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SUMMARY

It is well known that the dominant eigenvalue of a real essentially nonnegative matrix is a convex function
of its diagonal entries. This convexity is of practical importance in population biology, graph theory,
demography, analytic hierarchy process and so on. In this paper, the concept of essentially nonnegativity is
extended from matrices to higher order tensors, and the convexity and log convexity of dominant eigenvalues
for such a class of tensors are established. Particularly, for any nonnegative tensor, the spectral radius turns
out to be the dominant eigenvalue and hence possesses these convexities. Finally, an algorithm is given
to calculate the dominant eigenvalue, and numerical results are reported to show the effectiveness of the
proposed algorithm. Copyright c⃝ 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tensors are increasingly ubiquitous in various areas of applied, computational, and industrial
mathematics and have wide applications in data analysis and mining, information science,
signal/image processing, and computational biology, etc; see the workshop report [1] and references
therein. A tensor can be regarded as a higher-order generalization of a matrix, which takes the form

A = (Ai1···im) , Ai1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.

Such a multi-array A is said to be an m-order n-dimensional square real tensor with nm entries
Ai1···im . In this regard, a vector is a first-order tensor and a matrix is a second-order tensor. Tensors
of order more than two are called higher-order tensors.

Analogous with that of matrices, the theory of eigenvalues and eigenvectors is one of the
fundamental and essential components in tensor analysis. 72 references on eigenvalues of tensors
can be found in the bibliography [2]. Wide range of practical applications can be found the
references there. Compared with that of matrices, eigenvalue problems for higher-order tensors are
nonlinear due to their multilinear structure. Various types of eigenvalues are defined for higher-order
tensors in the setting of multilinear algebra. For example, the eigenvalue, the H-eigenvalue, the E-
eigenvalue, the Z-eigenvalue, the N -eigenvalue defined by Qi for even order symmetric tensors
[3], the lp eigenvalues for general order symmetric tensors, and the mode-i eigenvalues for general
square tensors defined by Lim [4], the M -eigenvalue for a partially symmetric fourth-order tensor,
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defined by Qi, Dai and Han [5], the D-eigenvalue for a fourth-order symmetric tensor and a second-
order symmetric tensor, defined by Qi, Wang and Wu [6], eigenvalues of general square tensors
extended by Qi in [2] Chang, Pearson and Zhang in [8] and equivalent eigenvalue pair classes by
Cartwright and Sturmfels [7]. Here, we are concerned with the one in [2, 8] as reviewed below.

Definition 1.1
Let C be the complex field. For a vector x ∈ Cn, we use xi to denote its components, and x[m−1] to
denote a vector in Cn such that

x
[m−1]
i = xm−1

i

for all i. Axm−1 denotes a vector in Cn, whose ith component is

n∑
i2,...,im=1

Aii2···imxi2 · · ·xim .

A pair (λ, x) ∈ C × (Cn\{0}) is called an eigenvalue-eigenvector pair of A, if they satisfy:

Axm−1 = λx[m−1]. (1)

Nonnegative tensors, arising from multilinear pagerank [4], spectral hypergraph theory [9, 10,
11], and higher-order Markov chains [12], etc., form a singularly important class of tensors and
have attracted more and more attention since they share some intrinsic properties with those of
the nonnegative matrices. One of those properties is the Perron-Frobenius theorem on eigenvalues.
In [13], Chang, Pearson, and Zhang generalized the Perron-Frobenius theorem for nonnegative
matrices to irreducible nonnegative tensors. In [14], Friedland, Gaubert and Han generalized the
Perron-Frobenius theorem to weakly irreducible nonnegative tensors. Further generalization of the
Perron-Frobenius theorem to nonnegative tensors can be found in [15]. Numerical methods for
finding the spectral radius of nonnegative tensors are subsequently proposed. Ng, Qi, and Zhou
[12] provided an iterative method to find the largest eigenvalue of an irreducible nonnegative
tensor by extending the Collatz method [16] for calculating the spectral radius of an irreducible
nonnegative matrix. The Ng-Qi-Zhou method is efficient but it is not always convergent for
irreducible nonnegative tensors. Chang, Pearson and Zhang [17] extended the notion of primitive
matrices into the realm of tensors, and established the convergence of the Ng-Qi-Zhou method
for primitive tensors. Zhang and Qi [18] established global linear convergence of the Ng-Qi-Zhou
method for essentially positive tensors. Liu, Zhou and Ibrahim [19] proposed an always convergent
algorithm for computing the largest eigenvalue of an irreducible nonnegative tensors. Zhang, Qi,
and Xu [20] established its explicit linear convergence rate for weakly positive tensors.

