (2) is given by [77]

∇μ = ∂μ − �μ (x) , (3)

where �μ are the spinorial affine connections given by

�μ = 1

2
ωμab

[
βa, βb

]
. (4)

In terms of the Minkowski flat space-time coordinates, the
algebra generated by the βa matrices has three irreducible
representations: a ten-dimensional one that is related to spin-
1 particles, a five-dimensional one relevant for spin-0 par-
ticles (i.e., spinless particles) and an one-dimensional one
which is trivial. In the spin-0 representation, βa are 5 × 5
matrices defined as

β0 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, β1 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, (5)

β2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, β3 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

. (6)

Theω a
μ b matrices represent the spin connection and are given

by

ω a
μ b = eρ

a e
b
υ�υ

μρ − eυ
a ∂μe

b
υ. (7)

The only non-null components are

ω12
ϕ = −ω21

ϕ = 1 − α. (8)

We can build the local reference frame through a non-
coordinate basis with eāμ where eāμ and eμ

ā are transformation
matrices. The components of the non-coordinate basis eāμ
are called tetrads or vierbeins; they form our local reference
frame. With the line element given by Eq. (1), we can use
tetrads eμ

ā and eāμ as follows:

eμ
ā =

⎛
⎜⎜⎝

1 0 0 0
0 cos ϕ sin ϕ 0
0 − sin ϕ

αr
cos ϕ
αr 0

0 0 0 1

⎞
⎟⎟⎠ , eāμ =

⎛
⎜⎜⎝

1 0 0 0
0 cos ϕ −αr sin ϕ 0
0 sin ϕ αr cos ϕ 0
0 0 0 1

⎞
⎟⎟⎠ .

(9)

The vierbeins form our local reference frame that satisfy the
orthonormality conditions

eμ
a (x) eaν (x) = δ

μ
ν ,

eaμ (x) eμ
b (x) = δab ,

(10)

and they satisfy

gμν (x) = e(a)
μ (x)e(b)

ν (x) ηab . (11)

The Kemmer matrices in curved space-time are related to
their Minkowski counterparts via

βμ (x) = eμ
a βa, (12)

which leads us to their explicit form

β t = β0, (13)

βr = β1, (14)

βϕ = − ωβ0 + 1

rη
β2, (15)

βz = β3, (16)

where β◦, βr , βϕ and βz are the general form of the Kemmer
matrices in the cosmic string space-time.

3 Solution of DKP oscillator in cosmic string
background

In this section, we concentrate our efforts on the interaction
called DKP oscillator. For this external interaction we use
the non-minimal substitution

∂r → ∂r + Mωrη0, (17)

where ω is the oscillator frequency and η0 = 2
(
β0

)2 −
1. Considering only the radial component, with the non-
minimal substitution one gets

[iβ◦∂t + iβr (∂r + Mωrη0) + iβϕ(∂ϕ − �ϕ)

+ iβz∂z − M]�(t, r, ϕ, z) = 0. (18)

As the interaction is time-independent one can write the
spinor as

�(t, r, ϕ, z) = e−i(Et−mϕ−kz z)�(r),
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where E is the energy of the scalar boson, m is the angu-
lar momentum quantum number, kz is the eigenvalue for
the momentum in the z direction. By decomposing the five-
component spinor as �(r) = (ψ1(r), . . . , ψ5(r))T , the DKP
equation for scalar bosons becomes (for compactness of the
following equations, we momentarily drop the r dependence
in the spinor components)

− m sin ϕψ1 − αrMψ3 − iαr cos ϕ[Mωrψ1 + ψ ′
1] = 0,

m cos ϕψ1 − αrMψ4 − iαr sin ϕ[Mωrψ1 + ψ ′
1] = 0,

kzψ1 − Mψ5 = 0,

Eψ1 − Mψ2 = 0,

αr [−Mψ1 + Eψ2 + kzψ5 + i cos ϕ(1 − α + αMωr2)ψ3

− imψ4 − αrψ ′
3]

+ i sin ϕ[imψ3 + (1 − α + αMωr2)ψ4 − rαψ ′
4] = 0.

