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THE DOMATIC NUMBER PROBLEM IN INTERVAL GRAPHS*

TUNG-LIN LUg’, PEI-HSIN HO’, AND GERARD J. CHANGer

Abstract. A set of vertices D is a dominating set of a graph G (V, E) if every vertex in V D is adjacent
to a vertex in D. The domatic number d(G) of a graph G (V, E) is the maximum number k such that Vcan
be partitioned into k disjoint dominating sets D, Dk. The main purpose of this paper is to give linear
algorithms for the domatic number problem in interval graphs. This paper also proves that d(G) 6(G) +
for any interval graph G, where 6(G) is the minimum degree of a vertex in G.
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1. Introduction. A set of vertices D is a dominating set of a graph G (V, E) if
every vertex in V- D is adjacent to a vertex in D. The domatic number d(G) of a graph
G (V, E) is the maximum number k such that V can be partitioned into k disjoint
dominating sets D1, Dk. The domination set problem and its variations have been
extensively studied; however, the domatic number problem is much less well known.

Lower bounds and upper bounds for the domatic number were studied in 4 ]- 6 ],
[9]-[1 1], and [13]. In particular, [6] showed that d(G) _-< t3(G) + for any graph G,
where 6(G) is the minimum degree of a vertex in G. G is domatically full if d(G)
6(G) + 1. Cockayne and Hedetniemi [6] determined d(G) for some special classes of
graphs; consequently, Kn, Kn, C3,, trees and maximal outerplanar graphs are domati-
cally full.

The domatic number problem is NP-complete for general graphs [7] and circular-
arc graphs [2]. The problem is solved in O(n 2 log n) time for proper circular-arc
graphs 2 ], O(n25) time for interval graphs and O(n log n) time for proper interval
graphs ].

The main purpose of this paper is to give linear algorithms for the domatic number
problem in interval graphs. As a by-product we also prove that interval graphs are domat-
ically full.

An intervalfamily is a set of intervals on the real line. An interval family is proper
if no interval is properly contained within another interval. A graph is a (proper) interval
graph if there is a one to one correspondence between the vertices of the graph and the
intervals of a (proper) interval family such that two vertices are joined by an edge if and
only if their corresponding intervals overlap.

Interval graphs have been extensively studied and used as models for many real
world problems. In particular, they have applications in archaeology, genetics, ecology,
psychology, traffic control, computer scheduling, storage information retrieval, and elec-
tronic circuit design (see 8 ], 12 ]).

Booth and Lueker 3 gave a linear algorithm for deciding whether a given graph
is an interval graph and constructing, in the affirmative case, the required interval family.
In this paper we begin with the assumption that G is known to be an interval graph, and
a corresponding interval family is given.
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532 T.-L. LU, P.-H. HO, AND G. J. CHANG

2. Notation and assumptions. Suppose I {1,..-, n} is the interval family
for an interval graph G produced by the linear algorithm in 3 ], where interval is
equal to [a;, b;] for 1, n. ai is the left endpoint of interval and bi the right
endpoint. Without loss of generality we may assume that { a, an, b, bn)
{1,2, "-,2n}.

For the sake of simplicity we will denote an interval graph G as G(I) and deal with
intervals instead of vertices. In this way, the closed neighborhood N[ i] of an interval is
the set of all intervals that overlap with interval i. A dominating set for G(I) corresponds
to a subset S of intervals in I such that every interval in I overlaps with at least one
interval in S.

For each interval next(i) is the interval j such that ba. is as small as possible but
satisfying b < a; next(i) is null if no such j exists.

3. The algorithms. In this section we will give two efficient algorithms for the do-
matic number problem in interval graphs G(I). For technical reasons, we first augment
I with two "dummy" intervals 0 and n + such that a0 -1, b0 0, an+ 2n +
and bn + 2n + 2. We then construct an acyclic directed graph H as follows. The nodes
ofH correspond to the intervals in I’ I tO { 0, n + }. There is a directed arc (i, j) in
H if and only if j N[next(i)]. Note that if (i, j) is an arc in H, then bi < ba.. This
guarantees that H is acyclic. Since N[ n + n + }, (i, n + is an arc in H if and
only if next (i) n + 1.

LEMMA 3.1. Any directed path from node 0 to node n + in H corresponds to a
dominating set for G(I).

