
The Domatic Number of Regular Graphs

Peter Dankelmann ∗

University of Natal
Durban, South Africa

Neil Calkin
Clemson University,
Clemson, SC, USA

September 5, 2008

Abstract

The domatic number of a graph G is the maximum number of
dominating sets into which the vertex set of G can be partitioned.
We show that the domatic number of a random r-regular graph is
almost surely at most r, and that for 3-regular random graphs, the
domatic number is almost surely equal to 3.
We also give a lower bound on the domatic number of a graph in
terms of order, minimum degree and maximum degree. As a corol-
lary, we obtain the result that the domatic number of an r-regular
graph is at least (r + 1)/(3ln(r + 1)).

1 Introduction

A dominating set of a graph G is a subset S of the vertex set V (G), such that
every vertex of G is either in S or has a neighbour in S. It is well known that
the complement of a dominating set of minimum cardinality of a graph G
without isolated vertices is also a dominating set. Hence one can partition
the vertex set of G into at least two disjoint dominating sets. The maximum
number of dominating sets into which the vertex set of a graph G can be
partitioned is called the domatic number of G, and denoted by dom(G).
This graph invariant was introduced by Cockayne and Hedetniemi [3]. The
word domatic, an amalgamation of the words ‘domination’ and ‘chromatic’,
refers to an analogy between the chromatic number (partitioning of the
vertex set into independent sets) and the domatic number (partitioning into
dominating sets). For a survey of results on the domatic number of graphs
we refer the reader to [9]. It was first observed by Cockayne and Hedetniemi
[3] that for every graph without isolated vertices 2 ≤ dom(G) ≤ δ+1, where
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δ is the minimum degree of G. The upper bound is attained for interval
graphs [5], for example.

Intuitively, it seems reasonable to expect that a graph with large min-
imum degree will have a large domatic number. Zelinka [8] showed that
this is not necessarily the case. He gave examples for graphs of arbitrarily
large minimum degree with domatic number 2. In this paper we study the
domatic number of regular graphs. We focus on two aspects of the domatic
number of regular graphs: the domatic number of random regular graphs
and bounds on the domatic number of regular graphs in terms of degree
only. In the first part of the paper we show that the domatic number of a
random 3-regular graph is almost surely equal to 3, and we prove that the
upper bound r + 1 on the domatic number of an r-regular graph is almost
never attained. In the second part of the paper we prove the somewhat
surprising fact that, for regular graphs, a large minimum degree does guar-
antee a large domatic number. More precisely, we show that the domatic
number of every r-regular graph is at least r+1

3ln(r+1) .
The notation we use is as follows. If G is a graph we denote its vertex

set by V (G) and its edge set by E(G), respectively. For the set of vertices
adjacent to a vertex v of G, the neighbourhood of v in G, we write NG(v) and
for the set NG(v)∪{v}, the closed neighbourhood of v in G, we write NG[v].
If the graph is understood we drop the subscript G. The order, minimum
degree, and maximum degree of G are denoted by n, δ, and ∆, respectively.
If C = v1, v2, . . . , vn, v1 is a cycle and vi, vk are distinct vertices of C,
then the segment [vi, vk] of C is defined as the set {vi, vi+1, vi+2, . . . , vk},
where the subscripts are taken modulo n. If f(n) and g(n) are real valued
functions of an integer variable n, then we write f(n) = O(g(n)) (or f(n) =
Ω(g(n))) if there exist constants C > 0 and n0 such that f(n) ≤ Cg(n) (or
f(n) ≥ Cg(n)) for n ≥ n0. We also write f(n) ∼ g(n) if limf(n)/g(n) = 1.

2 Random r-regular graphs

We use the following standard model Gn,r to generate r-regular graphs on n
vertices uniformly: to construct a random r-regular graph on the vertex set
{v1, v2, . . . vn}, take a random matching on the vertex set {v1,1, v1,2, . . . v1,r,
v2,1, . . . , v2,r, . . . , vn,r} and collapse each set {vi,1, vi,2, . . . vi,r} into a single
vertex vi. If the resulting graph contains any loops or multiple edges,
discard it. All r-regular graphs are generated uniformly with this method.