By solving the above system of equations in favour of
ψ1(r) we get

ψ2 = Eψ1

M
, (19)

ψ3 = −m sin ϕψ1 + i[−αMωr2 cos ϕψ1 − αr cos ϕψ ′
1]

αrM
,

(20)

ψ4 = m cos(ϕ)ψ1 + i[−αMωr2 sin ϕψ1 − rα sin ϕψ ′
1]

αrM
,

(21)

ψ5 = kzψ1

M
. (22)

Combining these results we obtain an equation of motion for
the first component of the DKP spinor,

ψ
′′
1 (r) + α − 1

αr
ψ

′
1(r)

−
(
E2 − M2 + k2

z − (2α − 1)Mω

α
+ m2

α2r2 + M2ω2r2
)

ψ1(r) = 0. (23)

In order to solve the above equation, we employ the change
of variable, s = r2. Thus, we rewrite the radial equation (23)
in the form

ψ
′′
1 (s) + (2α − 1)

2αs
ψ

′
1(s)

+ 1

4s2

(
−ξ1s

2 + ξ2s − ξ3

)
ψ1(s) = 0, (24)

where

ξ1 = M2ω2, (25)

ξ2 = − E2 − k2
z + M2 + (2α − 1)

α
Mω, (26)

ξ3 = m2

α2 . (27)

In this manner, the energy levels for the relativistic can be
obtained from the following constraint [78]:

α2n − (2n + 1)α5 + (2n + 1)(
√

α9 + α3
√

α8)

+n(n − 1)α3 + α7 + 2α3α8 + 2
√

α8α9 = 0, (28)

where

α1 = α − 1
2 , α2 = 0, α3 = 0, α4 = 1

2

( 3
2 − α

)
, α5 = 0,

α6 = ξ1, α7 = −ξ2, α8 = α4
2 + ξ3, α9 = ξ1, α10 = 1 + 2

√
α8,

α11 = 2
√

α6, α12 = α4 + √
α8, α13 = −√

α6.

As the final step, it should be mentioned that the correspond-
ing wave function is

ψ1(r) = Nr2α12 eα13r2
Lα10−1
n (α11r

2), (29)

where N is the normalization constant.

4 Solution of the DKP oscillator in the presence of a
linear interaction

Let us now to analyse the situation when a DKP field inter-
acts with a scalar potential U (r), which is introduced via the
substitution M → M +U (r). Thus, (18) becomes

{iβ◦∂t + iβr (∂r + Mωrη0) + iβϕ(∂ϕ

− �ϕ) + iβz∂z − [M +U (r)]}�(t, r, ϕ, z) = 0. (30)

Here we are interested in studying the linear scalar potential:

U (r) = a r. (31)

In order to solve Eq. (30) we make the following change of
variables:

ψ1(r) = r
1−α
2α (M + a r)

1
2 Rn,m(r). (32)
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This leads to an equation without first-order derivative term

R′′
n,m(r) +

[
− E2 − kz

2 + M
(
M + ω − ω

α

)

+ α2 − 4m2 − 1

4α2r2 − a(1 − α)

2Mαr
+ 2aMr

+ (a2 − M2ω2)r2 − 3a2

4(M + ar)2

+ a2(1 − α) + 2M3αω

2Mα(M + ar)

]
Rn,m(r) = 0. (33)

The next step is to write Rn,m(r) in the following form:

Rn,m(r) = Rn(r)e
gm (r). (34)

