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The DNA-binding network of Mycobacterium
tuberculosis
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Mycobacterium tuberculosis (MTB) infects 30% of all humans and kills someone every

20–30 s. Here we report genome-wide binding for B80% of all predicted MTB transcription

factors (TFs), and assayed global expression following induction of each TF. The MTB

DNA-binding network consists of B16,000 binding events from 154 TFs. We identify

450 TF-DNA consensus motifs and 41,150 promoter-binding events directly associated

with proximal gene regulation. An additional B4,200 binding events are in promoter win-

dows and represent strong candidates for direct transcriptional regulation under appropriate

environmental conditions. However, we also identify410,000 ‘dormant’ DNA-binding events

that cannot be linked directly with proximal transcriptional control, suggesting that

widespread DNA binding may be a common feature that should be considered when

developing global models of coordinated gene expression.
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M
ycobacterium tuberculosis (MTB) is a remarkably
successful pathogen that infects an estimated 1.5 billion
people and kills 1.3 million people each year1.

Throughout TB disease, both bacterium and host engage in a
dynamic series of adaptations to modulate local environments.
For the pathogen, adaptation is principally mediated through the
B214-DNA-binding proteins encoded in the MTB genome.
These proteins interact with small molecule chemical messengers,
other proteins and the DNA to shape the transcriptional
landscape of the cell and convert cascading stimuli into
coordinated effector gene responses. Several approaches to
understand the wiring and connectivity of interacting
macromolecular components of MTB have been described,
including gene expression pattern-driven identification of
regulatory subnetworks2,3, metabolic reconstructions4,5,
integration of expression data from diverse experimental and
environmental conditions6 and hybrid networks that seek to
bridge transcription regulation with metabolic outputs and
cellular fitness7. In each case the goal of these approaches is to
constrain the universe of potential interactions within cells
through an iterative process of experimentation, data
collection and computational approaches that result in network
reconstruction.

Various groups have probed the gene regulatory landscape of
MTB by characterizing the regulons of individual transcription
factors (TFs). The most widely applied approach has been gene
knockout and phenotyping or transcriptional profiling of the
resultant mutant8–10. More recently, however, technologies such
as chromatin immunoprecipitation followed by microarray
hybridization or high-throughput sequencing (ChIP-chip and
ChIP-seq, respectively) have been applied to MTB11–16. These
approaches identify directly sites of TF-DNA binding, and in
conjunction with transcriptional profiling and/or meta-analyses
offer a powerful window in to the global regulatory capacity of
individual proteins. Employing ChIP-seq and transcriptional
profiling, we recently described an analysis of the binding
profile for 50 MTB TFs assessed in a uniform condition17.
This preliminary network reconstruction showed good
concordance with published results, as well as common features
of regulatory networks from other organisms, such as robust
network construction, connectivity and DNA-binding motif
structure18–20.

Here we expand efforts to characterize the MTB gene
regulatory network. We report the DNA binding and transcrip-
tional regulatory profile of B80% of all predicted MTB TFs
(4150 proteins). From these data we derive high-confidence
DNA consensus motifs for450 TFs. We show that chromosomal
regions proximal to coding sequence or transcription start sites
are enriched for binding, allowing us to define functionally a
genome-wide promoter window size for MTB. We identify 5,400
protein–DNA interactions within this window with high prob-
ability for direct transcriptional control of proximal targets, and
1,162 binding events that regulate proximal gene expression in
the experimental condition assayed. However, we also note even
more DNA binding that cannot be linked directly with
transcriptional control. Further, we characterize one TF in which
widespread binding events, most of which are not directly
associated with gene expression changes, are nonetheless dictated
by specific DNA sequence motifs that can be validated by an
independent experimental approach. We propose the phrase
‘dormant binding’ to describe sequence-specific protein–DNA
interactions without a proximal effect on gene expression, and
suggest that this class of binding may exert proximal regulatory
control under different environmental conditions, but may also
contribute more subtly to the regulatory landscape of the cell.
Altogether, this work presents an experimentally constrained

protein–DNA interaction framework for MTB that reveals
thousands of DNA-binding events, many of which we can link
to proximal regulatory events. Our pan-genome survey indicates
that widespread, dormant TF-DNA binding is very common, and
suggests that the control of gene expression in bacteria may
involve a layer of complexity that is currently unappreciated.

Results
We recently described a preliminary MTB gene regulatory
network based on the DNA-binding patterns of 50 TFs (23% of
the 214 TFs of MTB)17. Here we present a substantially more
complete transcriptional regulatory network that incorporates
updated peak calling algorithms, stringent controls/filters to
define high-quality TF-binding (see Methods), and includes 80%
of the MTB TFs (workflow in Supplementary Fig. 1).

We cloned 206 (of the estimated 214) DNA-binding genes into
an anhydrotetracycline-inducible Gateway shuttle vector to
contain an N- or C-terminal FLAG epitope tag. The remaining
eight genes proved refractory to our subcloning efforts. For added
inclusiveness, this list was compiled through gene annotation data
from Tuberculist21, TBDB22 and PATRIC23, as well as manual
curation24. Once transformed, we cultured MTB strains to a
uniform growth stage and induced expression of the gene-of-
interest for 18 h—approximately one cell division. We then
harvested chromatin samples for ChIP-seq as well as total RNA
for high-density transcriptional profiling by custom tiled
microarray. For microarray analysis, induction and experiments
were repeated with at least three biological replicates24. For ChIP-
seq samples we employed a custom algorithm for read alignment
and ChIP peak calling (Methods).

ChIP-seq data set and controls. Previously, we showed that
DNA-binding events reproduced with high fidelity in eight of
eight replicate ChIP samples17. In addition to the experimental
ChIP samples we created a negative control composite data set
against which we filtered experimental ChIP data sets. Because no
single control captures all known or potential ChIP artifacts we
designed this negative control compendium to include 10 diverse
samples/sequencing data sets: wild-type (WT) H37Rv chromatin
immunoprecipitated with and without anti-FLAG antibody
(input DNA and mock immunoprecipitation (IP) controls,
respectively), chromatin samples from uninduced expression-
vector-bearing cells immunopreciptated with and without anti-
FLAG antibody (basal expression from chimeric inducible
promoter and mock IP controls, respectively), as well as
chromatin samples from induced non-TF genes immuno-
precipitated with anti-FLAG antibody (specificity of FLAG IP).
We subjected each control data set to peak calling, creating an
experimentally derived negative control peak set consisting of
B2,000 scored final peaks. We then compared each experimental
peak with this negative control peak set to define a collection of
pass-filter DNA-binding events (Methods). This approach
identified both global and local binding patterns for every TF
assayed with associated significance scores for every ChIP peak
(Supplementary Fig. 2).

Some genomic regions appeared to be hotspots for ChIP
enrichment, irrespective of the significance threshold. Recent
reports from yeast25,26 suggest that loci with high transcriptional
activity can be artificially enriched in ChIP assays. We compared
our MTB high-occupancy sites against the absolute log2
expression value of transcripts derived from more than 700
microarrays24 and did not observe any such correlation with
hyperenriched regions and transcript abundance (Supplementary
Fig. 3). Nevertheless, we know of no biological mechanism for
why these loci should be enriched across TF class and experiment.
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Therefore, any 50-bp region bound by more than 50 different TFs
was flagged as a provisional experimental artifact and removed
from subsequent analysis. This step culled 1,006 peaks at five gene
loci (Rv1088, Rv1115, Rv1396c, Rv2190c and Rv3622c-3623).