Proof. Suppose io, il, ir) is a directed path from node 0 to node n + in H.
By the definition of an arc in H, bi0 < bi, < < bir. For any interval j I, choose an
index s such that bi,_ < a; < bi,. Suppose intervals j and i, do not overlap. Then bi,_, <
a < b < ai, < bi,. Let k next(i,_ 1). By the definition of function next, b =< b and so
intervals k and i, do not overlap. That implies i, N[ next i,_ ], on contradicting that
(i,_ 1, i,) is an arc in H. Therefore j e N[ i,] and so il, it_ } is a dominating set
for G(I). 73

A dominating set of G(I) does not necessary correspond to a directed path from
node 0 to node n + in H. So we cannot conclude immediately, as in [1 ], that the
domatic number of G(I) is equal to the maximum number of disjoint paths from node
0 to node n + in H. In fact our definition of directed graph H is different from that in
[1 ]. The way our algorithms work is by means of the following duality relation.

LEMMA 3.2 [6] (weak duality inequality), d(G) _-< 6(G) + for any graph G.
The main idea of our algorithms is to find 6 + disjoint dominating sets in G(I),

or equivalently 6 + disjoint paths from node 0 to node n + in H. We will present
two algorithms for this purpose. The first algorithm finds the dominating sets one by
one. The second algorithm finds all dominating sets simultaneously. Section 4 implements
these algorithms and shows that their running times are linear.

ALGORITHM D
initially all intervals are unlabeled; k - 0;
loop-- 0;

while (next(i) 4 n + d__0_o
j -- next(i);
i_f N[j] has no unlabeled intervals then STOP;
choose an unlabeled interval h N[j] with largest left endpoint;
label h by k + 1;
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THE DOMATIC NUMBER PROBLEM IN INTERVAL GRAPHS 533

i--h;
end while;
k---k+ 1;

forever.

Suppose k* is the final k when Algorithm D stops. Let Di be the set of all intervals
labeled by i. By Lemma 3.1, we have k* disjoint dominating sets D, Dk.

LEMMA 3.3. There exists an intervalj such that IN[j]I k*.
Proof. When Algorithm D stops there exists some interval j’ such that all intervals

in N[j’] are labeled by integers between and k*. Let j be such an interval with largest
left endpoint.

Suppose N[j] contains two distinct intervals p and q of the same label k. Assume
intervals in Dk are labeled in the order. .p p, P2, Pm q, By the definition
of function next,

(3.1) bp=bp<anext(pl) <bp2<anext(p2)<’" <bpm_l<anext(pm_)<bpm--bq.

Also aj < bp since p N[j]. Let r next(pm_ 1). Then aj < ar. By the choice ofj, N[ r]
has an interval s which is unlabeled or is labeled by k* + 1. Suppose as > aq. Since s,
q N[ r], by Algorithm D1, interval s would be labeled by k before interval q being
labeled by k. So as < aq. Also aq < b since q N[j]. Then as < b. On the other hand,

aj<bp<ar<bs.

The first inequality follows from that p N[j], the second is part of 3.1 ), and the third
from s 6 N[ r]. Both as < b and aj < bs imply that s 6 N[j], a contradiction to the
assumption that all intervals in N[j] are labeled by integers between and k* but that
s is not. Hence all intervals in N[j] have distinct labels, i.e., [N[j]] k*. Vq

By Lemmas 3.2 and 3.3 we have

/5+ l=min IN[i][=< IN[j][ =k*<=d(G(I))<=6+ 1,
iI

and so in fact the above inequalities are equalities.
THEOREM 3.4 (strong duality theorem), d(G)= 6(G) + for any interval

graph G.
THEOREM 3.5. Algorithm D1 works for solving the domatic number problem in

interval graphs.
The second algorithm follows from the fact that the outdegree of each node in H

such that (i, n + is not an arc in H is IN[next(i)][ >- 6 + 1. We will describe our
algorithm in terms ofH here and implement it in terms of intervals in the next section.

ALGORITHM D2
initially all nodes in H are unlabeled;
find a topological sort io 0, ii, i, i, i+1 n + for the nodes ofH

(i.e., (ip, iq) is an arc in H implies p < q);
label the first r intervals (according to the topological sort)

in N[ next(0) by 1, r respectively;
for r -- to n do

i_f ir, n + is not an arc in H and ir is labeled by k then
* choose an unlabeled node j with ir, j) is an arc in H and label j by k;
end for.

Since io 0, l, i2, i, i / n + is a topological sort for the nodes of H,
the fact that each node ofH such that i, n + is not an arc in H has outdegree at least
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534 T.-L. LU, P.-H. HO, AND G. J. CHANG

6 + implies that each subgraph Hr ofH induced by { it, ir+ 1, i + } has the same
property. So in Step(*) of Algorithm D2, we can always find such a node j. For each k
between and 6 + 1, { 0, n + together with all nodes labeled by k form a directed
path from node 0 to node n + 1. The algorithm does produce 6 + disjoint paths from
node 0 to node n + 1. So we have another way to verify Theorem 3.4 and solve the
domatic number problem.