Wormald et al have shown that 3-regular graphs are almost surely
Hamiltonian, and that the model Gn,r and Hn ⊕ Gn,r−2 are contiguous,
meaning roughly that events that are almost sure in one model are almost
sure in the other. Thus if an event is almost surely true in a random graph
constructed from a random Hamilton cycle plus a random matching, then
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it is almost surely true in a random 3-regular graph. For more details the
reader is referred to [6].

3 A lower bound for the domatic number

In this section we will show that for fixed r ≥ 3, the domatic number of a
random r-regular graph is at least 3.

Definition 1 Let G be a 3-regular graph obtained from a cycle C = v1, v2,
. . . vn, v1 by adding a perfect matching M . An edge vivi+1 of C (indices mod
n) is a 3-edge if vi and vi+1 have matching partners vj and vk respectively,
such that the cycle segments [vj , vi] and [vi+1, vk] are disjoint and have
cardinality 0 (mod 3).

Theorem 1 Let G be a random 3-regular graph. Then

dom(G) ≥ 3 a.a.

The theorem follows from the following lemmas.

Lemma 1 Let G = C ∪M as above. If C has a 3-edge then dom(G) ≥ 3.

Proof: Let vivi+1 be a 3-edge of C, and let vj , vk respectively be their
matching partners. Without loss of generality, we may assume that i = 1.
Case 1: n ≡ 0 (mod 3)
For l = 1, 2, 3, let

Vl = {vm | m ≡ l (mod 3)}.

Then each Vl is a dominating set of G and hence dom(G) ≥ 3.
Case 2: n ≡ 1 (mod 3).
The cycle C ′ = v1, vj , vj+1 . . . vn, v1 has length 0 (mod 3), since v1v2 is
a 3-edge. Since n ≡ 1 (mod 3), the cycle C ′′ = v1, vj , vj−1, vj−2, . . . , v1

has length n − |C ′| + 2 ≡ 0 (mod 3). As above, we obtain three disjoint
dominating sets of G by selecting every third vertex from each cycle, C ′

and C ′′. More precisely, we let

V1 = {v1, v4, v7, . . . vj−2} ∪ {v1, vn−2, vn−5, . . . vj+2}
V2 = {v2, v5, v8, . . . vj−1} ∪ {vn, vn−3, vn−6, . . . vj+1}
V3 = {v3, v6, v9, . . . vj} ∪ {vn−1, vn−4, vn−7, . . . vj}

It is easy to verify that each of the sets V1, V2, V3 is a dominating set of G.
Case 3: n ≡ 2 (mod 3).
Then k ≡ j ≡ 1 (mod 3). As above, we choose three disjoint dominating
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sets of G by selecting every third vertex of the cycle C for the same set,
with the exception of v1 and v2. More precisely, let

V1 = {v3, v6, v9, . . . , vn−2} ∪ {v1}
V2 = {v2, v5, v8, . . . , vn−3, vn}
V3 = {v4, v7, v10, . . . , vn−1}.

It is easy to verify that each of the sets V1, V2, V3 is a dominating set of G.
2

Lemma 2 Let G be a graph obtained from a cycle C = v1, v2, . . . , vn, v1 of
even order by adding a random matching M . Then G has a 3-edge a.a.

Proof: Define random variables Xi, i = 1, . . . , n by

Xi =
{

1 if vivi+1 ∈ E(C) is a 3-edge
0 otherwise

and let X =
∑n

i=1 Xi. Then each Xi has expectation E(Xi) = 1/18 +
O(1/n) and variance var(Xi) = E(X2

i ) − E(Xi)2 = E(Xi) − E(Xi)2 =
17/324 + O(1/n). The covariance of Xi and Xj for i < j equals

cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

=

 1/324− (1/18)2 + O(1/n) if i < j − 1,
2/324− (1/18)2 + O(1/n) if i = j − 1 and n ≡ 1 (mod 3),
0− (1/18)2 + O(1/n) if i = j − 1 and n ≡ 0, 2 (mod 3),

=
{

O(1/n) if i < j − 1,
O(1) if i = j − 1.