We considered the possibility that artificially high TF gene
induction from our ectopic expression system might result in
more DNA binding than would be observed in WT cells. In
addressing that question, we previously demonstrated good
concordance between DNA binding following ectopic induction
of tagged TFs and published genome-wide binding studies
that relied on native conditions and/or antibodies12,14,17,22.
Specifically, we compared data from our overexpression system
to results of ChIP-seq experiments using WT cells and antibodies
directed at native BlaI12, DosR11 or EspR14. In each case,
approximately the same number of peaks was identified, and peak
position and height were well conserved17. To assess this question
more broadly, we compared here the number of binding sites per
TF and the magnitude of TF ectopic induction, and found no
correlation (Supplementary Fig. 4a). In addition, we compared TF
expression levels in our overexpression system to a compendium
of 42,300 published microarrays. We found that 480% of TFs
were induced to a higher level by one or more experimental
condition in WT cells (Supplementary Fig. 4b and ref. 24). Thus,
while we cannot exclude the possibility that overexpression
sometimes produced nonphysiological DNA binding, we
conclude that such spurious DNA associations are rare in our
data sets.

Network topology and characteristics. We analysed genome-
wide binding profiles for all TFs at P value cutoffs of o0.05,

o0.01, o0.001 and o0.0001. As expected, the number of
protein–DNA interactions shrinks as we progress to more strin-
gent inclusion thresholds (Supplementary Fig. 5). While binding
events in the range 0.054P40.01 have binding scores stronger
than at least 95% of all negative control peaks and are
clearly distinguishable from background, they generally possess
lower signal-to-noise ratios and skewed read distributions
(Supplementary Fig. 2). Testing showed that DNA-binding events
with a PB0.01 could be confirmed by independent experiment,
where peaks with PB0.05 were less consistently validated. We
therefore chose a cutoff of Po0.01 to filter peaks for subsequent
analyses. With this threshold the physical DNA-binding map
includes 15,980 protein–DNA interactions from 156 MTB TFs.
Supplementary Table 1 provides all TF–target interactions, with
associated peak-binding metrics, genome coordinates and con-
fidence scores. In addition, all raw and filtered data can be found
at: http://networks.systemsbiology.net/mtb.

We mapped the centre of each binding event peak, and the
global distribution of all TF-binding events was visualized on a
circularized map of the MTB chromosome (Fig. 1a). Although
thousands of genome-binding events were mapped, visualization
at high resolution revealed that the chromosome in general
is sparsely bound (Fig. 1b). The vast majority of the genome
(B3.8 million base pairs, 86%) was not associated with any TF
binding, whereas B0.6 million base pairs contained at least one
binding site, and locations with more binding events were
progressively fewer. Regions with multiple TFs binding in close
proximity are prime candidates for combinatorial regulation.
For example, our data recover the well-characterized binding
of Rv3133c/DosR upstream of both Rv3134c and Rv2031c8,11;
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Figure 1 | A global view of DNA binding. (a) TF-binding sites identified by ChIP-seq plotted with Circos59. Sense (blue) and antisense (orange)

CDS and operon boundaries illustrated with black edges. The 4.4-Mb H37Rv chromosome is divided into nonoverlapping 50-bp windows, and green

spikes represent the total number of TF-binding events within each window. (b) Histogram of number of TF-binding events per 50-bp window.

(c) Number of ChIP-binding events (out-degree) for each of the 156 DNA-binding proteins with at least one binding site.
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however, we also note in both regions a strong binding signature
from hypoxic-responsive TF Rv1985c27.

For individual TFs in this study, the number of DNA-binding
events per protein ranged from 0 to 4850 (Fig. 1c). No binding
sites were detected for 24 TFs. There were also seven proteins
with 4500 binding sites each on the chromosome, and 14 TFs
accounted for B50% of all binding in the network. For proteins
that do not bind DNA as well as for prolific binders, no single
gene family describes these TFs.

Correlating DNA binding with the regulation of transcription.
We explored binding locations relative to translation start sites
of annotated genes. About 25% (nearly 4,000 out of B16,000
binding sites) were within intergenic regions. While this is
roughly 2.5� what would be observed by random chance
(cumulative hypergeometric mean Po0.001), the relatively low
25% intergenic enrichment was unexpected and caused us to
investigate further binding site distribution characteristics. Peaks
with the highest quality scores were slightly more likely to be
intergenic. For instance, among the 800 best peaks, the propor-
tion within intergenic regions rose to 29% (Supplementary Fig. 6).
However, even when considering only the highest scoring peaks
(top 20%) on a per-TF basis, the binding site distribution is highly
idiosyncratic (Supplementary Table 2). About one-fourth of TFs
exhibit 80% intergenic binding or more, while another one-fourth
show at least 80% binding within coding sequences. Of the pro-
teins with strong intergenic bias in this analysis, nearly all bind
three or fewer times on the MTB chromosome. We cannot
exclude the possibility that the prevalence of within-gene DNA
binding we report is somehow a function of our approach;
however, the trends observed here are broadly consistent with
other genome-wide DNA binding studies in MTB14,16, and with
some reports in other bacteria28,29.

We also analysed the binding locations relative to an
experimentally determined map of transcriptional start sites
(TSS) in MTB, many of which are not consistent with
traditionally defined coding region boundaries30. We observed a
striking enrichment of TF-binding proximal to TSSs, with the
highest density of binding at � 18 nucleotides upstream to TSSs
(Fig. 2a). To associate TFs with direct regulation of target genes,
we analysed instances where TF overexpression resulted in
significantly altered expression of genes proximal to TF-binding
locations (Methods and ref. 24). By performing this analysis
over different sized genomic segments, we determined that a
consensus promoter spanning 150 bp upstream to 70 bp
downstream of starts yielded maximal sensitivity versus
specificity (Supplementary Fig. 7). All binding events within
this window were considered functional, that is, capable of
directly regulating downstream gene expression in the right
environmental context. In all, 5,400 binding sites for 143 TFs
were located within promoter windows. Because a single
binding site could be associated with more than one promoter,
altogether there were 7,248 TF–promoter interactions within
2,848 promoters. There were 1,243 promoters with a single
TF-binding site, and the median was two binding sites per
promoter. Overexpression of TFs under reference growth
conditions validated that 1,162 TF–DNA interactions can
directly regulate proximal genes (Supplementary Table 3). Thus,
despite the known conditional nature of gene regulation, we were
able to validate over 20% of all promoter-proximal binding events
using only one reference laboratory growth condition. By
extension, a large fraction of the 47,200 promoter-proximal
TF–DNA interactions are likely to regulate gene expression
directly in the appropriate environmental context, and can even
be used to refine promoter predictions. For example, expression

of the putative benzoquinone methlytransferase Rv0560c was
previously predicted to be controlled by an unknown repressor of
the MarR family31. We found five TFs that bind near the start of
this gene, but of those only overexpression of the MarR family TF
Rv2887 resulted in the repression of Rv0560c (Supplementary
Fig. 8). However, the other TFs are strong candidates to regulate
Rv0560c in other contexts. Mapping TF–DNA binding and
expression changes in other environments should expand
further the list of interactions with corresponding identifiable
downstream expression changes6.