The essentially nonnegative tensor we defined in this paper is ultimately related to the nonnegative
tensor and includes the latter one as a special case. It is a higher order generalization of the so-
called essentially nonnegative matrix, whose off-diagonal entries are all nonnegative. Such a class
of matrices possesses nice properties on eigenvalues. It follows from the famous Perron-Frobenius
theorem for nonnegative matrices that for any essentially nonnegative matrix A, there exists a real
eigenvalue with a nonnegative eigenvector, which is the largest one among real parts of all other
eigenvalues of A. This special eigenvalue, termed as r(A), is often called the dominant eigenvalue
of A. Moreover, r(A) is known as a convex function of the diagonal entries of A. This convexity
is a fundamental property for essentially nonnegative matrices [21, 22, 23] and has numerous
applications, not only in many branches of mathematics, such as graph theory [24], differential
equations [23], but also in practical fields, e.g., population biology [23] and analytic hierarchy
process [25] as well. A natural question arises: does this convexity maintain for higher-order
essentially nonnegative tensors? In this paper, we will give an affirmative answer to this question.

Similar to the essentially nonnegative matrix, an essentially nonnegative tensor has a real
eigenvalue with the property that it is greater than or equal to the real part of every eigenvalue of A.
We also call it the dominant eigenvalue of A, and denoted by λ(A). Particularly, if A is nonnegative,
we have ρ(A) = λ(A), where ρ(A) is the spectral radius of A. By employing the technique proposed
in [23], we manage to obtain that the dominant eigenvalue is a convex function of the diagonal
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THE DOMINANT EIGENVALUE OF AN ESSENTIALLY NONNEGATIVE TENSOR 3

elements for any essentially nonnegative tensor. In addition, it is also a convex function of all
elements of a tensor in some special convex set of tensors. Furthermore, the log convexity is also
exploited for essentially nonnegative tensors with whose entries are either identically zero or log
convex of some real univariate functions. Finally, we propose an algorithm to calculate the dominant
eigenvalue, convergence of the proposed algorithm is established and numerical results are reported
to show the effectiveness of the proposed algorithm.

This paper is organized as follows. In Section 2, we recall some preliminary results, introduce the
concept of essentially nonnegative tensors, and characterize some basic properties of such tensors.
In Section 3, we show that the spectral radius of nonnegative tensors is a convex function of the
diagonal elements, and so is the dominant eigenvalue of essentially nonnegative tensors. Section
4 is devoted to the log convexity of the dominant eigenvalue. In Section 5, we give an algorithm
to calculate the dominant eigenvalue, and some numerical results are reported. An application and
some concluding remarks are made in Section 6.

2. PRELIMINARIES AND ESSENTIALLY NONNEGATIVE TENSORS

We start this section with some fundamental notions and properties on tensors. An m-order
n-dimensional tensor A is called nonnegative (or, respectively, positive) if Ai1···im ≥ 0 (or,
respectively, Ai1···im > 0). The m-order n-dimensional unit tensor, denoted by I, is the tensor
whose entries are δi1...im with δi1...im = 1 if and only if i1 = · · · = im and otherwise zero. The
symbol A ≥ B means that A− B is a nonnegative tensor. A tensor A is called reducible, if there
exists a nonempty proper index subset I ⊂ {1, 2, . . . , n} such that

Ai1···im = 0, ∀i1 ∈ I, ∀i2, . . . , im ̸∈ I.

Otherwise, we say A is irreducible. We call ρ(A) the spectral radius of tensor A if

ρ(A) = max{|λ| : λ is an eigenvalue of A},

where |λ| denotes the modulus of λ. An immediate consequence on the spectral radius follows
directly from Corollary 3 in [3].

Lemma 2.1
Let A be an m-order n-dimensional tensor. Suppose that B = a(A+ bI), where a and b are two real
numbers. Then µ is an eigenvalue of B if and only if µ = a(λ+ b) and λ is an eigenvalue of A. In
this case, they have the same eigenvectors. Moreover, ρ(B) ≤ |a| (ρ(A) + |b|).

Let P := {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}, and int(P ) = {x ∈ Rn : xi > 0, 1 ≤ i ≤ n}. The
Perron-Frobenius theorem for nonnegative tensors is as below, following by [13, Theorem 1.4].

