
D-A143 618 THE DOMAIN NAME SYSTEMU UNIVERSITY OF SOUTHERN i/i
CALIFORNIA MARINA DEL REV INFORMATION SCIENCES INST
P MOCKAPETRIS JUN 84 ISI/RS 84 ±33 MDASG3-Si-C-8335

UNCLASSIFIED F/O 912 N

El ..





.rj.

12.

.

1111111.0.0111W

.1* I:.~

~MICROCOPY RESOLU'TION TEST CHART

O.

.o.

• • • % " 4'",,'= " ' -e • .~m ," e',''- "', ""4 "- oO o°' •...• '= " " " 'o - .° r-"-I'll %



* ISI Reprint Sen
ISIIRS-84-I.

June 19

University
of Southern
California

Paul Mockapetris

00 The Domain Name Syster0'-

co Reprinted from the Proceedings of the IF

M 6.5 Working Conference held in Nottinghan
England, 1-4 May 1984.

DTIC
vx LECTE

SJUL 3 1984)CX.'LjJ

-6-jfftj~nH SATMENT

ppovd* to t Pubc :1 VasO !" .'i ~D i tra t o n U n l im i te d  ,,,

:. ." INFOR MA TION,

".T T 4676 Admiralty fail/Aarina dd Ret/( lhifirm a V02Y2-6

84 07 31 0 0 4'

. . . . . . .... 
.. :.... 2 ... ..... 

..

I £~. .-- ~~ A*a ~- *** * -.



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE ("hen Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ISI/RS-84-1 33 J)PA ___61z

4. TITLE (and Subtitle) S. TYPE OF REPORT I PERIOD COVERED

Research Report
The Domain Name System

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) I. CONTRACT OR GRANT NUMBER(s)

Paul Mockapetris MDA903 81 C 0335

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

USC/Information Sciences Institute AREA & WORK UNIT NUMUERS

4676 Admiralty Way
Marina del Rey, CA 90292-6695

I 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency June 1984
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 18
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of Chia report)

Unclassified

0IS. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (0. fne abstract entered in Block 20. If different from Report)

IS. SUPPLEMENTARY NOTES

V- Reprited from Proceedings of the IFIP 6.5 Working Conference held in Nottingham, England, 1-4
Mayl 984.

1S. KEY WORDS (Continue on reverse side If neeceary nd identify by block number)

'- binding, distributed database, names, naming, name server, protocols

20. ABSTRACT (Continue n revere side If necesary end Identify by block number)

-" The domain name system is a protocol and a set of servers which provides a uniform method for
associating the names of resources (e.g., mailboxes, host names) to information about the resources
(e.g. mail server addresses, network addresses). The name database is distributed among multiple
name servers scattered through one or more internets. The protocol provides tools for controlling

both the distribution of the database and the responsiblity for maintenance of the distributed pieces of
K'.. the database.

DD 3 14733 'EDITION OF I NOV5ISOISOLSTE
"'.'DD R"A, Unclassified

L S/N 0 |02-014- 6601
SECuRITY CLASSIFICATION OF THIS PAGIE (Mten Dote Entr ed)

,. -',, , . . .". .. '.•



ISI Reprint Series

ISI/RS-84-133
June 1984

U~niversity
of Southern

Cahfornia

Paul Mockapetris

. . The Domain Name System

Reprinted from the Proceedings of the IFIP

6.5 Working Conference held in Nottingham,

England, 1-4 May 1984.

rev

%°-i

INFORMATION::,:SCIENCES[ 2131--215
",,'U."4676 Admiralty Way/Marina del Rey/Cafornia 90292-6691

This research is supported by Ili Defense Advanced Research Projects Agency under Contract No. MOA903 81 C 0335. Views aind
, .7r conclusions contained in this report are the authors' and should not be interpreted as representing the official opinion or policy of DARPA,

the U.S. Government, or any person or agency connected with them.

