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The DNA sequence and comparative
analysis of human chromosome 20

P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley,
J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, 0. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck,
W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley,
R. E. Collier, R. Connor, N. R. Corhy, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser,
L. French, P. Garner, D. V. Grafham, C. Griffiths, M. N. D. Griffiths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho,
J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King,
A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin,

L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel,
T.A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumbh, H. Ramsay, C. M. Rice, M. T. Ross, C. E. Scott, H. K. Sehra,
R. Shownkeen, S. Sims, C. D. Skuce, M. L. Smith, C. Soderlund, C. A. Steward, J. E. Sulston, M. Swann, N. Sycamore, R. Taylor, L. Tee,
D. W. Thomas, A. Thorpe, A. Tracey, A. C. Tromans, M. Vaudin, M. Wall, J. M. Wallis, S. L. Whitehead, P. Whittaker, D. L. Willey, L. Williams,
S. A. Williams, L. Wilming, P. W. Wray, T. Hubbard, R. M. Durbin, D. R. Bentley, S. Beck & J. Rogers

The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK

The finished sequence of human chromosome 20 comprises 59,187,298 base pairs (bp) and represents 99.4% of the euchromatic
DNA. A single contig of 26 megabases (Mb) spans the entire short arm, and five contigs separated by gaps totalling 320 kb span the
long arm of this metacentric chromosome. An additional 234,339 bp of sequence has been determined within the pericentromeric
region of the long arm. We annotated 727 genes and 168 pseudogenes in the sequence. About 64% of these genes have a5’ and a 3’
untranslated region and a complete open reading frame. Comparative analysis of the sequence of chromosome 20 to whole-
genome shotgun-sequence data of two other vertebrates, the mouse Mus musculus and the puffer fish Tetraodon nigroviridis,
provides an independent measure of the efficiency of gene annotation, and indicates that this analysis may account for more than

95% of all coding exons and almost all genes.

The finished reference sequence of the human genome is now in
sight, underpinned by the recently published working draft"*. From
the outset of the Human Genome Project, the plan has been to
determine the complete sequence of each chromosome to an
accuracy of greater than 99.99%, and to cover more than 95% of
the gene-containing part of the genome (the euchromatin). This
finished ‘gold’ standard was defined and upheld on completion of
the first two human chromosomes, 22 and 21 respectively. Here we
report completion of the sequence of the first metacentric human
chromosome, chromosome 20, to these standards. Analysis of the
finished sequence has benefited from comparison with substantial
new data sets that were not available at the time of the previous
finished chromosome analyses. These include new collections of
human and mouse messenger RNA sequences, the protein indices of
fully sequenced model organisms, and extensive sequencing of
two vertebrates genomes, those of the mouse and the puffer
fish T. nigroviridis. As a result, we were able to assess the quality
and completeness of human gene annotation by independent
analyses. The application of new analytical tools has also enabled
assessment of predictive methods to define transcription start
sites and other features of gene structures, although these require
further development and calibration with the finished annotated
sequence.

Clone map and finished sequence

We identified a set of 629 minimally overlapping clones (the tiling
path) that spans the euchromatic regions of the short (p) and long
(q) arm of human chromosome 20. The tiling path consists of 455
P1-derived artificial chromosomes (PACs), 169 bacterial artificial
chromosomes (BACs), 3 yeast artificial chromosomes (YACs), 1
cosmid and 1 polymerase chain reaction (PCR) product (Fig. 1).
The euchromatic portion of the chromosome is represented in six
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contigs with one contig covering the entire p arm (Table 1).
Boundaries between euchromatin and heterochromatin were iden-
tified by presence of satellite repeats in the sequence of clones
located at the most distal and proximal ends, respectively, of the
contigs flanking the centromere, and served as logical termination
points for map construction. Clones located at the centromeric
boundary of the p arm (Fig. 1) gave an additional signal at 20q11.1
upon fluorescent in situ hybridization (FISH) on metaphase chro-
mosomes. We constructed an additional two-clone contig repre-
senting this duplication (Fig. 1) and postulate that it is located in the
heterochromatic region of the q arm. In contrast to the p arm, four
gaps remain in the clone map of the q arm. Three of them are
clustered within a 1.2-Mb region at qtel (Fig. 1). We anticipate that
the sequences in these gaps are unclonable to the host—vector
systems used in this study, probably owing to the high guanine