Theorem 2.1
If A is an irreducible nonnegative tensor of order m and dimension n, then there exist λ0 > 0 and
x0 ∈ int(P ) such that

Axm−1
0 = λ0x

[m−1]
0 .

Moreover, if λ is an eigenvalue with a nonnegative eigenvector, then λ = λ0. If λ is an eigenvalue
of A, then |λ| ≤ λ0.

The well-known Collatz minimax theorem [16] for irreducible nonnegative matrices has been
extended to irreducible nonnegative tensors in [13, Theorem 4.2].

Theorem 2.2
Assume that A is an irreducible nonnegative tensor of order m dimension n. Then

min
x∈int(P )

max
xi>0

(Axm−1)i

xm−1
i

= λ0 = max
x∈int(P )

min
xi>0

(Axm−1)i

xm−1
i

,

where λ0 is the unique positive eigenvalue corresponding to a positive eigenvector.
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For nonnegative tensors, Yang and Yang [15] asserted that the spectral radius is an eigenvalue,
which is a generalization of the weak Perron-Frobenius theorem for nonnegative matrices. We state
it [15, Theorem 2.3 and Lemma 5.8] in the following theorem.

Theorem 2.3
Assume that A is a nonnegative tensor of order m dimension n, then ρ(A) is an eigenvalue of A
with a nonzero nonnegative eigenvector. Moreover, for any x ∈ int(P ) we have

min
1≤i≤n

(Axm−1)i

xm−1
i

≤ ρ(A) ≤ max
1≤i≤n

(Axm−1)i

xm−1
i

.

The following inequality and continuity of the spectral radius were given in [15, Lemma 3.5] and
the proof of [15, Theorem 2.3], respectively.

Lemma 2.2
Let A be a nonnegative tensor of order m and dimension n, and ε > 0 be a sufficiently small number.
Suppose A ≤ B, then ρ(A) ≤ ρ(B). Furthermore, if Aε = A+ E where E denotes the tensor with
every entry being ε, then

lim
ε→0

ρ(Aε) = ρ(A).

Based on the above results, we can easily get the following lemma.

Lemma 2.3
Suppose that A is an irreducible nonnegative tensor of order m dimension n and that there exists a
nonzero vector x ∈ P and a real number β such that

Axm−1 ≤ βx[m−1]. (2)

Then β > 0, x ∈ int(P ), and ρ(A) ≤ β. Furthermore, ρ(A) < β unless equality holds in (2).

Proof
Assume on the contrary that for x ∈ int(P ) there exists a nonempty proper index subset I ⊂
{1, 2, . . . , n} such that xi = 0 for i ∈ I and xi > 0 for i ̸∈ I . It follows from (2) that

Ai1···im = 0, ∀i1 ∈ I, ∀i2, . . . , im ̸∈ I.

A contradiction to the irreducibility of A comes, which henceforth implies that x ∈ int(P ). Together
with Lemma 2.2 in [12], Axm−1 ∈ int(P ) is established. It further deduces that β > 0, and then the
last statement holds from Lemma 5.9 in [15]. This completes the proof.

A simple but useful result follows immediately from Lemmas 2.2 and 2.3.

Lemma 2.4
Let A and B be irreducible nonnegative tensors of order m dimension n. If A ≤ B and A ̸= B, then
ρ(A) < ρ(B).

Proof
By Lemma 2.2, ρ(A) ≤ ρ(B). Since B is irreducible, Theorem 2.1 implies that there exists x ∈
int(P ) such that

Axm−1 ≤ Bxm−1 = ρ(B)x[m−1]. (3)

Since x ∈ int(P ) and A ̸= B, equality cannot hold in (3). The desired strict inequality ρ(A) < ρ(B)
holds from Lemma 2.3.

The remaining of this section is devoted to the essentially nonnegative tensor, with the
introduction of its definition and some basic properties.

Definition 2.1
Let A be an m-order and n-dimensional tensor. A is said to be essentially nonnegative if all its
off-diagonal entries are nonnegative.
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Theorem 2.4
Let A be an m-order and n-dimensional essentially nonnegative tensor. Then there exists α > 0 such
that αI +A is nonnegative. Moreover, A has a real eigenvalue λ(A) with corresponding eigenvector
in P and λ(A) ≥ Reλ for every eigenvalue λ of A. Furthermore,

λ(A) = ρ(αI +A)− α.