While 5,400 DNA-binding events are located in the promoter
window, roughly 66% (410,500) of binding sites are outside this
region. Altogether, 109 different TFs exhibit promoter-distal
binding. While there are examples of prokaryotic proteins
binding outside of promoters and exerting regulatory effect at a
distance (Fig. 2a and refs 32–35), as a class these binding events
are less likely to exert direct influence on gene expression. To
explore globally the link between TF–DNA binding and
transcription, we compared the number of binding events per
TF and the number of expression changes associated with each TF
(Fig. 2b). Of 178 MTB TFs in this study, nearly 40% exhibit an
approximately linear relationship between the number of DNA-
binding events and transcriptional changes. Two of the most well-
characterized DNA-binding proteins in MTB (Rv3133c/DosR8

and Rv3849/EspR14) behave this way. For roughly 30% of proteins,
induction is associated with a disproportionately large impact on
transcription relative to the number of binding sites. These
proteins may regulate other TFs and initiate a transcriptional
cascade. Alternatively, some of these TFs may be poor candidates
for ChIP analysis. In contrast, there are approximately the same
number of proteins whose induction results in prolific DNA
binding but comparatively few transcriptional changes. The
regulatory circuits of these genes may be complex, perhaps
requiring one or more partner TF(s) or another cofactor to
reconcile DNA binding and expression profiles. These proteins
belong to a wide range of TF families, including TetR, ArsR and
GntR, along with one nucleoid-associated protein Lsr2.

Identifying DNA consensus motifs from ChIP-seq data. We
searched for conserved motif signatures for each TF. We queried
all DNA-binding data using MEME36 and default parameters. We
performed each motif search twice for each grouping—one
unconstrained and one constrained—to detect only palindromes.
After filtering motifs for MEME E-values (Eo¼ 1) and peak
locations within the queried sequence (Po¼ 0.05) we could
identify significant motifs for a total of 57 (71%) out of the 80 TFs
that hadZ14 ChIP-seq peaks. We report the two motifs detected
for each TF, along with all related statistics, in Supplementary
Table 4. TFs with a greater number of binding sites were more
likely to have an identified consensus motif. The average number
of binding sites for TFs with a motif was 246 (range 14–859),
compared with an average of 28 peaks (range 3–437) for those
TFs where a significant consensus motif could not be identified.
For TFs with previously characterized DNA-binding motifs, this
analysis corresponded well with previous reports (for example,
Rv2506 (refs 37,38), Rv2359 (ref. 39), DosR (ref. 8), KstR (ref. 9)
and EspR (ref. 14)). In cases where the data set was of sufficient
size to parse by location within or outside of a promoter, the
identified consensus motifs tend to share the dominant sequence
features of the motif derived from the aggregate sequences (for
example, Rv1255c); however, in this context subtle sequence
variations are likely to have functional consequences.

Rv0494 as an example of widespread binding. As indicated
above, B30% of the TFs in this study bind prolifically around the
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chromosome both within and outside of promoters, but affect
relatively few transcriptional changes. To investigate this
behaviour, we focused on a representative member, Rv0494
(Fig. 3). Rv0494 is a GntR-family regulator40,41 whose induction
correlated with 10 transcriptional changes at seven genomic loci
(Fig. 3, blue–red ring) including binding at the Rv3094c–Rv3095
locus (Fig. 3, grey ribbon); however, there are 77 Rv0494-binding
events distributed around the MTB chromosome (Fig. 3—internal
lines). DNA pattern searching using MEME36 on the entire data
set yielded two significant consensus motifs (Supplementary
Table 4). We observed that the Rv0494-bound regions
contributing to the longer (17mer) motif have more significant
ChIP-binding scores, whereas the bound regions contributing to
the shorter (B9mer) motif have strong but less significant scores.
We stratified ChIP-binding sites by score and searched for
consensus motifs in two tranches: Po0.001 (higher peak quality

scores; 36 input regions, purple lines in Fig. 3) and
0.001oPo0.01 (lower peak quality scores; 41 regions, yellow
lines in Fig. 3). We saw a striking division in the consensus motifs
derived. Of the 36 highly significant binding sites, 35 contained
a close variant of the 17-mer consensus motif (motif
E-value¼ 8.4� 10� 51, Fig. 3, purple ribbon). Of the 41 less
significant bound sequences, 28 contained the 9-mer consensus
motif (motif E-value¼ 1.7� 10� 31, Fig. 3, yellow ribbon).
Combining the bound regions that did not contribute to either
motif initially, we found that these peaks had P values in the
middle of the distribution (0.0015oPo0.004, Supplementary
Fig. 9). Repeating the MEME pattern search on these 14 regions
showed that 13 sites contained a close variant of the 17-mer
consensus motif (motif E-value¼ 8.3� 10� 5).

We next analysed expression from Rv0494-induced cultures.
Of the 10 differentially expressed genes following Rv0494
induction, two of these loci (six genes) are immediately adjacent
to Rv0494-binding sites. These are strong candidates for direct
regulation by Rv0494, and both these loci show highly significant
binding (Fig. 3, grey ribbon, and Supplementary Table 3).
However, we also find examples of binding to the strong
consensus motif with no obviously associated change in gene
expression.

Validating Rv0494 binding to different motifs. From these
analyses, the vast majority of Rv0494-binding sites—76 of 77
bound regions—are described by one of two consensus motifs.
We sought to validate this binding by an alternate approach.
Employing purified, recombinant Rv0494 protein we developed a
‘universal’ electrophoretic mobility shift assay (uEMSA) in which
a uniform DNA scaffold was modified to contain a 50 IR680 (red)
or IR800 (green) IR tag (Fig. 4a). This approach allows simulta-
neous visualization of target, nonspecific and specific competitor
DNAs in an in vitro EMSA42. The Rv3094c–Rv3095 intergenic
region contains a variant of the 17-mer motif (Fig. 3), and in
uEMSA experiments both the 17-mer consensus motif and
Rv3094c–Rv3095 DNA sequences are tightly bound by
recombinant Rv0494 protein (Fig. 4b). Binding is specific, as
confirmed by a persistent gel shift in the face of 20� molar
excess nonspecific competitor DNA; however, in the face of
20� molar excess-specific competitor, the Rv0494 protein
preferentially binds to the more abundant IR800-labelled
competitor DNA. The Rv0494 protein also showed specific
binding to the 9-mer DNA consensus motif, although at a higher
protein concentration than the 17-mer motif. We note that none
of the 9-mer-Rv0494 interactions were associated with detectable
changes in proximal gene expression, indicating that such binding
events can nonetheless be validated by alternate means.
Altogether, these data indicate that consensus DNA-binding
motifs derived from ChIP-seq can be validated by alternate
experimental methods, and demonstrate a correlation between
ChIP peak quality score and protein–DNA affinity.