Table 1 Sequence contigs on chromosome 20

Contig Size (bp) Size estimate (kb)
AL360078-AL358116 26,257,626

Centromere ND
AL121723-AL512784 5,063,606

Gap 20
AL450465-AL450463 24,982,240

Gap ~50
AL391316-AL499627 1,147,210

Gap ~100
AL449263 35,826

Gap ~150
AL450469-AL137028 1,700,790

Total euchromatic sequence 59,187,298

AL121762-AL441988 234,339

Total sequence determined 59,421,637

ND, not determined.
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and cytosine (G+C) content of the sequence in this region. All four
euchromatic gaps were sized by FISH of clones immediately flank-
ing each gap to extended DNA fibres. No gap was estimated to be
larger than 150 kb and all the gaps together account for no more
than 320kb of DNA (Table 1). Finally, we defined the location of
both telomeres. At the end of the p arm (ptel), clone RP11-530N10
(EMBL accession code AL360078; Fig. 1) ends about 10kb away
from the block of subtelomeric repeats, which extends for 40—50 kb
on the basis of the telomeric half-YAC yRM2005 (ref. 3 and H.
Riethman, personal communication). A larger allelic variant of the
subtelomeric repeat block is also known, half-YAC yA35 (ref. 4). At
the end of the q arm (qtel), clone RP11-476115 (AL137028; Fig. 1)
contains part of the subtelomeric repeat block. Each clone of the
tiling path was subjected to random subcloning and sequencing. On
the basis of internal and external® quality checks, we estimate the
accuracy of our finished sequence to exceed 99.99%. Each clone
has been finished according to the agreed international finishing
standard for the human genome (http://genome.wustl.edu/gsc/
Overview/finrules/hgfinrules.html). In total, we finished 59,421,637
bases in seven sequence contigs. The size of each sequence contig is
given in Table 1; the largest one spans the 26,257,626 bp of the entire
p arm. The four gaps account for 0.32Mb (Table 1). Thus, the
sequence covers 99.46% of the euchromatic part of chromosome 20,
which spans 59.5Mb. Our estimate for the total size of the
chromosome, based on size estimates of 3 Mb for the centromere
and 0.2 Mb for subtelomeric repeats, is 62.7 Mb, which is smaller
than a previous estimate of 72 Mb (ref. 6).

Gene index of chromosome 20

The finished genomic sequence was first analysed for G+C content
and CpG islands. Interspersed and simple tandem repeats in the
sequence were then masked and the masked sequence was compared
against protein, DNA and expressed sequence tags (ESTs) using
BLASTX and BLASTN’. In parallel, gene structures were predicted
ab initio in the masked sequence on a clone-by-clone basis with the
programs FGENESH® and GENSCAN’.

A total of 895 gene structures was annotated in the finished
sequence on the basis of human interpretation of the combined
supportive evidence generated during sequence analysis (see Fig. 1).
The structures were divided into five groups: (1) 335 ‘known’ genes,
that is, those that are identical to known human complementary
DNA or protein sequences (all known genes were in the LocusLink
database, http://www.ncbi.nlm.nih.gov/LocusLink); (2) 222 ‘novel
genes), that is, those that have an open reading frame (ORF), are
identical to human ESTs that splice into two or more exons, and/or
have homology to known genes or proteins (all species); (3) 23
‘novel transcripts), that is, genes as in 2 but for which a unique ORF
cannot be determined; (4) 147 ‘putative genes, that is, sequences
identical to human ESTs that splice into two or more exons but
without an ORF; and (5) 168 ‘pseudogenes) that is, sequences
homologous to known genes and proteins but with a disrupted
ORE

Excluding the pseudogenes, chromosome 20 has a gene density of
12.18 per Mb, which is intermediate to 6.71 (low) and 16.31 per Mb
(high) reported for chromosome 21 and 22, respectively'®!'. We
used the gene density of chromosomes 20, 21 and 22 from ref. 12 to
adjust the number of genes on each of these chromosomes. The
adjusted figures were then used to extrapolate a number of 31,500
genes for the whole genome, which is in agreement with recent
estimates"’.

The analysis of chromosome 20 benefited from the availability of
new large data sets to assist the gene annotation. These included
human (for example, Genoscope) and mouse ESTs and ‘full-length’
cDNAs (for example, RIKEN mouse ¢cDNA collection) as well as
the protein indices of fully sequenced model organisms such as
Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila
melanogaster and Arabidopsis thaliana. Some 81% of the 557
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genes in groups 1 and 2 (and 64% of all the annotated genes),
have a full ORF as defined by a starting ATG codon and the presence
of a 5" and a 3’ untranslated region (UTR). Often a stretch of
nucleotides immediately preceding the starting ATG seems to be
part of the ORE. When the supporting evidence (for example, ESTs)
terminated within such a stretch, we did not annotate a 5" UTR.
Such genes were also included (8.9% of the 557 genes) in the above
set.