Proof
Take

α = max
1≤i≤n

|Ai...i|+ 1.

Clearly, α > 0 and αI +A is nonnegative. By Lemma 2.1 and Theorem 2.3, we have

ρ(αI +A) = α+ λ1, (4)

where λ1 is an eigenvalue of A with corresponding eigenvector in P . Thus, (4) implies λ1 ∈ R. Let
λ(A) = λ1, It follows from Lemma 2.1 that,

λ(A) + α = max{|α+ λ| : λ is an eigenvalue of A}
≥ |α+ λ| ≥ α+Reλ.

The desired result arrives.

We call such an eigenvalue in the above theorem the dominant eigenvalue of A. Throughout this
paper, ρ(A) and λ(A) will denote the spectral radius and dominant eigenvalue respectively of a
tensor A. In the next section, we will show that both ρ(A) and λ(A) are convex functions of the
diagonal elements of A.

3. CONVEXITY OF THE SPECTRAL RADIUS AND THE DOMINANT EIGENVALUE

Based on Theorems 2.1 and 2.3, we proceed with the convexity of the dominant eigenvalue of
essentially nonnegative tensors in this section. It can be verified that the diagonal entries have
nothing to do with the irreducibility of a tensor. Specifically, let A be an essentially nonnegative
tensor of order m and dimension n, define a nonnegative tensor B by Bi1...im = 0 if i1 = · · · = im
and the others are Ai1...im . Then A is irreducible if and only if B is. Equivalently, A is irreducible
if and only if A+ αI is, whenever it is nonnegative. Thus, by Lemma 2.2 and Theorem 2.4, it is
sufficient to consider the class of irreducible nonnegative tensors.

Theorem 3.1
If A is a given irreducible nonnegative tensor of order m and dimension n, and D is allowed to vary
in the class of nonnegative diagonal tensors, then the spectral radius ρ(A+D) is a convex function
of the diagonal entries of D. That is, for nonnegative diagonal tensors C and D we have

ρ(A+ tC + (1− t)D) ≤ tρ(A+ C) + (1− t)ρ(A+D), ∀t ∈ [0, 1]. (5)

Moreover, equality holds in (5) for some t ∈ (0, 1) if and only if D − C is a scalar multiple of the
unit tensor I.

Proof
Since both A+ C and A+D are irreducible nonnegative tensors, by Theorem 2.1 and Theorem 2.3
we have ρ(A+ C) > 0, ρ(A+D) > 0, and there exist x, y ∈ int(P ) such that

(A+ C)xm−1 = ρ(A+ C)x[m−1], (A+D)ym−1 = ρ(A+D)y[m−1].
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That is, for i = 1, 2, . . . , n we have

ρ(A+ C) = Ci...i +

n∑
i2...im=1

Ai i2...im

xi2 · · ·xim

xi
,

ρ(A+D) = Di...i +

n∑
i2...im=1

Ai i2...im

yi2 · · · yim
yi

,

and hence ρ(A+ C)− Ci...i > 0 and ρ(A+D)−Di...i > 0. The inequality between geometric and
arithmetic means yields(

n∑
i2...im=1

Ai i2...im

xi2 · · ·xim

xi

)t( n∑
i2...im=1

Ai i2...im

yi2 · · · yim
yi

)1−t

≤ t(ρ(A+ C)− Ci...i)

+(1− t)(ρ(A+D)−Di...i). (6)

Therefore, Hölder’s inequality and Theorem 2.2 give from (6)

ρ(A+ tC + (1− t)D) ≤ max
1≤i≤n

{
tCi...i + (1− t)Di...i +

n∑
i2...im=1

Ai i2...im

zi2 · · · zim
zi

}
≤ tρ(A+ C) + (1− t)ρ(A+D),

where zi = xt
iy

1−t
i for i = 1, . . . , n. This shows (5) holds.

The inequality between geometric and arithmetic means implies that equality in (5) holds for
t ∈ (0, 1) if and only if ρ(A+ C)− Ci...i = ρ(A+D)−Di...i for i = 1, . . . , n, i.e., D − C = γI
where γ = ρ(A+D)− ρ(A+ C). This completes the proof.

The convexity involved in Theorem 3.1 can be extended to the case of essentially nonnegative
tensors as follows.