Thus, the r -dependent terms in Eq. (34) suggest that we take
gm (r) as

gm(r) = b1r + b2r
2 + b3 log(r) + b4 log(M + ar), (35)

where the four constants b1, . . . , b4 are to be expressed in
terms of the physical constants α, a, ω, M , m, kz and E . For
a general n it is quite difficult to solve Eq. (33). However, we
can be less ambitious and solve it for nodeless states, i.e., for
n = 0. In the latter case, we have Rn(r) = 1; consequently
[79–81]

R0,m(r) = egm (r). (36)

In this manner, from Eq. (28) we have

R′′
0,m(r) + (−g′′

m − g′2
m )R0,m(r) = 0. (37)

Thus substituting Eq. (35) into Eq. (37), the latter equation
becomes

R′′
0,m(r) +

(
− b2

1 − 2b2 − 4rb1b2 − 4b2b3

−4b2b4 − 4b2
2r

2 + b3 − b2
3

r2

−2Mb1b3 + 2ab3b4

Mr
+ a2b4 − a2b2

4

(M + ar)2

+4M2b2b4 − 2Mab1b4 + 2a2b3b4

M(M + ar)

)
R0,m(r) = 0. (38)

If we compare Eq. (38) with Eq. (33), we have the following
six equations:

− E2 − kz
2 + M

(
M + ω − ω

α

)
+ b2

1 + 2b2 + 4rb1b2

+ 4b2b4 + 4b2b3 = 0,

− 2ab1b4 + 4Mb2b4 + 2a2b3b4+a2(−1+α)

2Mα
− M2ω = 0,

2ab3b4

M
+ 2b1b3+a(−1+α)

2Mα
= 0,

−1 + α2 − 4m2

4α2 − b3 + b2
3 = 0,

(b4 − b2
4) + 3

4
= 0,

4b2
2 + (a2 − M2ω2) = 0,

4b1b2 + 2aM = 0. (39)

These equations can be solved for b1, b2, b3 and b4. They also
provide constraints on the physical parameters, in particular,
o the energy E . Equation (39) admits the following solutions:

b1 = ∓ aM√−a2 + M2ω2
,

b2 = ± 1

2

√
−a2 + M2ω2,

b3 = ± α2 + √
α2 + 4α2m2

2α2 ,

b4 = 1 ± 2

2
. (40)

and the energy levels are given by

E = ±[−kz2 + M2 + Mω − Mω

α

+b2
1 + 2b2 + 4rb1b2 + 4b2b3 + 4b2b4]]1/2. (41)

Finally, the nodeless wave function for DKP oscillator inter-
acting with a linear scalar potential can be written as

�0,m(t, r, ϕ, z) = N0,mei(kz+mϕ−Et)eb1r+b2r2
rb3+ 1−α

2α

× (M + ar)b4+ 1
2 , (42)

where N0,m is normalization constant.

5 Conclusion

In this contribution, we have studied the relativistic quantum
dynamics of a DKP oscillator field subject to a linear inter-
action for spin-0 particle in the cosmic string space-time.
The DKP oscillator is a kind of tensor coupling with a lin-
ear potential which leads to the harmonic oscillator in the
non-relativistic limit. This problem can be interpreted as an
interaction of the anomalous magnetic moment with a lin-
ear electric field. From the corresponding DKP equation, we
analyse the influence of the topological defect on the equa-
tion of motion, the energy spectrum and the wave function.
We obtained a second order differential equation and pro-
posed a new manner to solve it by changing the variable
and using the NU method, leading to a solution in terms of
the Laguerre polynomials. Our results are dependent on the
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angular parameter α, which, by their turn, is related to the
linear mass density of the cosmic string. In the limit case
of α = 1, i.e., in the absence of a topological defect, we
recover known results for the flat space-time. We also had
considered the DKP oscillator in the presence of scalar inter-
action introduced by the substitution M → M + U (r). By
choosing a suitable ansatz, the solution for this latter prob-
lem was obtained along with the energy spectrum. Here we
have showed how the introduction of a topological defect,
a cosmic string, leads to modifications in the spectrum and
wave function of a spin-0 particle.
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