The transcription start sites of most genes in the human genome
are not yet known. We carried out several analyses to assist the
annotation of the 5’ ends of as many genes on chromosome 20 as
possible. Analysis of the unmasked sequence predicted a total of 660
CpG islands, of which 389 are located near (5kb upstream or 1kb
downstream) the first exon of an annotated gene structure. Many of
the remaining predicted CpG islands have intragenic locations,
which in our view does not allow a direct correlation between the
observed number of CpG islands and the number of genes on
chromosome 20. Among the genes with complete structures, 303
(67%) are associated with a CpG island at their 5" ends, which is in
good agreement with the previously reported figure of 60% (ref. 13).
We also scanned the sequence of chromosome 20 for putative
transcription start (TS) sites using the probabilistic TS site detector
program Eponine (T. Down, unpublished). Eponine is optimized
for mammalian genomic DNA sequences and detects likely TS sites
on the basis of the surrounding sequence (typically 500 bases
upstream to 100 bases downstream). Multiple predictions are
often clustered, suggesting alternative TS sites for a gene. Eponine
has a detection sensitivity of 40%, on the basis of an analysis of
human chromosome 22. We found 1,432 TS sites on chromosome
20, of which 492 (34%) are located within 2 kb of the first exon of an
annotated gene. In the set of genes with complete structures, 402 TS
sites are associated with 166 genes (37.5%) of which 159 (95.8%)
have a CpG island at their 5’ end. So, Eponine predicts multiple TS
sites per gene (the mean value is 2.42 in the 166 genes) and has a bias
in predicting TS sites in genes associated with a CpG island at their
5" end.

The 727 genes (that is, introns and exons) extend over a total of
25,213,914bp (mean 34,682bp per gene). Excluding expressed
pseudogenes, 42.4% of the reported sequence of chromosome 20
is therefore transcribed. Exons account for only 2.43% of the
sequence and the mean exon size is 283 bp. A summary per gene
group is given in Table 2, which includes figures reported from the

Figure 1 The sequence map of human chromosome 20 and its features. The short

() and the long (qg) arm of the chromosome are depicted in the top and bottom

panels, respectively. The features of each chromosome arm are shown from top to bottom
as follows: (1) The finished sequence of each clone in the tiling path as a yellow line.
Sequence positions are indicated in megabases along the x-axis of ‘G+C content’ (see 4,
below). Eight of the clones were isolated and sequenced elsewhere, namely AC005808
(LBNL H136; BAC 185), AC005914 (LBNL H135; BAC 189), AC006076 (LBNL H133; PAC
12), AC004762 (LBNL H134; PAC 128), AC005220 (LBNL H80; BAC 99), AC004501
(LBNL H144; BAC 121) and AC004505 (LBNL H65; PAC 86C1) at the Joint Genome
Institute'® and AC006198 (RP11-3A1) at the Whitehead Institute (Massachusetts Institute
of Technology Center for Genome Research). The centromere has been arbitrarily drawn
to span 3 Mb. The exact location of contig AL121762—-AL441988 in the heterochromatic
region of the g arm is not known. Gaps in the map appear as greenish bars. The width of
the bar represents the size estimate obtained by fibre FISH. (2) The location of genetic
markers. (3) The distribution of the main types of repeats in the sequence. (4) Plot of the
G+C content of the sequence. (5) Plot of the SNP density along the sequence. (6) The
location of predicted CpG islands. (7) The location of the annotated gene structures. Right
and left coloured arrows indicate gene structures on the + and — strand, respectively. The
most 3’ end of each gene is drawn halfway along the arrowhead. Only the genes of the
annotation group 1 (known; dark blue) and 2 (novel; blue) are named. When no gene
symbol is available, the gene name used in the EMBL sequence submission file appears
(for example, dJ583P15.4). CDS, protein-coding sequence.
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Table 2 Structural characteristics of annotated gene structures

Chromosome, gene type Mean size  Mean exon size  Mean number of exons
(kb) (bp)

Chr20, known genes 51.3 294 10.3
Chr21, known genes 57.0

Chr20, novel genes 251 278 5.7
Chr20, putative genes 9.1 217 25
Chr21, novel + putative genes 27.0

Chr20, genes 34.7 283 71
Chr21, genes 39.0

Chr20, pseudogenes 1.9 499 1.4
Chr20, all 27.6 292 6.0
Chr22, all 19.2 266 5.4

Structural characteristics of groups of annotated gene structures on chromosome 20 are shown,
and compared with similar groups on chromosomes 21 and 22.

analyses of chromosomes 21 and 22 (refs 10, 11). Gene size varies
substantially, from 1,234,386bp (gene C20orfl33 (AL117333—
AL049633), which is similar to a low-density lipoprotein-related
protein, LRP16) to 339bp (gene C200rfl127 (AL121753)). Exon
sizes are fairly constant, with the exception of 3’ terminal exons (for
example, 8,181 bp in PTPRT), in contrast to intron sizes, which vary
from 33 bp (C200rf97 (AL034548)) to 523,790 bp (CDH4).