, , ,-.Y ,Z.-.:., ---.. J.... .... ~ ..:.j...;.;;..;.z:..-.:... ... .. ::. -....... ,......-. ......... ,.......,



P

ISI Reprint Series
This report is one in a series of reprints of articles and papers written by ISI
research staff and published in professional journals and conference
proceedings. For a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
USA

i
4e ' , ' . , . " " 

" o ' °
" ' " ' - " , . ' - " • - ° . • ' ' ' ° . " "



Table of Contents

OVERVIEW 1
The problem I
Characteristics of the proposed solution 1

THE ABSTRACT DATABASE 2
The domain name space 2
Conventions 4
Resources 4

QUERIES 5
Simple queries 5
Completion queries 5
Inverse queries 6

DISTRIBUTION OF THE DATABASE 6
Zones 7
Resolvers 9
Name servers 9

DATABASE MAINTENANCE 10
Refreshing discipline 10
Caching 10

STATUS AND DIRECTION OF FUTURE WORK 11
Status 11

... Connecting internets 11
Update management 12

ACKNOWLEDGMENTS 12
REFERENCES 12

Aceosion For

PSG.RA&I. , q r"' " "D T I C T A A R[

Unannotuiced 0

Distribut i on/

Avull and,,or
7 .. D*.t. . Specal

6,'. ° 
o

:7.7- - . . " -',--" ""---.'."% 3 '-- " -" T. ... " O ""



OVERVIEW

The problem

Most contemporary problems with naming in computer networks result from two trends: the first is the rapid
expansion in the number of users, hosts, networks, and other resources to be named, and the second is the
connection of more and more systems with different data formats and characteristics. The resulting problems
include:

- A large number of names as well as a large rate of growth in the number of names. Continual
gradual growth occurs as users and hosts are added; large jumps can occur when networks or
internets are connected. The size of this problem varies with the resource being named; for
example, there is usually a difference of orders of magnitude between the number of hosts and the
number of mailboxes on those hosts.

The need to distribute responsibility for naming. Organizations usually want to have authority for
assigning names on their own hosts, networks, etc.

-. The need to accommodate varying classes of information associated with a name. For example,
two different networks might have different formats for host addresses, yet have identical formats
for mailboxes. Thus the information associated with a name may depend on what the named
object represents and may also vary according to the network or internet in which the object
resides. In general, we can hope for consistency in some resources (for example, mailboxes), but
we expect inconsistency in other types of resources (for example, host addresses). The domain
system enforces consistency for the formats of names, but allows variety in the uses of a name and
the information associated with a name.

. Variety in the capabilities of the hosts and networks that use names. Solutions that are
appropriate for highly connected networks (e.g., the ARPANET) may be inappropriate for
networks using once-a-day phone calls; similarly, solutions appropriate for large timeshared hosts
may be inappropriate for personal computers.

The ARPA Internet illustrates several of these problems; it is a large system and is likely to grow much larger.
K. Currently hosts in the ARPA Internet are registered with the Network Information Center (NIC) and listed in

a global table [1). The size of this table, and especially the frequency of updates to the table, are near the limit
of manageability.

Mailbox names in the ARPA Internet are not distributed according to any network-wide scheme, although
many organizations distribute mailbox lists for the organization to all hosts serving the organization.
Inconsistency in the semantics of mailbox descriptions is a continuing source of problems; most of these
problems arise from various ad hoc encodings of routes in the mailbox name.

Characteristics of the proposed solution

Several of our basic design assumptions for the domain name system evolved from the concerns outlined
above:

- The database must be distributed. The size and update rate of the database prohibit

centralization. By distributing the database, we may also improve the performance and
availability of the system.

6. '-5



• _ 2

"'S * From the user's point of view, the database should appear to be centralized. That is, measures to
allow distribution, redundant copies. etc.. should be transparent to the user.