Corollary 3.1
If A is a given irreducible essentially nonnegative tensor of order m dimension n and D is allowed
to vary in the class of diagonal tensors, then the dominant eigenvalue λ(A+D) is a convex function
of the diagonal entries of D. That is, for diagonal tensors C and D we have

λ(A+ tC + (1− t)D) ≤ tλ(A+ C) + (1− t)λ(A+D), ∀t ∈ [0, 1]. (7)

Moreover, equality holds in (7) for some t ∈ (0, 1) if and only if D − C is a scalar multiple of the
unit tensor I.

Proof
Take

α = 1 + max
1≤i≤n

{|Ai...i|+ |Ci...i|+ |Di...i|}.

Then αI +A+ C and αI +A+D are all irreducible nonnegative tensors. By Theorem 2.4 and
Theorem 3.1, we have for 0 ≤ t ≤ 1

λ(A+ tC + (1− t)D) + α = ρ(αI +A+ tC + (1− t)D)

≤ tρ(αI +A+ C) + (1− t)ρ(αI +A+D)

= tλ(A+ C) + (1− t)λ(A+D) + α,

which yields (7). This completes the proof.

Invoking the continuity presented in Lemma 2.2, it is easy to see that Theorem 3.1 and Corollary
3.1 hold even when A is reducible. Moreover, Theorem 3.1 and Corollary 3.1 give necessary
and sufficient conditions for the strict convexity. It is worth pointing out that the convexity of
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the dominant eigenvalue only works on the diagonal elements rather than on all elements of
the essentially nonnegative tensor, except for some special cases. By collecting all symmetric
essentially nonnegative tensors of order m and dimension n, we can get a closed convex cone,
says S(m,n). The dominant eigenvalue of any tensor in S(m,n) remains convex of all elements of
the corresponding tensor in the domain S(m,n), as the following proposition shows.

Proposition 3.1
For any A, B ∈ S(m,n), and any t ∈ [0, 1], we have

λ(tA+ (1− t)B) ≤ tλ(A) + (1− t)λ(B).

Proof
For any A, B ∈ S(m,n), there exists an integer k > 0 such that A+ kI and B + kI are nonnegative
and symmetric and hence for any of their convex combinations. The Perron-Frobenius theorem then
ensures that ρ(A+ kI), ρ(B + kI) and ρ(tA+ (1− t)B + kI) (t ∈ [0, 1]) all act as eigenvalues of
the corresponding nonnegative symmetric tensor. By the variational approach, it follows that

ρ(tA+ (1− t)B + kI)

= max

{
(tA+ (1− t)B + kI)xm :

n∑
i=1

xm
i = 1

}

≤ tmax

{
(A+ kI)xm :

n∑
i=1

xm
i = 1

}
+ (1− t)max

{
(B + kI)xm :

n∑
i=1

xm
i = 1

}
= tρ(A+ kI) + (1− t)ρ(B + kI).

Combining with the fact that ρ(A+ kI) = λ(A) + k, the desired convexity follows.

4. LOG CONVEXITY OF THE SPECTRAL RADIUS AND THE DOMINANT EIGENVALUE

If a function f(x) is positive on its domain and log f(x) is convex, then f(x) is called log convex. It
is known that the sum or product of log convex functions is also log convex. In this section we extend
Kingman’s theorem [23] for matrices to tensors. Our motivation for the following proof comes from
[23].

Theorem 4.1
For t ∈ [0, 1] assume that F(t) = (Fi1...im(t)) is an m-order n-dimensional irreducible nonnegative
tensor, and suppose that for 1 ≤ i1, . . . , im ≤ n, Fi1...im(t) is either identically zero or positive and
a log convex function of t. Then ρ(F(t)) is a log convex function of t for t ∈ [0, 1]. That is, if
F(0) = A, F(1) = B, and a nonnegative tensor G(t) =

(
A1−t

i1...im
Bt

i1...im

)
, then

ρ(F(t)) ≤ ρ(G(t)) ≤ ρ(A)1−tρ(B)t. (8)

Moreover, the first equality occurs in (8) for some t with t ∈ (0, 1) if and only if

F(t) = G(t),

and the second equality occurs in (8) for some t with t ∈ (0, 1) if and only if there exists a constant
σ > 0 and a positive diagonal matrix D = diag(d1, . . . , dn) such that

B = σA ·D−(m−1) ·
m−1︷ ︸︸ ︷

D · · ·D with Bi1i2...im = σAi1i2...imd
−(m−1)
i1

di2 · · · dim .