Discussion
Robert Koch described the cause of tuberculosis more than a
century ago yet MTB remains a pervasive pathogen, infecting
30% of the world’s population and causing two to three deaths
every minute. To understand better how MTB adapts within the
human host we undertook a systematic characterization of the
gene regulatory network. We ectopically induced expression of
epitope-tagged copies of nearly every DNA-binding protein in
MTB (Supplementary Fig. 1). Using this approach we performed
ChIP-seq and transcriptional profiling under a uniform condition
for 178 TFs. We filtered the binding patterns of experimental
samples against a robust negative control peak set and imposed a
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Figure 4 | Independent validation of Rv0494 binding. (a) Schematic of DNAs used in these experiments. Three DNAs are annealed to form a single

dsDNA product: a specific query sequence (orange box) is annealed in a 3-piece dsDNA fragment to a unique 12-mer sequence covalently coupled to a

reporter dye. In these experiments, the specific query DNA was labelled with IR680 (red) and specific or nonspecific competitor DNAs were labelled with

IR800 (green). (b) Purified recombinant Rv0494 binds specifically to ChIP-identified wild-type sequence (left panel), the 17-mer consensus motif (middle

panel) and the 9-mer consensus motif (right panel). In the absence of protein, dye-coupled DNA does not shift (lane 1); however, the protein–DNA

complex runs at a higher molecular weight (lane 2). This protein–DNA complex persists in the face of 20� molar excess green-labelled nonspecific

competitor DNA (lane 3), but can be outcompeted by the addition of 20� molar excess green-labelled specific competitor DNA (lane 4).
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stringent significance threshold for inclusion of DNA-binding
events in downstream analyses. We also associated binding with
gene expression changes, incorporating transcriptional data
generated under the same experimental conditions. These data
provide an in-depth, system-wide view of the DNA-binding
network in this important bacterial pathogen.

The MTB DNA-binding network consists ofB16,000 protein–
DNA interactions from 154 genes that passed our stringent filter
set (Fig. 1). We could not identify consistent attributes to define
the 24 proteins that did not bind DNA, and we hypothesize that
these proteins require additional signals or modifications to bind
the chromosome. We also noted prolific binders—seven proteins
with 4500 binding sites each. MEME pattern searching analysis
revealed significant consensus motifs for each of these proteins,
which suggests that prolific binding was still dictated by
sequence-specific DNA interactions (Supplementary Table 4).
The number of binding events per protein could be fit to a
power law distribution (p(k)Bk� 1.5), with half of the binding
coming from 14 proteins and B90% of the binding from 44
proteins (B25% of all assayed binding proteins, Fig. 1c).
However, from the perspective of the DNA the chromosome is
sparsely bound. More than 85% of the genome bound no TFs,
while slightly more than 10% of the genome bound a single TF
(Fig. 1b). A few loci (B2.5%) were hotspots for binding, and
these are prime candidates for combinatorial protein–DNA
interactions.

Genome-wide, TF binding was nonrandom, and we identified
significant consensus motifs for 57 TFs (Supplementary Table 4).
Furthermore, we observed more than twice as much binding in
intergenic regions than would be expected by random chance.
Similarly, we found a striking enrichment of TF binding within
� 150 to þ 70 nucleotides of annotated start sites (CDS or TSS),
with the greatest enrichment in the 0 to � 20 region. Altogether,
we found approximately one-third (5,400 of 15,980) of TF-
binding sites were within one or more 220-bp promoter windows,
resulting in 47,200 TF–promoter interactions (Fig. 2a and
Supplementary Table 3). More than 1,150 of these binding events
were associated with altered gene expression in our experiments,
and in the appropriate environmental context, many more of
these 47,200 interactions are likely to serve a proximal
regulatory function. However, even more binding events
(410,500) were positioned outside of promoters. We observe
some instances of promoter-distal binding correlated with
proximal gene regulation (Fig. 2a), and probably in alternate
environmental contexts a greater number of these would act to
alter expression of proximal genes. However, it is also likely that
many of these promoter-distal binding sites are transcriptionally
dormant. Abundant promoter distal binding has been noted
before32,33,43, and in some cases individual proteins that bind
DNA prolifically have been shown to regulate transcription at a
subset of their loci but not at others14,16,34. For instance, in MTB
the TF EspR has been labelled both a specific transcription
factor44 and a nucleoid-associated protein14. Our analysis
provides evidence for both ideas. We find that EspR exhibits
binding that is both widespread and promoter-proximal, and that
only a fraction of binding events directly influence transcription.
Furthermore, we observe similar behaviour from the majority of
TFs in MTB.

To examine further the phenomenon of widespread binding
with limited regulation we focused on Rv0494, which binds 77
times and promotes altered expression at only two of these loci
(Fig. 3). We identified consensus motifs associated with both
stronger and weaker binding and protein–DNA interactions
could be validated by independent experimental approaches
(Fig. 4). Some Rv0494-dependent expression changes were
proximal to strong binding events; however, many strong binding

events were not associated with any local gene expression
changes.

Altogether, our analyses both complement and contrast
with current models of bacterial transcription. For example,
we found numerous strong DNA-binding consensus motifs
(Supplementary Table 4) and robust enrichment for DNA
binding in the window (� 150 to þ 70) relative to transcription
start sites (Fig. 2a), in agreement with promoter studies in
bacteria45. However, compared with the model bacterium
Escherichia coli, the MTB TF-DNA-binding network results
were surprising in terms of binding site numbers, locations and
effects. Transcription is well studied in E. coli, with substantial
information collected and curated at the online repository
RegulonDB46. This database lists B2,400 E. coli TF-DNA-
binding events, nearly 7� fewer than we observe in MTB. Only
27 individual E. coli TFs are known to bind DNA more than 20
times, compared with 69 in MTB. Further, in MTB we find
dozens of TFs with widespread binding and few downstream
transcriptional changes.

How to reconcile these differences? We have considered the
possibility that widespread DNA binding is an artifact of the
ChIP approach. However, we have ruled out previously described
artifacts such as spurious ChIP enrichment proximal to highly
transcribed loci (Supplementary Fig. 3), applied rigorous control
filters (Methods) and our binding data are highly reproducible17.
The FLAG-tagged TF overexpression and reference conditions
that we employed could be sources of artifactual binding;
however, ChIP under physiological conditions with native
antibodies also yield similar binding profiles14,17. Further, we
have shown that our TF overexpression levels are less than or
equal to TF gene expression changes in publically available array
studies for over 80% of TFs (Supplementary Fig. 4b and ref. 24).

Another possibility is that most previous studies, which assess
protein–DNA interactions at specific candidate sites, may
consistently underestimate the actual extent of binding. Since
early groundbreaking work with the Lac operon47, researchers
interested in transcriptional control have focused on individual
gene expression changes and thus may have systematically
understudied the possibility of transcriptionally dormant
binding. In fact, the most common approach to determine TF
regulatory targets is transcriptional profiling of a gene disruption
mutant, which by definition precludes identification of such
binding events. Widespread dormant binding could thus be a
phenomenon specific to MTB; however, several recent studies in
both eukaryotes and prokaryotes used global approaches and
reported unexpectedly widespread binding14,16,48–50, including
one study in E. coli that was not based on ChIP43. In addition,
various effects of dormant binding have been reported, including
association with chromosome organization, replication and cell
division33,43, altering response kinetics and dynamics at
regulation-active loci through transcription factor titration and
buffering against noisy input51–53, suggesting multiple functional
contexts for this phenomenon. These observations, in eukaryotes
and archaea as well as bacteria, raise the possibility that
widespread dormant binding is a common feature of
transcriptional systems everywhere that should be considered
when developing gene regulatory networks. The implications of
these phenomena for MTB biology and for transcriptional control
more broadly are largely unexplored, and warrant additional
investigation.