The costs of implementing such a facility dictate that it be generally useful and not restricted to a
single application. We should be able to add new resource types indefinitely.

4 The database must be hierarchical. Such an organization offers the opportunity for delegating

responsibility for "subtrees" to separate organizations.

"- • The hierarchy must be extensible. The spread of local networks will place the same pressures on

organizations to allow partitioning of responsibility as are now apparent in long-haul networks.
We would like the capability to partition the database whenever such a partition makes database
management more convenient.

We also imposed restrictions on the inital domain system:

h The domain system provides facilities for distributing the database and using redundant copies,
but relies on local system administrators to configure the database so that it works properly. This
responsibility includes change control, authentication, etc.

*.Rather than including a mechanism for performing atomic updates, the domain system
periodicaly distributes updated dat Thus redundant copies of pats of the database may be
incorrect for short periods. The system administrator who creates a particular piece of data also

- , assigns a refresh interval for that data. The update interval can be made arbitrarily short, or the
update problem can be avoided by prohibiting copies of particular data.

These restrictions simplify the initial implementation task, but may be changed in the future.

-- THE ABSTRACT DATABASE

- Since the distribution of data is hidden from the typical user by the programs used to access the domain
system's distributed database, the user is mainly concerned with the structure and contents of the abstract
database (i.e., the database which would result if all of the distributed data were collected in a single
database).

The domain name space

The domain system uses names that are hierarchical; conceptually, the name space is a tree with labels on the
nodes of the tree. A node's domain name is the list of labels associated with the nodes on the path from the
node to the root of the tree. By convention, we list the labels from left to right corresponding to the most
specific node to the least specific (the root). With the exception of the root node, which has a null label, labels
are not required to be unique. The root's unique label is a convenience which allows programs to easily
recognize the end of a name.

Although the domain system does not require the name space's structure to correspond to any other structure,
by convention we structure the majority of the domain name space to roughly correspond to the "nesting" of
organizations that use the domain system, followed by other levels that correspond to the nesting of
mailboxes, hosts, etc. within organizations. An example domain name space follows.

Sm



* ,~ . - . h - - - ** - . - - • ,

3

DONC
.J,

... L.

IMultics B F P.st!Mockapetris

The tree is anchored at the root and is divided into three domains, DDN, ARPA, and CSNET, corresponding
to the DDN network, the ARPA Internet, and the computer Science Network. (The term domain is used to
refer to any subtree of the abstract tree.) In the ARPA domain, the four subdomains MIT, ISI, UDEL, and
NIC, are organizations that we have chosen to place in the ARPA domain. Each of these is its own domain
for creating mailbox names, host names, etc.; the example diagramn does not show this substructure, with the

-. exception of a few example entries under ISI.ARPA.

The ISI domain shows a substructure for three hosts (A, B, and F) and three mailboxes (Postel, Mockapetris,

d and Cohen). Note that the name space itself does not imply this binding in any way; the correspondence is

created uigresource records.

'p..-

0U EL

% =N"

* -- .
-,. ' p I ***P * .*... *.* - *~



4

Conventions

Internally, the domain system maintains names using a binary structure. However, many applications needmethods for representing domain names as printable text. The default method is to list the labels from most

specific to least specific, using dots to separate the labels. Since all domain names end in the root label, the
root label and its preceding dot are omitted. A different method is used for mailboxes. A mailbox
specification of the form local-part@global--part is mapped to a domain name whose most specific label is
"local-part" and whose remaining labels are taken from "global-part", with dots representing label divisions.
For example, the mailbox Mockapetris@ISI.ARPA maps to domain name Mockapetris.ISI.ARPA.

The domain system uses case-insensitive matching rules for comparing domain names, but retains the case of
" all data in the system. For example, if the system administrator defines a mailbox for

Mockapetris@ISI.ARPA, that data will match queries for mockapetris@isi.arpa as well as queries forMOCKAPETRIS@ISI.ARPA; however, the returned answer will always be Mockapetris@ISI.ARPA.