Proof
Clearly, G(0) = F(0) = A and G(1) = F(1) = B. The log convexity assumption on Fi1...im(t)
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8 L. P. ZHANG

implies that, for t ∈ [0, 1],
F(t) ≤ G(t),

which, together with Lemma 2.2, implies

ρ(F(t)) ≤ ρ(G(t)). (9)

Since F(t) is irreducible, if equality holds in (9) for some t0 with 0 < t0 < 1, Lemma 2.4 implies
that F(t0) = G(t0).

Since F(0) and F(1) are irreducible nonnegative, Theorem 2.1 shows that there exist x, y ∈
int(P ) such that

Axm−1 = ρ(A)x[m−1], Bym−1 = ρ(B)y[m−1].

For a fixed t ∈ (0, 1), define z = x1−tyt, i.e., zi = x1−t
i yti for 1 ≤ i ≤ n. Then, the ith component

of G(t)zm−1 satisfies

(
G(t)zm−1

)
i
=

n∑
i2...im=1

A1−t
i i2...im

Bt
i i2...imzi2 · · · zim .

Hence, Hölder’s inequality gives

(
G(t)zm−1

)
i

≤

(
n∑

i2...im=1

Ai i2...imxi2 · · ·xim

)1−t( n∑
i2...im=1

Bi i2...imyi2 · · · yim

)t

= ρ(A)1−tρ(B)tzm−1
i . (10)

It follows from Lemma 2.3 and (10) that

ρ(G(t)) ≤ ρ(A)1−tρ(B)t.

Furthermore, equality holds in (10) for some t ∈ (0, 1) if and only if, for 1 ≤ i ≤ n,

Bi i2...imyi2 · · · yim = σiAi i2...imxi2 · · ·xim . (11)

Summing (11) over i2 . . . im yields

ρ(B)ym−1
i = σiρ(A)xm−1

i . (12)

Take

σ =
ρ(B)
ρ(A)

, di =
xi

yi
,

Then, combining (11) and (12) we obtain

Bi i2...im = σAi i2...imd
−(m−1)
i di2 · · · dim ,

i.e.,

B = σA ·D−(m−1) ·
m−1︷ ︸︸ ︷

D · · ·D .

This completes the proof.

By Theorems 2.3 and 2.4, the above theorem also holds for the dominant eigenvalue of F(t),
when F(t) is essentially nonnegative with t ∈ [0, 1].
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5. AN ALGORITHM FOR CALCULATING THE DOMINANT EIGENVALUE

Let A be an essentially nonnegative tensor of order m and dimension n. In this section we propose an
algorithm to calculate the dominant eigenvalue of an essentially nonnegative tensor. This algorithm
is a modification of the Ng-Qi-Zhou algorithm given in [12]. By Lemma 2.2 and Theorem 2.4, we
modify the Ng-Qi-Zhou algorithm such that for any essentially nonnegative tensor, the sequence
generated by the modified algorithm always converges to its dominant eigenvalue.

Define two functions from int(P ) to P :

F (x) := min
xi ̸=0

(Wxm−1)i

xm−1
i

, G(x) := max
xi ̸=0

(Wxm−1)i

xm−1
i

, (13)

where W is an irreducible nonnegative tensor. The details of the modified algorithm are given as
follows.
Algorithm 5.1:

Step 0. Given a sufficiently small number ε > 0. Let

W = A+ αI + E , (14)

where
α = max

1≤i≤n
|Ai...i|+ 1,

and E is the tensor with every entry being ε. Choose any x(0) ∈ int(P ). Set
y(0) = W

(
x(0)

)m−1
and k := 0.

Step 1. Compute

x(k+1) =

(
y(k)

)[ 1
m−1 ]∥∥∥(y(k))[ 1
m−1 ]

∥∥∥ , y(k+1) = B
(
x(k+1)

)m−1

.

According to (13), compute F (x(k+1)) and G(x(k+1)).

Step 2. If G(x(k+1))− F (x(k+1)) < ε, stop. Output ε-approximation of the dominant
eigenvalue of A:

λ(k+1) =
1

2

(
G(x(k+1)) + F (x(k+1))

)
− α, (15)

and the corresponding eigenvector x(k+1). Otherwise, set k := k + 1 and go to
Step 1.

Clearly, the tensor W defined by (14) is positive and hence it is primitive [17, Corollary 3.7]. By
Theorems 2.1 and 2.2, Algorithm 5.1 is well-defined. As an immediate consequence of Lemma 2.2,
Theorem 2.4, and Theorem 5.3 in [17], we have the following convergence theorem.