Note that XiXi+1 = 1 implies n ≡ 1 (mod 3). To see this let vk be the
matching partner of vi+1. If XiXi+1 = 1 then vivi+1 and vi+1vi+2 are
3-edges and thus n + 2 ≡ |[vi+1, vk]| + |[vk, vi+1]| ≡ 0 + 0 ≡ 0 (mod 3),
i.e., n ≡ 1 (mod 3).
Hence the random variable X has expectation

E(X) =
n∑

i=1

E(Xi) = n/18 + O(1) = O(n)

and variance

var(X) =
n∑

i=1

var(Xi) + 2
∑

i<j−1

cov(Xi, Xj) + 2
n∑

i=1

cov(Xi, Xi+1)

=
17
324

n + 2
∑

i<j−1

O(1/n) + 2
n∑

i=1

O(1)

= O(n).
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By Chebyschev’s inequality, we have

prob(X = 0) ≤ var(X)
E(X)2

=
O(n)

(O(n))2
= O(1/n).

Hence X > 0 a.a., i.e., G has a 3-edge. 2

Lemma 3 If G is a 3-regular random graph, then a.a. G consists of a
hamilton cycle plus a random matching.

4 An upper bound for the domatic number

Theorem 2 Let G be a random r-regular graph. Then dom(G) ≤ r a.a.

Proof: We first give an upper bound on the number of r-regular, (r +
1)-domatic graphs. If G is an r-regular graph with domatic partition
V1, V2, . . . Vr+1, then each vertex is either in a given Vi, or has a neigh-
bour in Vi. Hence

|N [v] ∩ Vi| = 1 for all v ∈ V (G) and i ∈ {1, 2, . . . , r + 1}

implying that for i 6= j,

Eij := {uv ∈ E(G) | u ∈ Vi, v ∈ Vj} is a perfect Vi − Vj matching (1)

and thus
|V1| = |V2| = . . . = |Vr+1|. (2)

From the above it follows that every r-regular, (r + 1)-domatic graph on
the vertex set V can be obtained by first partitioning V into r + 1 sets, all
of equal cardinality, and then adding perfect matchings between all pairs
of partition sets. If n is a multiple of r + 1, the former can be done in(

n

n/(r + 1), n/(r + 1), . . . , n/(r + 1)

)
1

(r + 1)!

ways, since the sets are not distinguishable; the latter can be done in((
n

r + 1

)
!
)(r+1

2 )

ways, since there are
(
r+1
2

)
different pairs of sets Vi, Vj , and between each

pair a matching can be added in
(

n
r+1

)
! ways. Hence an upper bound on

the number of labelled, r-regular, (r + 1)-domatic graphs of order n is(
n

n/(r + 1), n/(r + 1), . . . , n/(r + 1)

)
.

1
(r + 1)!

.

((
n

r + 1

)
!
)(r+1

2 )
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=
n!((

n
r+1

)
!
)r+1 .

1
(r + 1)!

.

((
n

r + 1

)
!
)r(r−1)/2

=
n!

(r + 1)!
.

((
n

r + 1

)
!
)(r+1)(r−2)/2

and hence, by Stirling’s formula (n! ∼
(

n
e

)n√2πn(1 + 1
12n + O( 1

n2 )) the
upper bound is, for large n and constant r,

(n

e

)n

.
1

(r + 1)!
.

(
n

e(r + 1)

) n
r+1 . 1

2 .(r+1)(r−2)√
2πn

.

(
1 +

1
12n

+ O

(
1
n2

))(√
2πn

r + 1

(
1 +

r + 1
12n

+ O

(
1
n2

))) 1
2 (r+1)(r−2)

=
(n

e

) 1
2 nr

.
1

(r + 1)!(r + 1)
1
2 n(r−2)

.O
(
n

1
4 r(r−1)

)
.

Denote this last expression by DOM(r, n). The total number of r-regular
graphs, as given in [2] is asymptotic to

e−(r2−1)/4 (rn)!
(rn/2)!2rn/2(r!)n

∼
√

2e−(r2−1)/4

(
rr/2

er/2r!

)n

nrn/2.