Resources

In order to create a correspondence between a resource and its name, we associate resource records (RRs)
with nodes. For example, to make the domain name Mockapetris.ISI.ARPA correspond to a mailbox, we

* ' store a mailbox resource record at that node; to make A.ISI.ARPA a host name, we store a host name
resource record at the A.ISI.ARPA node.

We can associate as many RRs as we desire to a particular name. The most frequent use of this facility is to
associate multiple host addresses to a single host or multiple mailbox names to a mailing list. However, we
could also use a particular name to refer to both a host address and a mailbox name. Such multiple use is not
forbidden by the domain system, but rather is avoided to spare users unnecessary confusion.

Each RR contains several standard fields, including a type and a class, as well as a variable-length resource
data (RDATA) field, which contains type- and class-specific information describing the resource.

. Type values are drawn from a set of well-known codes, and they refer to abstract resource types and include
such types as "mailbox", "host address", and "mailing list".

Class values are drawn from a set of well-known codes and specify the system used to represent the data in
the resource record. Class values usually identify an internet. For example, the ARPA Internet is one class,
and RRs with type = A (host address) and class = IN (ARPA Internet) use 32-bit addresses, while another
internet might use 10-digit phone numbers. Note that the class field does not represent protocol families per
se; separate classes could be used for two private copies of a particular protocol, and there are cases such as
the CSNET class, which uses ARPA Internet addresses as well as phone numbers and X.25 addresses in the
RDATA field of its host address RRs.

Class definitions are orthogonal to domain structure. Thus, although all resources of a particular class may be
organized into a specific domain, this type of organization is not required. For example, the CSNET domain
and the CSNET class may happen to be related, but they are not constrained to be so.

In addition to defining data format, class information is used to guide the search process associated with
queries. For example, a requestor looking for mailbox information might constrain the search to resource
data of a class compatible with the requestor's machine; alternatively, the requestor might collect all of the
resource information for the mailbox, regardless of class, and then decide which information to use.

*1

'.

4..

.1.



2 P 7

The following is a partial listing of the RRs in the ISI section of the sample domain space:

Owner Type Class RDATA

A.ISI.ARPA A IN 10.1.0.32
B. ISI.ARPA A IN 10.3.0.52
F. ISI.ARPA A IN 10.2.0.52
Postel.ISI.ARPA MB IN F.ISI.ARPA
Mockapetris.ISI.ARPA MB IN F.ISI.ARPA
Cohen.ISI.ARPA MB IN B.ISI.ARPA

The RRs are attached to particular nodes; the node that "owns" a particular RR is shown in the owner
column. The next two columns show the type and class of the RR; the two types shown here are host address
(A) and mailbox (MB), the only class shown is ARPA Internet (IN). Host address RRs include the 4-octet
ARPA Internet host address; this 32-bit quantity is shown here using the ARPA standard method of octets
separated by dots (this is NOT a domain name). The RDATA section for mailbox records contains domain
names, and points to a mail server for the particular mailbox. Thus the mailbox Postei@ISI.ARPA is bound
to the mail server on F.ISI.ARPA, while Cohen@ISI.ARPA is bound to host B.ISI.ARPA.

QUERIES

From the user's point of view, the domain database is accessed though three kinds of query: simple,
completion, and inverse. The user interface to the query mechanism is typically through operating system
calls, and hence depends on local conventions for details of the call, but the general form of the query follows
one of these three kinds.

Simple queries

In a simple query the user presents a query which contains the domain name, the type, and the class of a
resource. The system returns either the corresponding RR or an indication that the RR does not exist, or

*possibly a transient error indicating that the appropriate database cannot be accessed.

