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Abstract: 

The growth rate of atmospheric CO2 concentrations since industrialization is 

characterized by large interannual variability, mostly resulting from variability in the 

CO2 uptake by terrestrial ecosystems. However, the contributions of regional ecosystems 

to that variability are not well known. Using an ensemble of ecosystem and land-surface 

models and an empirical observation-based product of the global gross primary 

production, we show that the mean sink, trend, and interannual variability in CO2 

uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. 

Whereas the sink strength is dominated by highly productive lands, mainly tropical 

forests, the trend and interannual variability of the sink are dominated by semi-arid 

ecosystems whose carbon balance is strongly associated with circulation-driven 

variations in both precipitation and temperature.  

 

One Sentence Summary:  

Semi-arid savannas and shrub lands dominate the trend and interannual variability of 

the global land CO2 sink.   

 

Main Text:  

Since the 1960s, terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, 
sequestering about one quarter of anthropogenic emissions in an average year (1). This 
ecosystem service, which helps mitigate climate change by reducing the rate of increase of 
atmospheric greenhouse gases, is due to an imbalance between the uptake of CO2 through 
gross primary production (GPP, the aggregate photosynthesis of plants) and the release of 
carbon to the atmosphere by ecosystem respiration (Reco) and other losses, including wildfires 
(Cfire). The net carbon flux (net biome production, NBP = GPP - Reco - Cfire) results from the 
small imbalance between the much larger uptake and release fluxes. Consequently, small 
fractional variations in either of these fluxes can cause substantial absolute variations in net 
carbon exchange with the atmosphere. These variations account almost entirely for year-to-
year variations around the overall trend in atmospheric concentrations of CO2 (2, 3). 

Modelling studies suggest a large uncertainty of the future magnitude and sign of the carbon 
sink provided by terrestrial ecosystems (4-8). Robust projections are crucial to assess future 
atmospheric CO2 burdens and associated climate change, and also for developing effective 
mitigation policies. Reducing uncertainty requires better knowledge of the regions and 
processes governing the present sink and its variations. Inventories suggest that the majority 
of carbon sequestered by the terrestrial biosphere since industrialization has accumulated in 
forest ecosystems of the tropics and temperate zones (9). However, the relative contributions 
of ecosystems of different, climatically-distinct, regions to variations in the land sink on 
interannual to multi-decadal time scales are not well characterized. Here we investigate 
relative regional contributions to, respectively, the mean sink, its trend over recent decades 
and the interannual variability (IAV) around the trend. 



We simulate the geographic pattern and time course of NBP using LPJ-GUESS (10-12), a 
biogeochemical dynamic global vegetation model (DGVM) that explicitly accounts for the 
dependency of plant production and downstream ecosystem processes on the demography 
(size structure) and composition of simulated vegetation. We force the model with historical 
climate (13) and CO2 concentrations, accounting for emissions from land use change and 
carbon uptake due to regrowth following agricultural abandonment (14). We compare the 
results to an ensemble of nine ecosystem and land surface model simulations from the 
TRENDY model intercomparison project (12, 15) (hereinafter TRENDY models, Table S1). 
The TRENDY ensemble is similarly based on historical climate and CO2, but employs a static 
1860 land use mask. 

Global NBP as simulated by LPJ-GUESS shows strong agreement (r2=0.62) with the Global 
Carbon Project (GCP) estimate of the net land CO2 flux; an independent, bookkeeping-based 
estimate derived as the residual of emissions, atmospheric growth and ocean uptake of CO2  
(1) (Fig 1A). TRENDY models do not account for land use change. In comparison to the GCP 
land flux estimate they consequently predict a higher average NBP but similar interannual 
variation. Moreover, the offset between the TRENDY ensemble mean and the GCP land flux 
estimate is comparable to the GCP estimate of mean land use change emissions for the period 
1982-2011 (fLUC). 

We divide the global land area into six land cover classes following the MODIS MCD12C1 
land cover classification (12, 16): tropical forests (Fig 1B), extra-tropical forest, grasslands 
and croplands (here combined), semi-arid ecosystems (Fig 1C), tundra and arctic shrub lands, 
and sparsely vegetated lands (areas classified as barren) (Fig S1 and S2).   