For 209 (29%) of the annotated genes, we found alternative splice
forms. Alternative splicing can, for example, give rise to two distinct
peptides by exclusion of the exons encoding a functional domain
from one but not the other transcript. The transcript for the soluble
form of attractin (ATRN; AL353193—AL132773) lacks the five exons
that encode the transmembrane and cytoplasmic domains and are
present in the transcript that encodes the membrane form of the
protein. Splice variants may encode structurally unrelated peptides.
A complex example of alternative splicing and genetic imprinting is
found in the GNASI locus (AL132655—AL109840). NESP55 and
XLAS are transcribed from distinct mono-allelic promoters located
upstream of the bi-allelic promoter that drives the transcription of
the gene for the a-subunit of the stimulatory guanine-nucleotide-
binding protein G;. Gy, is encoded by exons 1-13. A large G protein,
XLas, is generated by in-frame splicing of an upstream exon (bp
120,789-121,953; AL132655) to exon 2 (bp 39,075-39,119;
AL121917) of Gy. An additional exon located further upstream
(bp 106,368—-107,508; AL132655) splices again to exon 2 of G, but
not in frame, giving rise to a structurally unrelated peptide,
NESP55. An antisense transcript (dJ806M20.3.6; AL132655) pos-
tulated to regulate this imprinted region has also been reported™. In
total, we annotated six isoforms of GNASI. One gene (PLCB4;
AL121898—-AL031652) was found to have the most isoforms
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(eight); in most cases of genes with alternative splicing (130
genes) we observed two isoforms. Typically, we annotated the
longest possible terminal exon and did not create entries for
alternative splice forms on the basis of alternative polyadenylation
sites. If we exclude the putative genes that have mainly incomplete
structures, then 35% of the genes (average of 1.65 transcripts per
gene) show alternative splicing. This is in agreement with previous
estimates'®. Analysis of chromosomes 19 and 22 (ref. 1), both gene-
rich chromosomes, showed a higher extent of alternative splicing.

Protein index of chromosome 20
We analysed the proteome of chromosome 20 using InterProScan
(http://www.ebi.ac.uk/interpro/scan.html) to look at the distribu-
tion of known protein domains. The InterPro database combines
information on protein families, domains and functional sites from
the databases Pfam, PRINTS, PROSITE, SMART and SWISS-PROT
(see http://www.ebi.ac.uk/interpro for links). Of all proteins
encoded on chromosome 20, 73.5% have an InterPro match and
30% are multidomain with an average of 2.1 distinct InterPro
domains. As shown in Table 3, many of the most frequent domains
in the chromosome 20 proteome rank in similar order as in the
human proteome'. There are, however, five domains for which
chromosome 20 seems enriched. Four of them—the cysteine
proteases inhibitor (IPR000010), the immunoglobulin subtype
(IPR003599), the whey acidic protein (WAP)-type ‘four-disulphide
core’ domain (IPR00222), and the pancreatic trypsin inhibitor
(Kunitz/Bovine) domain (IPR002223)—are found in proteins
encoded by three gene clusters along the chromosome.
Functionally related gene clusters indicate probable ancestral
gene-duplication events. The first cluster, at 1.5 Mb (Fig. 1), extends
from AL109658 to AL034562 and includes genes with immuno-
globulin and immunoglobulin-like domains that are involved in
signal transduction and cell adhesion (SIRPBI, SIRPB2 and
PTPNSI). The annotated genes PTPNIL and PTPNSIL2 and
pseudogenes dJ576H24.1 and dJ673D20.1 are new members of
this gene family. Interestingly, the apparently functional gene
PTPNSIL2 is located within a larger fragment of 33,048 bp
(AL049634 and AL592544), which is an insertion type of poly-
morphism. The insertion allele is represented in the RP4 PAC
library but not the RP11 BAC library. Using a panel of 174
Caucasians, we estimated that the frequency of the insertion allele
is 37.3%. The second cluster, at 23.5 Mb (AL096677—AL121831; Fig.
1), comprises members of the cystatin gene family, which encode
protease inhibitors with antibacterial and antiviral activities. An
additional member, CST7, is located about 1 Mb distal of the main