Methods
Construction of expression vectors and strains. Our in-house analysis indicated
that there are 214 putative DNA-binding genes in the M. tuberculosis genome. At
the outset of this project we had at our disposal a Gateway Entry Clone library of
B2,600 M. tuberculosis open reading frames in the backbone of pDONR221
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(PFGRC/Colorado State University under NIAID contract HHSN266200400091c).
In the event that a putative DNA-binding gene-of-interest was not included in the
extant Entry Clone library, we created entry clones through PCR amplification of
the relevant gene template from H37Rv gDNA, adding the necessary Gateway
recombination sequences to the PCR product. In total, nine genes proved refrac-
tory to subcloning efforts, and so were triaged from subsequent analyses. Including
those genes from the PFGRC entry clone library and our subcloning efforts the
final putative DNA-binding clone library contains 206 genes. We inserted each of
these genes in to an E. coli-mycobacterial episomal shuttle vector modified to
contain an anhydrotetracycline (ATc)-inducible promoter54 and a Gateway cloning
recombination cassette (kind gift of Eric Rubin). We further modified this vector to
contain an N- or C-terminal FLAG epitope tag—amino-acid sequence:
n-DYKDDDDK-c. For the present work the C-terminal FLAG-tagged version was
used for all DNA-binding experiments, with the exception of experiments utilizing
Rv3133c/DosR, which contained the N-terminal FLAG tag. M. tuberculosis H37Rv
strains containing these ATc-inducible, FLAG-tagged, expression vectors are
available from BEI resources (nr-46512, www.beiresources.org).

Culturing conditions. M. tuberculosis strain H37Rv was cultured in Middlebrook
7H9 with the ADC supplement (Difco) and 0.05% Tween80 at 37 �C with constant
agitation. For transformation with ATc-inducible expression vectors and sub-
sequent expansion/experimentation, cultures were grown with the addition of
50mgml� hygromycin B to maintain the plasmid. All experiments were performed
under aerobic conditions and growth was monitored by OD600. At an OD600 of
0.35, expression of a gene of interest was induced for the approximate duration of
one cell doubling (18 h) using an ATc concentration 100 ngml� 1 culture.

Chromatin immunoprecipitation. DNA–protein interactions were characterized
by cross-linking 50ml of culture with 1% formaldehyde while agitating cultures at
room temperature for 30min. Crosslinking was quenched by the addition of
glycine to a final concentration of 250mM. Cells were pelleted, washed in 1�
PBSþ 1� protease inhibitor cocktail (Sigma) and resuspended in ChIP Buffer 1
(20mM KHEPES—pH 7.9, 50mM KCl, 0.5mM dithiothreitol and 10%
glycerol)þ 1� protease inhibitor cocktail. Owing to the thick cell wall of M.
tuberculosis, samples were mechanically lysed using Lysing Matrix B tubes and
three rounds of bead beating at maximum speed for 30 s, with cooling on ice
between treatments. Samples were centrifuged for 1min at 13.2� g to pellet beads.
Supernatants were collected and sample volumes were normalized to 500 ml in
ChIP Buffer 1. We then utilized a Covaris S2 ultrasonicator at settings:
amplitude¼ 20%, power¼ 5, cycles per burst¼ 200, for 16min to shear chromatin
to a uniform size centred around 200 bp. Following shearing, the sample was
adjusted to buffer IPP150 (10mM Tris-HCl—pH 8.0, 150mM NaCl and 0.1%
NP40) and immunoprecipitation of FLAG-tagged proteins was initiated by incu-
bating samples overnight rotating at 4 �C with 10mg (1:55 dilution) M2 anti-FLAG
antibody (Sigma, F1804). The following day, samples were incubated with protein
G-coupled agarose beads (Pierce) rotating for 30min at 4 �C and 90min at room
temperature. Agarose bead-protein complexes were pelleted by centrifugation for
2min at 2,000� g at which point the supernatant was discarded, and the samples
were subjected to five rounds of washing in IPP150 buffer (rotate for 2min, pellet
bead–protein complex, discard supernatant). Increasing the stringency, the final
two washes were carried out with TE, pH 8.0. Protein complexes were eluted off the
beads in two steps. In the first step, protein–bead complexes were incubated in
elution buffer 1 (50mM Tris-HCl—pH 8.0, 10mM EDTA and 1% SDS) for 15min
at 65 �C. After pelleting and saving the supernatant, protein–bead complexes were
treated with TE—pH 8.0 and 1% SDS for 5min at 65 �C. Elution supernatants were
pooled and the proteins were digested/crosslinks were reversed by incubation with
1mgml� 1 Pronase for 2 h at 42 �C followed by 9 h at 65 �C. Immunoprecipitated
DNA was subsequently column-purified using QiaQuick PCR purification columns
(Qiagen) and eluted twice with 20 ml 10mM Tris-HCl, pH 8.5.

ChIP-seq peak control data set. To determine significance thresholds for peak
inclusion in our data set, we generated a ChIP-seq control compendium consisting
of 10 different sequencing data sets. As no single control type captures all known or
potential ChIP artifacts or biases, we included an array of control types, including
the following: WT H37Rv chromatin immunoprecipitated with and without anti-
FLAG antibody, chromatin samples from uninduced expression-vector-bearing
cells immunopreciptated with and without anti-FLAG antibody as well as
chromatin samples from induced non-TF genes immunoprecipitated with
anti-FLAG antibody.

Illumina library prep sequencing. All libraries were prepared according to the
standard Illumina protocols. Samples were sequenced on the Illumina GAIIx
sequencer, generating unpaired 30–50 million 40-bp reads per sample.

Read alignment and peak calling. Peak calling was carried out using an in-house
algorithm outlined in Supplementary Fig. 10 and available for download at http://
networks.systemsbiology.net/mtb. Short reads were aligned to the H37Rv reference
genome using Bowtie 0.12.7 with default parameters, resulting in 98% of reads

being successfully aligned. Read pileups were converted to wiggle tracks for for-
ward, reverse and cumulative strands, and then searched for local extrema. We
then estimated half width at half height for each local maximum (a de facto ‘peak’),
and using nonlinear least squares optimization we found the optimal Gaussian or
Gumbel model distribution that best fit the aligned reads. We assigned 0–1 scores
based on relative height, width and drift from starting local maximum of each fitted
peak. We then merged the forward, reverse and cumulative results in to a ‘combo
peak’ and re-scored that triplet with the addition of score values for separation and
relative heights of the forward and reverse strand peak centrepoints. The final score
for a single ChIP peak was the product of [ScoreF * ScoreR * ScoreC * Sep * EqHts]
on a 0–1 scale, with 1 being a ‘perfect’ score.

Assigning significance scores to called peaks. Each sequencing data set was
subjected to the ‘read alignment and peak calling’ algorithm. To determine
significance scores of experimental data, we collapsed the peaks (with respective
scores) from the 10 control experiments described above into a single data set
containing 2,027 scored ‘final’ peaks as negative controls (Supplementary Table 5).
For each scored peak in an experimental data set we measured the probability of
identifying a comparably high-scoring matched peak type in the control data set.
Thus, an experimental peak with P¼ 0 indicates that no peaks in the negative
control set had an equivalently robust score. Similarly, a peak with a P value of 0.01
has a peak quality score better than 99% of all peaks identified in the negative
control set. A table with scoring metrics and significance scores for all DNA-
binding proteins assayed, all peaks, is provided in Supplementary Table 1.