THEOREM 3.6. Algorithm D2 works for solving the domatic number problem in
interval graphs.

4. Implementation. This section gives two implementations for Algorithm D and
one implementation for Algorithm D2. The implementations show that the algorithms
are linear.

We assume { al, an, b, bn { 1, 2, 2n }. We also need the infor-
mation that each p e 1, 2n] is equal to a or b for some interval e I. This can be done
by a simple do loop. We can use one array to indicate that p is a left or a fight endpoint
and another array to indicate that p is the endpoint of an interval I.

To implement our algorithms, we first must produce function next. This can be
done in O(n) time as follows. The algorithm scans the endpoints from 2n backward to
-1. In the algorithm, s is the interval with smallest fight endpoint among the intervals
whose left endpoints have been scanned.

//*Calculate function next* / /
s--n+ 1;
four p -- 2n to step do

case 1" p ai for some interval e I’
i_f bi < b then s - i;

case 2: p bi for some interval e I’
next(i) -- s;

end for.

Having calculated function next, we now present the first implementation of Al-
gorithm D 1. The main difficulty in Algorithm D is how to "choose an unlabeled interval
h e N[ i] with largest left endpoint." We use a stack to store candidates of such intervals
such that an interval with larger left endpoint is closer to the top of the stack.

] ]*First implementation of Algorithm DI * ] ]
label (i) - 0 for all intervals e I; k - 0;
loop

stack S - qS; h -- 0;
for p -- to 2n d__o

j - next(h);
case 1" p ai for some interval I.

i_f label (i) 0 then push into S;
case 2: p bi for some interval I.

i_f j then
while (S 4: 4) do

pop h from S;
i_f bh > aj then

[label(h) -- k + 1;
i_f next(h) n + then goto * * els__e goto *

end while;
STOP the algorithm;
end if;

D
ow

nl
oa

de
d 

04
/2

8/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



THE DOMATIC NUMBER PROBLEM IN INTERVAL GRAPHS 535

* end, for;
(**)k-k+ 1;
forever.

As in the proof after Lemma 3.3, there are 6 + 2 iterations in the loop. Each iteration
needs O(n) steps. So this is an O(rn + n) 0(I El + [VI) time implementation of
Algorithm D 1.

As a second implementation, we only have to produce "sorted" closed neighborhoods
N[ i] for all intervals I. Once we have sorted closed neighborhoods, Algorithm D is
easily implemented. We now give an O(1 El + VI) algorithm for producing the closed
neighborhood of all intervals in I as follows.

]/*Each closed neighborhood N[ i/is sorted according to left endpoints* //
doubly linked list L -- 4);
for p -- to 2n d__0_o

case 1" p ai for some interval I
N[ i] -- L;
L -- L + i; / / *remember the address of in L* / /
for each j 6 L d__0_o N[j] - N[j] + i;

case 2: p bi for some interval 6 I
delete from L;

end for.

Finally, we shall implement Algorithm D2 in terms of intervals rather than the
directed graph H. Note that if (i, j) is an arc in H, then bi < bj. A simple topological
sort of the nodes ofH is to sort intervals in I’ according to their right endpoints.

//*Implementation of algorithm D2* / /
label(i) - 0 for all intervals I;
p -- 1;
fork- ltor+ ldo

i_f p ai fOr some interval which intersects interval next(0) then label (i) - k;
p--p+ 1;

end for;
for p -- to 2n d__o

i_fp bi for some interval I then
i_f label (i) 4:0 and next(i) 4: n +
then [get j N next(i)] with label(j) 0; label(j) - label(i)]

end for.

In the above implementation, each closed neighborhood is considered as an unsorted
single linked list. To get some interval j in N[ next(i)] we simply get the first element of
the list and delete it from the list. If its label is nonzero, we continue to get the first
element from the remaining list until an interval with label zero is found.

5. Proper interval graphs. In the case where G(I) is a proper interval graph, assume
a < a2 < < an. It is easy to see that each closed neighborhood N[ i] is a consecutive
set, i.e., N[i] j, j + 1, j + k } for some j and k. Since each [N[ i]l >-- 6 + 1, we
can construct 6 + disjoint dominating sets Dk { I: k mod 6 + }, k 1,
6 + 1. This is a much simpler method than that in [1 ].

6. Conclusion. The main results of this paper give two linear algorithms for the
domatic number problem on interval graphs. As a by-product we also show that interval
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536 T.-L. LU, P.-H. HO, AND G. J. CHANG

graphs are domatically full. A much simpler method for the problem in proper interval
graphs is also discussed. We suspect that similar results can be obtained for the problem
in strongly chordal graphs or even for chordal graphs.
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