Table 3 Most common InterPro domains in the chromosome 20 proteome and their abundance in other species

Abundance

Rank InterPro code Chr20 Hs Dm Ce At Sc Name

(genome rank)

1) IPR0O00822 26 576 341 205 169 53 Zinc finger, C2H2 type

213 IPRO00719 12 481 230 419 1,033 116 Eukaryotic protein kinase
(IPR002290 12 316 158 219 856 13 Serine/threonine protein kinase family active site)
(IPRO0O1245 11 193 82 121 477 4 Tyrosine kinase catalytic domain)

3 (ND) IPR002965 ih! 190 175 62 178 0 Proline rich extensin

4 (ND) IPRO00010 9 20 4 3 7 0 Cysteine proteases inhibitor
(IPRO03243 8 10 0 1 7 0 Cystatin C and M)

5(4) IPR0O00276 9 373 84 368 0 0 Rhodopsin-like GPCR superfamily

6 (13) IPRO00561 9 234 86 137 42 1 EGF-like domain

7 (24) IPRO00008 8 111 42 53 99 11 C2 domain

8 (ND) IPRO00504 8 203 135 111 248 54 RNA-binding region RNP-1 (RNA recognition motif)

9(1) IPRO03006 8 584 134 66 0 0 Immunoglobulin and major histocompatibility complex domain
(IPRO03599 7 177 27 M 0 0 Immunoglobulin subtype)

10 (ND) IPR0O00345 7 2 4 3 3 3 Cytochrome ¢ family haem-binding site

11 (ND) IPRO0O1124 7 8 0 10 2 0 Lipid-binding serum glycoprotein

12 (ND) IPR002221 7 6 4 7 0 0 WAP-type four-disulphide core domain

13 (ND) IPR002223 6 13 22 38 0 0 Pancreatic trypsin inhibitor (Kunitz/Bovine) family

At the time of analysis, the InterPro database contained 18,149 Homo sapiens (Hs, incomplete), 13,843 Drosophila melanogaster (ODm), 18,581 Caenorhabditis elegans (Ce), 25,677 Arabidopsis thaliana
(At) and 6,176 Saccharomyces cerevisiae (Sc) protein entries. Rows in parentheses correspond to InterPro domains that are ‘children’ (= members) of a broader InterPro domain. ND, not determined. The

P-loop motif domain IPRO01687 was excluded, owing to low specificity.
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cluster (AL035661). Only two of the known cystatins are not on
chromosome 20 (IPR003243; Table 3). We annotated three new
members (CST8L, CSTLI and CST9IL) and two pseudogenes. The
third cluster, at 43.5 Mb (AL049767—AL050348; Fig. 1), includes 11
genes that encode proteins with a WAP-type four-disulphide core
domain (IPR002221) and/or a pancreatic trypsin inhibitor (Kunitz/
Bovine) domain (IPR002223). A fourth cluster that includes genes
for the semenogelins SEMG1 and SEMG2 (semen proteins involved
in reproduction) is located within the third gene cluster between
members PI3 and SLPI, which have only a WAP-type domain.

Chromosome landscape

The sequence of chromosome 20 has an average G+C content of
44.1%, which is slightly higher than the genome average of 41%.
The distribution of the G+C content fluctuates along the chromo-
some, and regions with higher G+C have a higher gene density
(Fig. 1). For example, the sequence from 49.5 to 54 Mb has an
average G+C content of 41.1% and a gene density of only 4.9 genes
per Mb, in contrast to the region between 60 and 62.5 Mb, which has
56.6% G+C content and a gene density of 28 genes per Mb. Given a
sequence length and gene ratio of 1.25 and 1.65, respectively,
between the q and the p arm, the q arm seems rich in genes. Gene
density can drop as low as 1.54, for instance in a 1.9-Mb region
between AL136990 and AL139163. Interestingly, the largest genes,
such as PTPRT, PLCBI and dJ631M13.5 are located adjacent to or
within gene-poor regions.

The repeat content of chromosome 20 is 42%. The distribution of
the main classes of repeats (detailed in Supplementary Information)
is shown in Fig. 1. Regions of high gene density seem enriched in
short interspersed elements (SINEs).