RNA isolation. RNA was isolated as described previously55. Briefly, cell pellets in
Trizol were transferred to a tube containing Lysing Matrix B (QBiogene Inc.) and
vigorously shaken at maximum speed for 30 s in a FastPrep 120 homogenizer
(Qbiogene) three times, with cooling on ice between steps. This mixture was
centrifuged at maximum speed for 1min and the supernatant was transferred to a
tube containing 300ml chloroform and Heavy Phase Lock Gel (Eppendorf North
America Inc.), inverted for 2min and centrifuged at maximum speed for 5min.
RNA in the aqueous phase was then precipitated with 300 ml isopropanol and
300 ml high-salt solution (0.8M Na citrate, 1.2M NaCl). RNA was purified using an
RNeasy kit following the manufacturer’s recommendations (Qiagen) with one on-
column DNase treatment (Qiagen). Total RNA yield was quantified using a
Nanodrop (Thermo Scientific).

Microarray analysis. RNA was converted to Cy dye-labelled cDNA probes as
described previously27. Briefly, for all microarrays described here, 3 mg of total RNA
was used to generate probes. Sets of fluorescent probes were then hybridized to
custom NimbleGen tiling arrays consisting of 135,000 probes spaced at B100-bp
intervals around the M. tuberculosis H37Rv genome (NCBI Geo Accession no.:
GPL14896). Arrays were scanned and spots were quantified using Genepix 4000B
scanner with the GenePix 6.0 software. These data were exported to NimbleScan
for mask alignment and robust multichip average normalization56. Subsequent
statistical analysis and data visualization were carried out using the Arraystar
software. To compare against a standard, baseline, expression set, median
expression values were calculated for all genes across all input microarrays
(N¼ 702). Altered gene expression was considered significant if it produced an
empirical Bayes method Po0.01. Raw microarray data are available at the gene
expression omnibus in series GSE59086. Additional details can be found in ref. 24.

Promoter window size analysis. Receiver operation curves (ROCs) were used for
assessing the accuracy of promoter window sizes to associate binding with target
regulation. Upstream promoter window sizes were tested every 10 nucleotides from
� 10 to � 200 upstream of designated start sites and at varying nucleotide lengths
to � 1,500 upstream. Similarly, window sizes were tested every 10 nucleotides from
þ 10 to þ 200 downstream. The set of ChIP-seq binding events with target
regulation was formed by instances within a given window size that a particular
TF has a significant overlap of proximal gene targets and differentially expressed
genes (as determined in ref. 24). The overlap was computed using hypergeometric
enrichment P values. The ROC curves were formed by considering the overlap of
each possible pairwise combination of TFs and measuring the sensitivity and
specificity of the overlap, where sensitivity represents the fraction of differentially
expressed target genes that had a binding peak within the promoter window, and
specificity represents the fraction of nondifferentially expressed target genes that
did not have a binding peak within the promoter window. The R open-source
package pROC was used to calculate area under the curve values of tests performed
at each window size57. The optimal window size was determined by the largest
AUC in the upstream and downstream regions and resulted in a � 150:þ 70
window. As a result, genes targeted by a particular TF were identified by having a
significant ChIP-Seq-binding peak in the � 150:þ 70 window of their start site or
by being part of an operon with a binding site in the � 150:þ 70 region of an
upstream gene in the operon.

Identifying consensus motifs from ChIP-seq data. For consensus motif deter-
mination we searched for conserved DNA signatures within ±50 nucleotides of
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ChIP-seq peak centres using MEME36. The peaks were further subdivided into
subsets that were only within or outside of our defined promoter windows (thus,
there are three subsets for each TF—‘all’ significant peaks, those ‘in’ promoters and
those ‘out’). We performed each motif search twice for each grouping—one
unconstrained and one constrained to detect only palindromes. For each motif, we
computed the significance of the distribution of its locations relative to the
corresponding peak centres, relative to a uniform null distribution, using the
Komolgorov–Smirnov test. We also scanned each motif in an unbiased manner
across the entire genome using FIMO58 and computed whether these scanned
locations were significantly located within ±50 nt of the corresponding ChIP-seq
peak locations relative to randomly sampled locations throughout the genome.
Motifs with MEME E-values (E o¼ 1) and peak location (Po¼ 0.05) were
considered significant.

Recombinant Rv0494 protein purification. The Rv0494 CDS was subcloned into
the pET28b expression vector (Novagen/EMD Millipore). The Rv0494 locus was
PCR-amplified from purified H37Rv gDNA, adding an XhoI restriction endonu-
clease site to the 30 end of the cassette. The primer specific to the 50 end of the gene
cassette contained an NdeI RE site as well as the recognition motif for the HRV 3C
protease. After ligation, pET28-Rv0494Ab inducibly expressed Rv0494 with an
N-terminal 6x-HIS tag upstream of the HRV 3C cut site and native Rv0494
sequence. For recombinant protein production we transformed BL21(DE3) E. coli
with pET28-Rv0494Ab. Cultures were grown to an OD600 of 0.5 in Terrific Broth
before treatment with 100 mM isopropyl-b-D-thiogalactoside shaking overnight at
18 �C. Following sonication, recombinant protein was recovered from crude lysates
by Fast Protein Liquid Chromatography (FPLC) metal affinity chromatography
and size exclusion chromatography. To remove the 6x-HIS tag from the final
protein product, recombinant Rv0494 was subjected to HRV 3C protease (Nova-
gen) digestion (rotating overnight at 4 �C). Following cleavage, Rv0494 solutions
were again passed over a metal affinity column to remove the liberated epitope tag
and the HIS-tagged protease. Final purification was effected through size exclusion
chromatography. Protein aliquots were snap-frozen in storage buffer (150mM
NaCl, 20mM Tris-HCl—pH 7.5, 5% glycerol) and kept at � 80 �C for subsequent
applications. The purified 26-kDa Rv0494 protein contains two non-native amino
acids at the N terminus.