Denote this last expression by TOTAL(r, n). Then the proportion of r-
regular graphs that are (r + 1)-domatic, DOM(r, n)/TOTAL(r, n), is at
most(n

e

) 1
2 nr

.
1

(r + 1)!(r + 1)
1
2 n(r−2)

.O
(
n

1
4 r(r−1)

) 1√
2
e(r2−1)/4

(
er/2r!
rr/2

)n

n−rn/2

=
( r!

(r + 1)(r−2)/2rr/2

)n

.O
(
nr(r−1)/4

)
The fraction in brackets is less than 1, so the limit DOM(r, n)/TOTAL(r, n)
tends to 0, as desired. 2

5 Domatic number and minimum degree

Zelinka [8] gave the following lower bound on the domatic number,

dom(G) ≥
⌊ n

n− δ(G)

⌋
.
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This bound is clearly not best possible. In order to guarantee domatic
number at least 3, Zelinka’s bound requires roughly δ(G) ≥ 2n/3.
Zelinka [8] also exhibited graphs with domatic number equal to 2 and arbi-
trarily large minimum degree, thus demonstrating that there is no nontriv-
ial lower bound on the domatic number in terms of minimum degree only.
His graphs have, however, very large maximum degree,

∆(G) >

(
3δ(G)− 1
δ(G)− 1

)
,

i.e., the maximum degree is exponential in the minimum degree. If the
maximum degree of the graph is not too big relative to the minimum degree,
then the following, much stronger, bound holds.

Theorem 3 Let G be a graph of order n with minimum degree δ and max-
imum degree ∆, and let k be a nonnegative integer. If

e(∆2 + 1)k(1− 1
k

)δ+1 < 1,

then dom(G) is at least k.

Proof: Let f : V (G) → {1, 2, . . . , k} be a random colouring of the vertices
of G. For 1 ≤ i ≤ k let Vi = {v ∈ V (G)|f(v) = i}. The partition
(V1, V2, . . . , Vk) is a domatic partition of G if

f(N [v]) = {1, 2, . . . , k}, for all v ∈ V (G). (3)

It suffices to show that the probability for a partition to satisfy (3) is
positive. For a vertex v let Av be the event that f(N [v]) does not equal
{1, 2, . . . , k}. Then

prob(Av) ≤
k∑

i=1

prob(i /∈ f(N [v])) = k(1− 1
k

)degv+1 ≤ k(1− 1
k

)δ+1.

If vertices u and v of G have no neighbours in common, then the events
Au and Av are independent. Thus the event Av is dependent from at most
∆2 other events. By the hypothesis we have

e(∆2 + 1)k(1− 1
k

)δ+1 < 1.

Therefore, by the Lovász Local Lemma, the probability that none of the
events Av occurs is positive. Hence there exists a colouring f : V (G) →
{1, 2, . . . , k} satisfying (3), which implies dom(G) ≥ k. 2

For the special case of a regular graph, we obtain a significant improve-
ment of Zelinka’s bound.
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Corollary 1 Let G be an r-regular graph. Then

dom(G) ≥ r + 1
3ln(r + 1)

.

Proof: With ∆ = δ = r and k = r+1
3ln(r+1) we have

e(∆2 + 1)k(1− 1
k

)δ+1 = e(r2 + 1)k(1− 1
k

)r+1

≤ e(r2 + 1)
r + 1

3ln(r + 1)
exp(−(r + 1)

3ln(r + 1)
r + 1

)

=
e(r2 + 1)(r + 1)

3(r + 1)3ln(r + 1)
< 1.

By Theorem 3, dom(G) ≥ k. 2

A question that arises naturally is whether the bound in Corollary 1 is
best possible. For a positive integer r let f(r) be the maximum domatic
number of all r-regular graphs. By Corollary 1 we have f(r) ≤ r+1

3ln(r+1) .
On the other hand, Alon [1] proved that there exist r-regular graphs of
order n with domination number (1 + o(1)) r+1

nln(r+1) . The domatic number
of those graphs is at most n/γ = (1 + o(1)) r+1

ln(r+1) . This proves

f(r) = Ω
( r + 1

ln(r + 1)

)
,

and the order of magnitude of the bound in Corollary 1 is best possible.

Note added in proof: A bound slightly stronger than Theorem 3 was
independently proved by Feige, Halldórsson and Kortsarz [4] and Yuster
[7].
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