Segmental duplications are another interesting feature of the
genome. We compared the masked sequence of chromosome 20
with the rest of the genome and with itself to identify inter- and
intrachromosomal duplications, respectively. The segments of
chromosome 20 involved in interchromosomal duplications
(Fig. 2) often contain pseudogenes; for example, at 6Mb,
AL359954 contains a pseudogene similar to TRDBP that maps to
1p36 (AL109811). The region at 53.9 Mb (Fig. 2) that is duplicated
in chromosomes 21 and 22 was recently described as part of a breast
cancer amplicon'®. A region of about 500kb between 25.8 and
26.3Mb is implicated in both types of segmental duplications. A
core region of 100kb that harbours a copy of exon 7 of the CFTR
gene is duplicated on chromosome 20. The second copy is located in
AL121762-AL1441988 at the pericentromeric region of the q arm.
Copies of the extended region seem to be present on chromosomes
9, 12, 15, 17 and 19 (Fig. 2). Secondary signals in the pericentro-
meric regions of these and other chromosomes were also observed
on FISH analysis of clones AL078587 and AL121762. It will be
interesting to investigate whether the gene structures annotated in
AL121762 and AL441988 are expressed genes, particularly
C200rf80, which is similar to the FRGI gene. FRGI is located
100kb centromeric of the repeat units on chromosome 4q35,
which are deleted in facioscapulohumeral muscular dystrophy.
The region from 48.2 to 48.8 Mb is bordered by two copies of a
60-kb intrachromosomal duplication.

The integrated Marshfield male, female and sex-averaged genetic
maps of chromosome 20 (ref. 17) were aligned to the physical map
(Fig. 3). The steepest increase in recombination frequency is
observed between markers D20S178 and D20S176, which are
both located in the region of duplication described above. A
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Figure 2 Duplication landscape of chromosome 20. Intrachromosomal and inter-
chromosomal duplications are shown in blue and red, respectively. Each horizontal line
represents 1 Mb of the sequence from the telomeric end of the short arm (top left) to the
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telomeric end of the long arm (bottom right). The gap indicates the centromeric region.
Pairwise alignments generated by Exonerate and longer than 1 kb are shown.
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region of very low recombination extends for about 20 Mb between
markers D20S432 and D20S859. The rate of recombination in
specific loci differs between the two sexes. Compared with that of
the female, the rate of male recombination is higher along the p
arm up to marker D20S432 and lower across the rest of the
chromosome (Fig. 3).

Sequence variation

The definition of the common ancestral haplotypes that are present
in the population relies on the availability of an extensive collection
of single nucleotide polymorphisms (SNPs). We first placed 26,678
SNPs (deposited in the dbSNP database, http://www.ncbi.nlm.nih.
gov/SNP) on the sequence of chromosome 20. Of those, 13,016 were
derived from sequence analysis of clone overlaps by the program
ssahaSNP'®. To recover additional SNPs in clone overlaps, we
realigned all available clone-based shotgun sequences from chromo-
some 20 (including unfinished sequence in clone overlaps that was
previously archived and therefore excluded from the earlier analy-
sis) onto the finished sequence with ssahaSNP, and detected 11,050
SNPs (submitted to dbSNP). Merging the two data sets resulted in
32,763 unique SNPs on chromosome 20 (Fig. 1), of which 6,085 are
new. In the unique set, there are 14,211 SNPs (43.4%) located within
annotated genes and 3,061 of them are in exons.

Comparative analysis

Functional features such as exons and regulatory elements have
been conserved through evolution and there is compelling evidence
that comparative genomic sequence analysis is a powerful tool in the
quest to complete the structural annotation of the human genome.
Two data sets were available in the public domain at the time of
analysis: about 13 million sequence reads of a mouse whole-genome
shotgun giving an estimated genome coverage of 2.3-fold (http://
trace.ensembl.org), released by the Mouse Sequencing Consortium
on 8 May 2001; and 816,262 single sequence reads from BAC and
plasmid ends of the T. nigroviridis genome, totalling 663,839,518
bases and corresponding to 1.72 genome equivalents, generated at
Genoscope. Thus we undertook the comparative analysis of the
finished and annotated sequence of an entire human chromosome
against two vertebrate genomes.

Mouse sequences were aligned to the sequence of chromosome 20
using Exonerate version 0.3d (Guy StC. Slater, unpublished). We
obtained matches with 63,644 mouse sequences representing 12,041
regions of sequence conservation (RSC) along chromosome 20.
Tetraodon sequences were aligned at Genoscope by Exofish (‘exon
finding by sequence homology’), which generates ecores (evolu-
tionary conserved regions)'®. Matches were obtained with 2,992
ecores (available at http://www.genoscope.cns.fr/exofish). We first
examined the annotated gene structures; 77.4% of the 727 genes
and 89% of the 168 pseudogenes have at least one exon matched
by a mouse RSC or Tetraodon ecore. This figure is much higher for
the 557 genes in groups 1 and 2 (94%) than it is for the ‘putative’
gene structures in group 4 (33%). Furthermore, the two sets differ
in the ratio of genes with only a mouse RSC to genes with both an
RSC and ecore match: 1:3.8 and 1:0.2, respectively. These observa-
tions suggest that the putative gene structures may represent
largely UTRs, which have sequences known to be less well con-
served between species, and possibly genes that appeared later in
evolution.