Universal electrophoretic mobility shift assays. Similar to the technique
described in ref. 42, for uEMSAs, three oligos (Integrated DNA Technologies) were
resuspended to 50mM in dsDNA annealing buffer (10mM Tris-HCl—pH 7.5,
100mM NaCl, 1mM EDTA). In this scheme, oligo 1 consisted of 30 nucleotides
taken directly from the Rv3094c–Rv3095 intergenic region in the M. tuberculosis
genome, or the consensus motif sequences flanked by GC-matched randomized
nucleotides. Oligo 2 consisted of 42 nucleotides: the reverse complement of the
oligo 1 30-mer, as well as a 12-nucleotide ‘scaffold’ sequence at the 30 end to which
oligo 3 is the reverse complement. Oligo 3 consisted of a 12-mer with a IR680 or
IR800 infrared dye covalently coupled to the 50 end. The IR680 12-mer scaffold/
universal sequences were different than the IR800 12-mer. The three ssDNA oligos
were combined to a final concentration of 50 mM, vigorously agitated and heated to
95 �C for 10min on a benchtop heat block. The entire metal block was subse-
quently removed from heat and allowed to cool to room temperature over a period
of B3 h protected from light. The resulting dsDNA product became the substrate
for subsequent EMSA experiments. Purified recombinant Rv0494 protein was
removed from storage buffer (150mM NaCl, 20mM Tris-HCl—pH 7.5, 5% gly-
cerol) and exchanged to sterile-filtered reaction buffer (10mM Tris-HCl—pH 8.0,
10mM NaCl, 1mM DTT, 1mM EDTA, 5 ng ml� 1 BSA) using a 10-kDa-cutoff
spin column (Amicon). In the present study, Rv0494 was present at 0.1 mM for the
Rv3094c–Rv3095 and 17-mer consensus motif uEMSA experiments. Rv0494 was
present at 2.0 mM for the 9-mer consensus motif uEMSA experiments. Fifty-
nanometre specific, IR680-labelled, dsDNA target was used in all reactions. For
specific and nonspecific competition experiments, 20� molar excess IR800-
labelled dsDNA was added to the reaction mixture (final concentration¼ 1 mM).
All components of a reaction were combined, mixed and incubated protected from
light for 30min at room temperature. Fifteen microlitres of reaction product was
loaded on to 10% polyacrylamide TBE gel and run at a constant 150V for 75min,
protected from light. Owing to the lower melting temperature of the universal
12-mer used in these experiments (B65 �C), the gel box was contained in an ice
bath for the duration of electrophoresis. The gel was washed once in PBS before
visualization on a Li-cor Odyssey scanner.

References
1. World Health Organization. Global Tuberculosis Control: WHO Report 2013

(WHO, Geneva, 2013).
2. Balázsi, G., Health, A. P., Shi, L. & Gennaro, M. L. The temporal response of the

Mycobacterium tuberculosis gene regulatory network during growth arrest.Mol.
Syst. Biol. 4, 225 (2008).

3. Rohde, K. H., Veiga, D. F., Caldwell, S., Balazsi, G. & Russell, D. G. Linking the
transcriptional profiles and the physiological states of Mycobacterium
tuberculosis during an extended intracellular infection. PLoS Pathog. 8,
e1002769 (2012).

4. Beste, D. J. et al. (13)C metabolic flux analysis identifies an unusual route for
pyruvate dissimilation in mycobacteria which requires isocitrate lyase and
carbon dioxide fixation. PLoS Pathog. 7, e1002091 (2011).

5. Jamshidi, N. & Palsson, B. O. Investigating the metabolic capabilities of
Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and
proposing alternative drug targets. BMC Syst. Biol. 1, 26 (2007).

6. Peterson, E. J. et al. A high-resolution network model for global gene regulation
in Mycobacterium tuberculosis. Nucleic Acids Res. 42, 11291–11303 (2014).

7. Chandrasekaran, S. & Price, N. D. Probabilistic integrative modeling of
genome-scale metabolic and regulatory networks in Escherichia coli and
Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 107, 17845–17850
(2010).

8. Park, H. D. et al. Rv3133c/dosR is a transcription factor that mediates the
hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843
(2003).

9. Kendall, S. L. et al. Cholesterol utilization in mycobacteria is controlled by
two TetR-type transcriptional regulators: kstR and kstR2. Microbiology 156,
1362–1371 (2010).

10. Kendall, S. L. et al. A highly conserved transcriptional repressor controls a large
regulon involved in lipid degradation in Mycobacterium smegmatis and
Mycobacterium tuberculosis. Mol. Microbiol. 65, 684–699 (2007).

11. Lun, D. S., Sherrid, A., Weiner, B., Sherman, D. R. & Galagan, J. E. A blind
deconvolution approach to high-resolution mapping of transcription factor
binding sites from ChIP-seq data. Genome Biol. 10, R142 (2009).

12. Sala, C. et al. Genome-wide regulon and crystal structure of BlaI (Rv1846c)
from Mycobacterium tuberculosis. Mol. Microbiol. 71, 1102–1116 (2009).

13. Gordon, B. R. et al. Lsr2 is a nucleoid-associated protein that targets AT-rich
sequences and virulence genes in Mycobacterium tuberculosis. Proc. Natl Acad.
Sci. USA 107, 5154–5159 (2010).

14. Blasco, B. et al. Virulence regulator EspR of Mycobacterium tuberculosis is a
nucleoid-associated protein. PLoS Pathog. 8, e1002621 (2012).

15. Smollett, K. L. et al. Global analysis of the regulon of the transcriptional
repressor LexA, a key component of SOS response in Mycobacterium
tuberculosis. J. Biol. Chem. 287, 22004–22014 (2012).

16. Kahramanoglou, C. et al. Genomic mapping of cAMP receptor protein (CRP
Mt) inMycobacterium tuberculosis: relation to transcriptional start sites and the
role of CRPMt as a transcription factor. Nucleic Acids Res. 42, 8320–8329
(2014).

17. Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and
hypoxia. Nature 499, 178–183 (2013).

18. Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex
networks. Nature 406, 378–382 (2000).

19. Milo, R. et al. Network motifs: simple building blocks of complex networks.
Science 298, 824–827 (2002).

20. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the
transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68
(2002).

21. Lew, J. M., Kapopoulou, A., Jones, L. M. & Cole, S. T. TubercuList--10 years
after. Tuberculosis (Edinb) 91, 1–7 (2011).

22. Galagan, J. E. et al. TB database 2010: overview and update. Tuberculosis
(Edinb) 90, 225–235 (2010).

23. Gillespie, J. J. et al. PATRIC: the comprehensive bacterial bioinformatics
resource with a focus on human pathogenic species. Infect. Immun. 79,
4286–4298 (2011).

24. Rustad, T. R. et al. Mapping and manipulating the MTB transcriptome using a
transcription factor overexpression derived regulatory network. Genome Biol.
15, 502 (2014).

25. Teytelman, L., Thurtle, D. M., Rine, J. & van Oudenaarden, A. Highly expressed
loci are vulnerable to misleading ChIP localization of multiple unrelated
proteins. Proc. Natl Acad. Sci. USA 110, 18602–18607 (2013).

26. Park, D., Lee, Y., Bhupindersingh, G. & Iyer, V. R. Widespread misinterpretable
ChIP-seq bias in yeast. PLoS ONE 8, e83506 (2013).

27. Rustad, T. R., Harrell, M. I., Liao, R. & Sherman, D. R. The enduring hypoxic
response of Mycobacterium tuberculosis. PLoS ONE 3, e1502 (2008).

28. Fitzgerald, D. M., Bonocora, R. P. & Wade, J. T. Comprehensive mapping
of the Escherichia coli flagellar regulatory network. PLoS Genet. 10, e1004649
(2014).

29. Jones, C. J. et al. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism
for cyclic di-GMP synthesis and biofilm development by Pseudomonas
aeruginosa. PLoS Pathog. 10, e1003984 (2014).

30. Cortes, T. et al. Genome-wide mapping of transcriptional start sites defines an
extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell Rep. 5,
1121–1131 (2013).

31. Schuessler, D. L. & Parish, T. The promoter of Rv0560c is induced by salicylate
and structurally-related compounds in Mycobacterium tuberculosis. PLoS ONE
7, e34471 (2012).