For example, the user could ask for the resource record with domain name=F.ISI.ARPA, type=A (host
- address), and class=IN (ARPA Internet). This would bind the host name F.ISI.ARPA to its address. A
,-.,I similar query for the domain name Mockapetris.ISI.ARPA would return a non-existent RR error, indicating

that the appropriate type of RR was not found, but a type=MB (mailbox) query would return the
Mockapetris mailbox RR.

Completion queries

Completion queries allow a user to identify a resource using a partial name specification. This feature can be
used to create shorthand notation for local resources, or a completion facility similar to that of the TOPS-20
operating system. The arguments for a completion query include the partial domain name, a type and class,
and a target domain name. The type and class specify the eligible resources; in addition, the answer must be
contained in the domain specified by the target domain name.

For example, a user at ISI who wishes to send mail to Mockapetris.ISI.ARPA might use a mail program which
used completion queries. When the user asked to send mail to "Moc", the mail program might create a
completion query with a partial string of "Moc", type=MB. class=IN, and a target domain name of
ISI.ARPA. This query would be interpreted as a request for a mailbox which begins with the text "Moc" and

P



6

resides in the ISI.ARPA domain. Using our example, the program would receive the mailbox RR for
Mockapetris.ISL.ARPA.

Such a query may well be ambiguous, especially if the target domain does not greatly restrict the search. To
deal with this, and to allow user programs a chance to resolve the ambiguity if they choose, completion
queries also specify whether the requestor wants all possible matches, or if the domain system is to resolve any
ambiguities using simple rules based on the number of labels in the possible answers.

.Implementation of this feature is optional, and hence it may be available for certain domains and not for

others.

Inverse queries

Inverse queries allow a user to perform the inverse of simple query mappings, i.e.. given a resource record, an
inverse query returns the domain name or names that possess such a resource record.

Uniqueness is rarely a problem for most applications of this type of query. For example, the most frequent
use is mapping a host address to a host name. In situations where ambiguity exists, the response to the query
contains all domain names found.

Implementation of this feature is optional, and hence it may be available for certain domains and not for
" %others.

DISTRIBUTION OF THE DATABASE

While the distributed nature of the domain system is hidden from the user program, a user query may cause
activity in several processes, both on the local host and in foreign hosts. The possible interprocess
communication is shown below:

"t : Name Server

The user program issues a query via some sort of call to a local program called a resolver. This query is
expressed according to local conventions, and the resolver is usually part of the host operating system. The
resolver answers the query using information it acquires from one or more name servers. The transaction
between the resolver and the name server is expressed using the domain protocol.

-



... . . . .* *.*°, * .. .

4 7

Name servers are repositories for sections uf we domain database. A given name server will typically only
have information for a siiiil part of the abstract database. Name servers internally break the abstract
database into sections called zones. While name servers can be configured to treat each domain name as a
separate zone, system administrators will usually configure name servers to group organizationally related
domain names in a single zone. A particular zone may be replicated at several name servers to provide higher
availability...-

This section discusses the methods that are used to create the zones and the operations performed by name
servers and resolvers to process user queries. Note that the division of responsibilities is often conceptual
rather than actual; a host that possesses both a name server and a resolver will often mingle the functions to
improve performance.

Zones

The abstract database is partitioned into zones by inserting zone boundaries on selected arcs of the abstract
tree. A zone begins at the point where it is divided from its parent zone and ends at leaves in the abstract tree
or at arcs where new children zones begin. Our example tree might be divided as follows:

/ "

6 D ,N ARPA .. N

NAV U & I I

-- ------------ - - -

- - - - -- -- ---

II mo. ------ - - - - -

---------------------- ----- - - -- - - - - - - -f

,/I I L \ I

- -.-,

," . .. .. ... *•



Here the root has delegated authority to three zones: DDN. ARPA, and CSNET. Tb
delegated authority to the MIT and ISI zones.

In addition to marking the delegation of naming authority, the zone boundaries also repre
of the domain database. Thus the term zone is also used to refer to the complete data for th
RRs for all nodes within a zone. An organization that has a zone is responsible for maii
data on name servers that make it available to hosts both within and outside of the zone.