Theorem 5.1
Let A be an essentially nonnegative tensor of order m and dimensional n, and let W be defined by
(14) where ε is a sufficiently small number. Then the sequences {F (x(k))} and {G(x(k))}, generated
by Algorithm 5.1, converge to λε, where λε is the unique positive eigenvalue of W . Moreover, the
sequence {x(k)} converges to x∗

ε and x∗
ε is a positive eigenvector of W corresponding to the largest

eigenvalue λε. Furthermore,
lim
ε→0

λε = λ∗, lim
ε→0

x∗
ε = x∗,

where λ∗ is the spectral radius of A+ αI and x∗ is the corresponding eigenvector. In particular, the
dominant eigenvalue of A is λ(A) = λ∗ − α and x∗ is also the eigenvector corresponding to λ(A).
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Proof
It follows from (14) that W is positive, and hence it is irreducible. Therefore, for any nonzero x ∈ P ,
we have Wxm−1 ∈ int(P ), which shows that the tensor W is primitive. Hence, by Theorem 5.3 in
[17],

lim
k→∞

F (x(k)) = lim
k→∞

{G(x(k)) = λε, lim
k→∞

x(k) = x∗
ε.

Therefore, λε − α is an ε-approximation of the dominant eigenvalue of A from Theorem 2.4.
Furthermore, it follows from Lemma 2.2 that

lim
ε→0

λε = λ∗, lim
ε→0

x∗
ε = x∗.

It is easy to see that λ∗ − α is the dominant eigenvalue of A with corresponding eigenvector x∗.

The above theorem shows that the convergence of Algorithm 5.1 is established for any
essentially nonnegative tensor without the irreducible and primitive assumption. In order to show
the effectiveness of Algorithm 5.1, we used MATLAB 7.4 to test it on the following seven examples.
The last four examples are large scale numerical examples.

Example 5.1
Consider the 3-order 3-dimensional essentially nonnegative tensor

A = [A(1, :, :), A(2, :, :), A(3, :, :)],

where

A(:, :, 1) =

 −1.51 8.35 1.03
4.04 3.72 1.45
6.71 6.43 1.35


A(:, :, 2) =

 9.02 0.78 6.89
9.71 −5.32 1.85
2.09 4.17 2.98


A(:, :, 3) =

 9.55 1.57 6.91
5.63 5.55 1.43
5.76 8.29 −0.15


Example 5.2
Let a 3-order 3-dimensional tensor A2 be defined by A133 = A233 = A311 = A322 = 1, A111 =
A222 = −1 and zero otherwise.

Example 5.3
Let a 3-order 4-dimensional tensor A be defined by A111 = A222 = A333 = A444 = −1, A112 =
A114 = A121 = A131 = A212 = A332 = A443 = 1, and zero otherwise.

Example 5.4
Let a 3-order 500-dimensional tensor A be defined by A1jj = 1 for j ̸= 1, Aj11 = 1 for j ̸= 1,
A111 = −1, A222 = 20, and zero otherwise.

Example 5.5
Let a 4-order 100-dimensional tensor A be defined by A1jjj = 1 for j ̸= 1, Aj111 = 1 for j ̸= 1,
A1111 = −1, A2222 = 20, and zero otherwise.

Example 5.6
Let A be a randomly generated 3-order 200-dimensional tensor.

Example 5.7
Let A be a randomly generated 3-order 50-dimensional tensor.
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Clearly, the essentially nonnegative tensors defined in Examples 5.1 and 5.2 are irreducible.
While, the essentially nonnegative tensors defined in Examples 5.3, 5.4 and 5.5 are reducible. The
tensors defined in Examples 5.6 and 5.7 are randomly generated nonnegative tensors. The tensors
defined in Examples 5.4 and 5.5 are sparse tensors.