32. Vora, T., Hottes, A. K. & Tavazoie, S. Protein occupancy landscape of a
bacterial genome. Mol. Cell 35, 247–253 (2009).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6829 ARTICLE

NATURE COMMUNICATIONS | 6:5829 | DOI: 10.1038/ncomms6829 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


33. Browning, D. F., Grainger, D. C. & Busby, S. J. Effects of nucleoid-associated
proteins on bacterial chromosome structure and gene expression. Curr. Opin.
Microbiol. 13, 773–780 (2010).

34. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid
structure and gene expression. Nat. Rev. Microbiol. 8, 185–195 (2010).

35. Buxton, R. S. et al. Long range transcriptional control of virulence critical genes
in Mycobacterium tuberculosis by nucleoid-associated proteins? Virulence 3,
408–410 (2012).

36. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization
to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2,
28–36 (1994).

37. Anand, S. et al. Equilibrium binding and kinetic characterization of putative
tetracycline repressor family transcription regulator Fad35R from
Mycobacterium tuberculosis. FEBS J. 279, 3214–3228 (2012).

38. Balhana, R. J. et al. bkaR is a TetR-type repressor that controls an operon
associated with branched-chain keto-acid metabolism in Mycobacteria. FEMS.
Microbiol. Lett. 345, 132–140 (2013).

39. Maciag, A. et al. Global analysis of the Mycobacterium tuberculosis Zur (FurB)
regulon. J. Bacteriol. 189, 730–740 (2007).

40. Vindal, V., Suma, K. & Ranjan, A. GntR family of regulators in Mycobacterium
smegmatis: a sequence and structure based characterization. BMC Genomics 8,
289 (2007).

41. Biswas, R. K. et al. Identification and characterization of Rv0494: a fatty acid-
responsive protein of the GntR/FadR family from Mycobacterium tuberculosis.
Microbiology 159, 913–923 (2013).

42. Jullien, N. & Herman, J. P. LUEGO: a cost and time saving gel shift procedure.
Biotechniques 51, 267–269 (2011).

43. Ishihama, A. Prokaryotic genome regulation: a revolutionary paradigm. Proc.
Jpn. Acad. B Phys. Biol. sci. 88, 485–508 (2012).

44. Raghavan, S., Manzanillo, P., Chan, K., Dovey, C. & Cox, J. S. Secreted
transcription factor controls Mycobacterium tuberculosis virulence. Nature 454,
717–721 (2008).

45. Collado-Vides, J., Magasanik, B. & Gralla, J. D. Control site location and
transcriptional regulation in Escherichia coli. Microbiol. Rev. 55, 371–394
(1991).

46. Salgado, H. et al. RegulonDB v8.0: omics data sets, evolutionary conservation,
regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res.
41, D203–D213 (2013).

47. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of
proteins. J. Mol. Biol. 3, 318–356 (1961).

48. Wade, J. T., Struhl, K., Busby, S. J. & Grainger, D. C. Genomic analysis of
protein-DNA interactions in bacteria: insights into transcription and
chromosome organization. Mol. Microbiol. 65, 21–26 (2007).

49. MacQuarrie, K. L., Fong, A. P., Morse, R. H. & Tapscott, S. J. Genome-wide
transcription factor binding: beyond direct target regulation. Trends Genet. 27,
141–148 (2011).

50. Park, D. M., Akhtar, M. S., Ansari, A. Z., Landick, R. & Kiley, P. J. The bacterial
response regulator ArcA uses a diverse binding site architecture to regulate
carbon oxidation globally. PLoS Genet. 9, e1003839 (2013).

51. Brewster, R. C. et al. The transcription factor titration effect dictates level of
gene expression. Cell 156, 1312–1323 (2014).

52. Lee, T. H. & Maheshri, N. A regulatory role for repeated decoy transcription
factor binding sites in target gene expression. Mol. Syst. Biol. 8, 576 (2012).

53. Burger, A., Walczak, A. M. & Wolynes, P. G. Abduction and asylum in the lives
of transcription factors. Proc. Natl Acad. Sci. USA 107, 4016–4021 (2010).

54. Ehrt, S. et al. Controlling gene expression in mycobacteria with
anhydrotetracycline and Tet repressor. Nucleic Acids Res. 33, e21 (2005).

55. Minch, K., Rustad, T. & Sherman, D. R. Mycobacterium tuberculosis
growth following aerobic expression of the DosR regulon. PLoS ONE 7, e35935
(2012).

56. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of
normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19, 185–193 (2003).

57. Robin, X. et al. pROC: an open-source package for R and Sþ to analyze and
compare ROC curves. BMC Bioinformatics 12, 77 (2011).

58. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a
given motif. Bioinformatics 27, 1017–1018 (2011).

59. Krzywinski, M. et al. Circos: an information aesthetic for comparative
genomics. Genome Res. 19, 1639–1645 (2009).

Acknowledgements
This project has been funded with Federal funds from the National Institute of Allergy

and Infectious Diseases, National Institutes of Health, Department of Health and Human

Services under contract HHSN272200800059C and grant U19 AI106761, as well as

The Camille Dreyfus Teacher-Scholar Award Program (NDP) and the NIH Center for

Systems Biology/2P50GM076547 (N.S.B. and N.D.P.). K.J.M. acknowledges NIH

Training Grant T32AI007509. S.M. acknowledges the NSF Graduate Research Fellowship

DGE-1144245. We thank Antonio Frandi and Daniel Wozniak as well as members of the

Sherman and Baliga labs for helpful input, and the anonymous reviewers for helping to

produce a stronger manuscript.

Author contributions
K.J.M. and T.R.R. conceived of the study, generated data, analysed the results and drafted

the manuscript. E.J.R.P. performed promoter window analysis. J.W. generated strains and

data. D.J.R. performed consensus motif analysis. S.M. performed network assembly and

statistical analyses. M.H. and W.B. generated strains and data. B.M. developed peak

calling algorithm. S.T. performed network analyses. C.M. sequenced ChIP samples. J.E.G.

oversaw sequencing facility and assisted in study design. N.D.P. and N.S.B. assisted in

editing the manuscript and analysing data. D.R.S. conceived of the study, led the design,

organized the data analysis and drafted the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/

naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

How to cite this article: Minch, K. J. et al. The DNA-binding network of Mycobacterium

tuberculosis. Nat. Commun. 6:5829 doi: 10.1038/ncomms6829 (2015).

This work is licensed under a Creative Commons Attribution 4.0

International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise

in the credit line; if the material is not included under the Creative Commons license,

users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6829

10 NATURE COMMUNICATIONS | 6:5829 |DOI: 10.1038/ncomms6829 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsand
http://npg.nature.com/reprintsand
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	The DNA-binding network of Mycobacterium tuberculosis
	Introduction
	Results
	ChIP-seq data set and controls
	Network topology and characteristics
	Correlating DNA binding with the regulation of transcription
	Identifying DNA consensus motifs from ChIP-seq data
	Rv0494 as an example of widespread binding
	Validating Rv0494 binding to different motifs

	Discussion
	Methods
	Construction of expression vectors and strains
	Culturing conditions
	Chromatin immunoprecipitation
	ChIP-seq peak control data set
	Illumina library prep sequencing
	Read alignment and peak calling
	Assigning significance scores to called peaks
	RNA isolation
	Microarray analysis
	Promoter window size analysis
	Identifying consensus motifs from ChIP-seq data
	Recombinant Rv0494 protein purification
	Universal electrophoretic mobility shift assays

	Additional information
	Acknowledgements
	References