We then looked at matches outside annotated exons as a way to
assess the completeness of the current annotation. Such matches
may correspond to exonic sequences that have not been annotated
in the present study owing to lack of supporting evidence (for
example, EST, cDNA and protein homologies). Note that we did not
use RSCs and ecores during the annotation process. We found 5,447
RSC and 207 ecore matches, and 60 of these non-exonic regions are
conserved in all three species. Of all annotated exons (including
pseudogenes), 2,050 (36.3%) contain a region conserved in all three
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Figure 3 Alignment of the genetic map of chromosome 20 to the physical map. The
two maps are aligned from the telomeric end of the short arm to the telomeric end of the
long arm. The position of each genetic marker on the female, the male and the sex-
averaged genetic map is indicated.

species (in contrast to 0.2% of the annotated introns). Thus, we
postulate that about 97.2% (2,050 / (2,050 + 60)) of all coding exons
of chromosome 20 have been annotated in this study. A caveat is
whether the set of annotated genes used in this analysis is repre-
sentative of genes that appeared recently in evolution, as ecores are
biased to more conserved genes; however, we consider that such an
effect cannot be substantial.

The 639 and 4,808 RSC matches in annotated introns and
intergenic regions, respectively, suggest that although the mouse
data set provides better coverage (70% of all exons) than the ecores,
exonic sequences cannot be readily identified by simple comparison
at the DNA level.

GENSCAN can be used on small segments of genomic sequence
to effectively evaluate the likelihood of that segment containing an
exon. We performed a GENSCAN analysis on ‘extended RSCs,
which included 100 bp of human sequence either side of the RSC
match, to divide them into those that were more likely to be coding
regions of sequence conservation (cRSC) and those more likely to
be noncoding. This predicted 3,299 cRSCs and 8,836 noncoding
RSCs and found that 65.7% of cRSCs match annotated exons (3.8%
are within introns). As a result, the 874 cRSCs found between
annotated genes is a set enriched in regions that may represent non-
annotated exons (there are 4,748 RSC matches in intergenic
regions).

Conclusion and medical implications

We sequenced the euchromatic portion of human chromosome 20
leaving four small gaps that account for no more than 320 kb. In the
59,421,637 bp of sequence, we annotated 727 gene structures of
which 64% are complete and 168 pseudogenes. A comparison of this
product with the draft assembly of chromosome 20 reported earlier
this year’ clearly shows the importance of generating a contiguous
finished reference sequence for each human chromosome. Both the
G+C and gene density plots of chromosome 20 peak between 60 and
62.5Mb (Fig. 1) at the qtel region, which is in sharp contrast to the
corresponding plots shown in Fig. 11 in ref. 2, which peak at least
12 Mb proximal of the telomere. Furthermore, the order in which
genes are shown in the magnified part of Fig. 13 in ref. 2 is incorrect.
For example, the gene OSBPL2 (oxysterol binding protein 2) and
bB379024.1 (GATA5 related) are located at 60.2—60.6 Mb and
cannot map between PTPRT (protein tyrosine phosphatase, recep-
tor type) at 41 Mb and ZNF217 (Kruppel-like transcription factor)
at 51.7 Mb. The use of the clone map information was instrumental
in resolving similar problems during the assembly of the chromo-
some 20 draft sequence.
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The output of the comparative analysis of chromosome 20 from
the mouse whole-genome shotgun and the ecores generated from
the Tetraodon genomic sequence suggests that the current sets of
human and mouse ESTs and ‘full-length’ cDNAs together with the
proteomes of model organisms are adequate to allow the identifica-
tion of the vast majority of human genes in the sequence. As
expected, we found that comparative analysis can be used to reliably
identify exonic sequences. The mouse shotgun data alone cannot be
used reliably to postulate the number of non-annotated exons,
owing to the overall higher degree of sequence conservation. The
use of the two data sets together, however, provides an excellent tool
for assisting the identification of new, and the completion of
existing, gene structures. In the present study, the ability to identify
regulatory elements in the sequence of chromosome 20 by compari-
son to the mouse sequence data can be substantiated only by
anecdotal evidence. A three-way comparison with the addition of
the genome sequence of a species more closely related to humans
may hold the key in this endeavour™.