We take ε = 10−9 and terminate our iteration when one of the conditions G(x(k))− F (x(k)) ≤
10−9 and k ≥ 100 is satisfied. Algorithm 5.1 produces the dominant eigenvalue λ(A) = 36.2757
with eigenvector x∗ = (1.0000; 0.8351; 0.9415) for Example 5.1, the dominant eigenvalue λ(A) =
1 with eigenvector x∗ = (0.5000; 0.5000; 1.000) for Example 5.2, and the dominant eigenvalue
λ(A) = 0.8225 with eigenvector x∗ = (1.0000; 0.7408; 0.9714; 0.5330) for Example 5.3. For the
large scale tensors in the last four examples, we just list their dominant eigenvalues. Algorithm
5.1 produces the dominant eigenvalue λ(A) = 25.8107 for Example 5.4, the dominant eigenvalue
λ(A) = 8.9499 for Example 5.5, the dominant eigenvalue λ(A) = 1.9995e4 for Example 5.6, and
the dominant eigenvalue λ(A) = 6.2462e4 for Example 5.7,

The details of numerical results are reported in Tables 1 and 2. We list the output details at
each iteration for Example 5.1 in Table 1. We also report the number of iterations (No.Iter), the
elapsed CPU time (CPU(sec)), the lower bound λ(k) = F (x(k))− α and the upper bound λ

(k)
=

G(x(k))− α for k ≥ 1, the error ∆(k) = ∥A(x(k))m−1 − λ(k)(x(k))[m−1]∥∞, and the approximation
λ(k) defined by (15) of the dominant eigenvalue in Tables 1 and 2.

From Tables 1 and 2, we see that the sequence generated by Algorithm 5.1 converges to the
dominant eigenvalue of the essentially nonnegative tensor without irreducibility. Algorithm 5.1 is
promising for calculating the dominant eigenvalues of the seven examples. For the sparse tensors
in Examples 5.4 and 5.5, the elapsed CPU times are longer because they need more iterations.
Algorithm 5.1 can solve the non-sparse tensor in 20s with the number of entries less than 100
million. For sparse tensors, Algorithm 5.1 is slow.

Table I. Detailed output of Algorithm 5.1 for Example 5.1

k λ(k) λ
(k)

λ(k) λ
(k) − λ(k) ∆(k)

1 35.9969 36.5635 36.2802 0.5666 0.2833
2 36.2554 36.3030 36.2792 0.0476 0.0211
3 36.2747 36.2776 36.2762 0.0030 0.0015
4 36.2757 36.2758 36.2757 9.1725e-5 4.5870e-5
5 36.2757 36.2757 36.2757 6.7568e-6 2.9868e-6
6 36.2757 36.2757 36.2757 4.6425e-7 2.2441e-7
7 36.2757 36.2757 36.2757 1.9041e-8 1.4348e-8
8 36.2757 36.2757 36.2757 8.8998e-10 8.1036e-9

Table II. Output of Algorithm 5.1 for Examples 5.1–5.7

Example No.Iter CPU(sec) λ(k) λ
(k)

λ(k) λ
(k) − λ(k) ∆(k)

5.1 8 0.013 36.2757 36.2757 36.2757 8.8998e-10 8.1036e-9
5.2 31 0.035 1.0000 1.0000 1.0000 9.6831e-10 4.1210e-9
5.3 37 0.078 0.8225 0.8225 0.8225 7.3324e-10 1.0635e-8
5.4 39 931 25.8107 25.8107 25.8107 7.2051e-9 3.9024e-9
5.5 21 647 8.9499 8.9499 8.9499 3.5831e-9 2.5078e-9
5.6 4 3.9 1.9995e4 1.9995e4 1.9995e4 4.4001e-9 1.3502e-9
5.7 4 7.3 6.2462e4 6.2462e4 6.2462e4 2.3059e-9 4.1502e-9
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6. AN APPLICATION AND SOME CONCLUSIONS

In this paper, we have introduced the concepts of essentially nonnegative tensors, which is closely
related to nonnegative tensors. The main contribution is the convexity and log convexity of the
dominant eigenvalue of an essentially nonnegative tensor, and hence the same for the spectral radius
of a nonnegative tensor. We also have proposed an algorithm for calculating the dominant eigenvalue
and convergence analysis has been established for any essentially nonnegative tensor without the
assumptions of irreducibility and primitiveness.

As an application, we find that the convexity of the the maximal eigenvalue function plays an
important role in the trace-preserving problem which arises in signal processing system [26, 27].
The trace-preserving problem is to determine µ(A) = min{λ(A+Du) : e

Tu = 0} and to find a
vector u = (u1, . . . , un)

T that achieves this minimum, where A is an essentially nonnegative tensor,
Du is a diagonal tensor with u1, . . . , un as the diagonal entries. By Theorem 3.1 and Corollary 3.1,
this problem is a convex problem. Motivated by the idea in [26], we guess the semismoothness of
the dominant eigenvalue function also holds and then we may propose a Newton-type algorithm to
solve the trace-preserving problem. This is a topic in the future research.
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