The domain name of a name server and the domain names of the zones the name server po
related. An organization can either provide name servers on hosts in its own zone, or

'. " service from other organizations. A name server can support multiple zones, as loi
remembers the boundaries. For example, the zones described in the previous example i
name servers as follows:

Zone Name servers

(root) NIC.ARPA

DON JCS.DDN, B.ISI.ARPA
ARPA NIC.ARPA, F.ISI.ARPA
MIT.ARPA Multics.MIT.ARPA
ISI.ARPA F.ISI.ARPA, B.ISI.ARPA
CSNET UDEL.CSNET

Since zone boundaries provide the basis of redundant copy distribution, an organizati4
" partition its authority simply to separate the database and not to delegate authority. For e

zone might be partitioned into ARMY.DDN and NAVY.DDN subzones simply to spli
between two name servers, rather than to actually split administrative control of the data.

Similarly, a name server can arrange to receive a zone copy simply to improve performax
For example, the DDN zone might be supported on B.ISI.ARPA simply to provide direct

." zone's data for users on B.ISI.ARPA.

The data that makes up a zone consists of three kinds of RRs:

1. A comprehensive set of RRs to describe all of the resources attached to nodes in the z4

" -.. 2. Special RRs, associated with the top node of a zone, which enumerate name serve
copies of the zone and describe the characteristics of the zone. The characteristics are
a single Start of Authority (SOA) RR; this record identifies a single master copy of tt
which redundant copies receive updates. All name servers with copies of the zone a
with Name Server (NS) RRs.

3. Special RRs which mark delegation of authority to subzones. These RRs are also N
point to name servers which support the appropriate subzone.

For example, the data for the ARPA zone would include the following:

Owner RR

ARPA SOA IN NIC.ARPA
ARPA NS IN NIC.ARPA
ARPA NS IN F.ISI.ARPA
ISI.ARPA NS IN B.ISI.ARPA
ISI.ARPA NS IN A.ISI.ARPA
MIT.ARPA NS IN Multics.MIT.ARPA

, 4 * Sj"-• . . . . S

K'::
-.-z, 2 o._~ - S p. .A .J~.



7 -7 . . ..

9

The SOA and NS RRs attached to node ARPA name NIC.ARPA as the holder of the master copy of the
zone, while the two NS records at ARPA point to name servers for the ARPA zone as being on hosts
F.ISI.ARPA and NIC.ARPA. The NS RRs attached to ISI.ARPA point to hosts B.ISI.ARPA and
F.ISI.ARPA as holders of zones for ISI.ARPA.

The special RRs that delimit a zone also provide connectivity for searches throughout the name space. If a
resolver knows the address of any root server, it can find any node in the abstract tree by retrieving the
appropriate NS records from the root name server and iterating "down" to the name server which has the
desired information. To guarantee connectivity, we can also put pointers to root servers in all name servers; if
this is done, the resolver needs to know how to reach only one name server to be able to eventually access all
of the domain data.

Resolvers

Resolvers are programs that process user queries and chain through name servers to find the specified data. A
user program issues a query, which is passed to the resolver via an OS ca' or some other mechanism. The
resolver then queries local and foreign name servers to acquire the specified information. Since a particular
query may involve several network transmissions to a series of foreign name servers, resolver actions take an
indeterminate amount of time.

Name servers

The action taken by a name server to process a query depends on the kind of query and the composition of
the zones possessed by the name server. For simple queries, the name server checks to see if the domain
name in the query is contained within any of the name server's zones. If it is, the name server returns either
the requested RRs or an indication that the requested resource does not exist. Since all copies of a zone are
assumed to be equivalent, such an answer is marked as being authoritative, so that the resolver that sent the
query will know there is no point in attempting further queries at other name servers. If the query does not
refer to a node in one of the name server's zones, the name server searches its database for NS RRs

, corresponding to zones that are parents of the query domain name. Since all name servers include pointers to
a name server for the root, this search always succeeds. The name server then returns the NS RRs for zones

,..- "closest" to the domain name in the query. This type of response is called a referral.