Chromosome 20 is best known for harbouring the genes that
cause Creutzfeldt—Jakob disease (PRNP) and severe combined
immunodeficiency (ADA). However, the causes of the sporadic
cases of Creutzfeldt—Jakob disease (80% of all cases) remain
unknown, and no mutation in the ADA gene has been identified
to explain the phenotype of ADA excess in haemolytic anaemia.
Furthermore, there are still single-gene disorders mapped to
chromosome 20 (http://www.ncbinlm.nih.gov/Omim) for which
the underlying genetic defect is not known. The resources generated
by the Human Genome Project have already been used to accelerate
the cloning of disease genes on chromosome 20; the Alagille
(JAG1)*', McKusick—Kaufman (MKKS)?, ICF (DNMT3B)* and
Hallervorden—Spatz (PANK2)* syndromes are recent examples.
The reported finished and annotated sequence and its variation
will be a valuable tool in tackling not only the remaining single-gene
diseases but also the multifactorial diseases that have been linked to
chromosome 20, such as type 2 diabetes, obesity, cataract, eczema
and Grave’s disease. Evidence for a susceptibility locus for heredi-
tary prostate cancer on 20q13 has also been reported®*. In addition
to the sequence itself, the isolated clones used in the sequencing
process constitute a unique resource in studying chromosome loss
and/or amplification in various types of cancer. We have recently
reported the refinement of a commonly deleted region (CDR) of
20q12-13.1 found in patients with myeloproliferative disorders and
myelodisplastic syndromes”. Others have reported the character-
ization of a breast cancer amplicon at 20q13.2 (ref. 16), whereas
several studies have reported loss of heterozygosity across regions of
20q using comparative genomic hybridization®®*. O

Methods
Clone map and sequence assembly

Clone map construction is described in ref. 30. Mapped sequence tagged sites (STSs) for
screening genomic PAC and BAC libraries were selected from the integrated radiation
hybrid map constructed for chromosome 20 (http://www.sanger.ac.uk/cgi-bin/rhtop?
chr=20), which harbours 1,493 STS-based markers. In regions with no clone coverage,
screening was extended to the CEPH (Centre d’Etude du Polymorphisme Humain), ICRF
(Imperial Cancer Research Fund) and ICI (Imperial Chemical Industries) YAC libraries
and the LANL (Los Alamos National Laboratory) chromosome-20-specific cosmid library
(links for the libraries can be found at http://www.hgmp.mrc.ac.uk/Biology/descriptions/
genomic_libraries.html). For the shotgun phase, pUC plasmids with inserts of 1.4—-2kb
were sequenced from both ends by the dideoxy chain termination method®" with big dye
terminator chemistry’>. Most of the reactions were analysed on ABI3700 capillary
sequencing machines. The resulting data were processed by a suite of in-house programs
(http://www.sanger.ac.uk/Software/sequencing) before assembly with the PHRED** and
PHRAP (http://www.phrap.org) algorithms. For the finishing phase, we used the GAP4
program™ to help assess, edit and select reactions, eliminate ambiguities and close
sequence gaps. Sequence gaps were closed by a combination of primer walking, PCR,
short/long insert sublibraries™, sublibrary screening with oligonucleotides and, in rare
cases, transposon sublibraries.

Sequence analysis tools

Interspersed and simple tandem repeats were identified with Repeatmasker (http://
repeatmasker.genome.washington.edu) and etandem (http://www.emboss.org),
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respectively. BLAST 1.4 (default parameters and matrix; http://blast.wustl.edu) was used
to identify initial matches, which were then re-aligned by EST_GENOME?. BLASTN was
used with a 65% similarity cutoff in the comparison against the RIKEN mouse cDNA set™
instead of 95%, which is used when searching human ESTs, to find significant matches. In
the unmasked sequence, CpG islands were predicted by searching for sequence segments
that are at least 400 bp, have a G+C content greater than 50%, and an expected/observed
CpG count of greater than 0.6. The completed analysis was assembled into contigs and
visualiszed in AceDB (http://www.acedb.org), whereas an Ensembl (http://www.
ensembl.org) database of the sequence assembly and the annotated genes was constructed
and used for calculation of statistics and producing Fig. 1. In SNP analysis, only those
regions of chromosome 20 where a SNP was detected by at least four reads was considered
valid, since the depth of shotgun sequencing for these clones was greater than 4x. The
phred-quality value of at least four of the reads at the SNP location had to be at least 30
(error probability of phred base calling 0.001 or less). Exonerate was run with an initial
word length of 14 bp, gap penalties of 8 for opening a gap and 4 for extending one, and a
score of 5 and —4 for DNA matches and mismatches, respectively.
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