For completion queries, the name server examines the target name for the query and decides whether it refers
to a node in one of the name server's zones. If so, the name server performs the completion search and
returns the results. If not, it returns a referral.

For inverse queries, the name server has no indication of the domain name that is the answer to the query.
Hence inverse queries are processed using whatever zones are available, and the answer is returned.

A central feature of this functionality is that name servers do not need to b,. concerned with the location of
non-local data; they simply answer queries based on their local zones. This allows for quite simple name
server implementations.

,'2,

'%



'* - ..- . *p - . _.- .) . .. , . , ,r ., ,. . .. . ,. .

10

DATABASE MAINTENANCE

Two types of database maintenance activity occur in the processes that implement the domain system:
refreshing of zone copies, which occurs on a planned and regular basis, and caching, or demand-driven
copying of data for one resolver request on the assumption that the data may be useful for subsequent
queries. Although the mechanisms are quite different, both rely on the notion that the creator of a particular
RR should be able to set a time-to-live (TTL) for the RR, describing the maximum time that a copy of the
RR can be assumed to be correct before the creator should be consulted. This TTL is effectively the length of
time before a change to the database is guaranteed to be effective throughout the system. Of course, the time
intervals must also take into account the cost of too short an interval.

Refreshing discipline

The master copy of the data that makes up a particular zone is assumed to reside on a single host. That host's
name server creates a zone by reading a file. Other name servers use the domain protocol to get a copy of the
zone.

All name servers which have copies of a zone are responsible for checking periodically to see if the zone has
been updated. The name server with the master file does this by checking to see if the file has been updated;
name servers which acquired a copy of the zone can check for updates by requesting the serial number of the
zone from the name server that has the master copy.

The identity of the name server with the master copy, the time intervals for checking for updates, etc., are
contained as part of the zone data. In general, the timeouts are set up so that the check for update (refresh
interval) occurs frequently and the copy is allowed to persist (expiration interval) for a very long time when
the master copy is unavailable.

For zones, a single TTL value covers all of the data in the zone. If this were not the case, false nonexistent RR
errors could result.

Caching

Caching is performed as the result of resolver activities. The premise is that, if a resolver goes to the trouble
of acquiring a particular RR, it should cache it for use in answering future queries. While this feature is
optional in resolvers, and resolvers may use different cache sizes, etc., a resolver that caches RRs must also
manage a TrL for ezh RR it caches.

The TIL for a particular RR is derived from a zone TI'L when a name server supplies an RR to the resolver.
Since the resolver does not have zone information, it times each RR out separately. The derived "TL will

typically be much smaller than the "rL for the zone as a whole. The reason for this is that, while zone copies
are tested periodically for updates, cache copies are not similarly protected.

Adequate performance probably dictates that resolvers should cache at least the referral RRs they acquire, to
avoid repetitive chaining through name servers. Zone designers assist this process by assigning long TITLs to
NS RRs whenever possible.

"I

tv
-s . *b '' .1"% % S ~ .-

S S -,



STATUS AND DIRECTION OF FUTURE WORK

Status

The domain system has been issued as a set of draft RFCs [11,12] and is currently being implemented
according to a schedule described in [13). After the experimental period, a final specification will be issued.

The experimental period is designed to allow operational experience with several features which are optional
in the present design and to further refine the specification. This section discusses several of the optional
features under study.

Connecting internets

The greatest challenge and least understood problem for the domain system is sharing information between
different internets. The current system recognizes that such interconnection will require translation at some
level, if only to forward queries over different transport protocols. The class notion is our mechanism for
controlling routing to the appropriate translation process.

At the simplest level, each internet replicates its information for each possible class of requestor. For
example, the ARPA internet information for mailboxes could be replicated in both the IN and CS classes,
with separate zones on name servers for the respective classes.

In practice, we expect that each zone will be completely described in a single class corresponding to the
system in use, but that in other classes the zone will consist of pointers to appropriate gateways. For example,
while hosts in the IN class can acquire mailbox information for the ARPA domain, hosts in the CS class
would receive a single forwarding RR regardless of the mailbox they name. This forwarding record directs
the mail to a mail gateway. A slightly more powerful use of class directs the search to a name server which can
perform translation between the RRs of one class and the RRs of another.

The most general system would create a universal class for data which could be represented in a
class-insensitive way. In general, the only universally known data types would be domain names themselves,
so this strategy implies a level of indirection in the binding. For example, a universal mapping might bind
mailboxes to the domain names of mail agents, and then a class-sensitive binding could direct the mail sender
to either the mail agent or a mail gateway capable of reaching the agent.

While these strategies all seem possible, the usual source of problems is interference with freedom at the
lowest levels. For example, translation at the name server level implies variability in response time, and can
make datagram name service difficult. Similarly, there are networks that will be connected to the domain
system on an infrequent basis.

Our intuition is that the domain system will evolve to use a mixture of these crrategies at the discretion of the
clients of the domain system.

-. . . .--- *..

... V . ,-. . .



12

Update management

Although the refresh mechanism provides an adequate mechanism for distributing information that does not
change with use, it is inadequate for applications that are intended to allocate names dynamically. Such
applications might include dynamic creation of new names, and name binding that is a function of dynamic
conditions (e.g., what is the name of an idle print server in the IS! domains). Such services are under study,
but will not be added until the informational services described herein are stable.

ACKNOWLEDGMENTS

The author wishes to thank Jon Postel and Paul Kirton for their contributions to the domain name system, as
well as Sheila Coyazo and Ruth Brungardt for their contributions in improving this paper.

REFERENCES

1. E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD Internet Host Table Specification", RFC
• .810, Network Information Center, SRI International, March 1982.

2. K. Harrenstien and V. White, "NICNAME/WHOIS", RFC 812, Network Information Center,
SRI International, March 1982.

3. M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET Name Server", Computer
Networks, vol. 6, no. 3, July 1982.

4. K. Harrenstien, "NAME/FINGER", RFC 742, Network Information Center, SRI International,
December 1977.

-5. J. Postel, "Internet Name Server", IEN 116, USC/Information Sciences Institute, August 1979.

6. K. Harrenstien, V. White, and E. Feinler, "Hostnames Server", RFC 811, Network Information
Center, SRI International, March 1982.

7. J. Postel, "Transmission Control Protocol", RFC 793, USC/Information Sciences Institute,
September 1981.

8. J. Postel, "User Datagram Protocol", RFC 768, USC/Information Sciences Institute, August 1980.

9. J. Postel, "Simple Mail Transfer Protocol", RFC 821, USC/Information Sciences Institute,
August 1980.

10. J. Reynolds and J. Postel, "Assigned Numbers", RFC 870, USC/Information Sciences Institute,
October 1983.

11. P. Mockapetris, "Domain Names - Concepts and Facilities", RFC 882, USC/Information
Sciences Institute, November 1983.

12. P. Mockapetris, "Domain Names - Implementation and Specification", RFC 883,
USC/Information Sciences Institute, November 1983.

13. J. Postel, "Domain Name System Implementation Schedule", RFC 897, USC/Information
Sciences Institute, February 1984.

%', %-:,."; )', "-", .-:.'.-'-""'- . .. "''':,'''",,% , ,.-".:--&',:".X ,>".-". '," .".

°. Oo -o % -. .. . . . o. • o . Oo~ ,=-•.- ! . e2 e • • . . . .



*



IS I.ARPA N
ISI.ARPA N
MIT.ARPA N