When the global terrestrial CO2 sink (average NBP) and its trend (1982-2011) are partitioned 
among land cover classes, we find that tropical forests account for the largest fraction (26%, 
0.33 PgC year-1) of the average sink over this period (1.23 PgC year-1) (Fig. 1D). In contrast, 
we find that semi-arid ecosystems dominate the positive global CO2 sink trend (57%, 0.04 
PgC year-2, global: 0.07 PgC year-2) (Fig. 1E). The TRENDY ensemble shows a consistent 
pattern, with tropical forests dominating the mean sink (median: 24%) and semi-arid 
ecosystems dominating the trend (median: 51%). The predominance of semi-arid ecosystems 
in explaining the global land sink trend is consistent with widespread observations of woody 
encroachment over semi-arid areas (17) and increased vegetation greenness inferred from 
satellite remote sensing over recent decades (17-19). Likewise, a recent study attributes the 
majority of the record land sink anomaly of 2011 to the response of semi-arid ecosystems in 
the Southern Hemisphere, particularly Australia, to an anomalous wet period; the study 
further postulates a recent increase in the sensitivity of carbon uptake to precipitation for this 
region due to vegetation expansion (20). 

We further partition interannual variability in global NBP among land cover classes based on 
the contribution of individual grid cells to global NBP IAV (12). To this end, we adopted an 
index (Eq. S1, Fig S3) that scores individual geographic locations according to the 
consistency over time (years) with which the local NBP flux resembles the sign and 
magnitude of global NBP (Fig S4). Regions receiving higher and positive average scores are 
inferred to have a larger contribution in governing global NBP IAV, as opposed to regions 
characterized by smaller or negative (counteracting) scores (Fig S3). The index we adopt does 
not characterize the variability of ecosystems of different land cover classes as, for example 



the standard deviation would do (Fig S5) but rather enables a comparison of their relative 
importance (contribution) in governing global IAV. 

Semi-arid ecosystems were found to account for the largest fraction, 39%, of global NBP 
IAV, exceeding tropical forest (19%), extra-tropical forest (11%; all forest: 30%) and 
grasslands and croplands (27%) (Fig 1F). The TRENDY ensemble shows a similar 
partitioning, with semi-arid ecosystems accounting for 47% (median; tropical forests: 28%, 
extra-tropical forest: 6%, all forest: 35%). The overall contributions per land cover class are 
the sum of both positive and negative contributions that result from differences in phase 
between IAV of individual grid cells compared with global IAV (Fig S4). The extent to which 
negative contributions reduce the overall land cover class contributions is minor for all 
regions except grasslands and crops (Fig S6) (LPJ-GUESS: -13%, TRENDY median: -13%) 
the latter being distributed widely across climate zones, both climate variations and the 
sensitivity of NBP to climate variations differing among regions. 

To partition the global NBP IAV among component fluxes (GPP, Reco, Cfire) and among land 
cover classes, we applied Eq. S1. We found that global NBP IAV is most strongly associated 
with variation in GPP; interannual GPP anomalies contribute 56% of the global NBP IAV in 
LPJ-GUESS, and a median of 90% in the TRENDY model ensemble. Comparing different 
land cover classes, the GPP anomalies of semi-arid ecosystems alone contribute 39% in LPJ-
GUESS and a median of 65% in the TRENDY model ensemble to global NBP IAV (Fig. S7). 
Semi-arid vegetation productivity thus emerges clearly as the single most important factor 
governing global NBP IAV.  

We employed two complementary methods to attribute the variability in GPP—as the inferred 
primary driver of global NBP IAV—to its environmental drivers. Firstly, we analyzed 
simulation results from LPJ-GUESS, linking output GPP anomalies to variability in the 
climatic input data. Secondly we use a time-resolved gridded global GPP product derived 
from upscaled flux tower measurements (12, 21) (hereinafter empirical GPP product). This 
product uses an empirical upscaling of flux measurements and is thus entirely independent of 
the modelled GPP in our study.  

The three main climatic drivers temperature (T), precipitation (P) and shortwave radiation (S) 
are interdependent and correlated. To account for combined effects of these drivers we adopt 
an analysis of GPP variations from an “impact perspective” (22-24): we first identify GPP 
anomalies and then extract their climatic covariates. The primary challenge of such analysis 
on annual scale is to target climate indices that adequately characterize the “period of climatic 
influence”, e.g. growing season average, annual averages, minima or maxima of a given 
climatic forcing. To overcome this challenge we use semi-annual time series of climate 
drivers constructed using an optimization procedure that weights monthly anomalies of a 
given climate variable (T, P or S), accounting for time lags of up to 24 months while making 
no additional prior assumptions as to the period of influence (12). For each GPP event we 
extract climatic covariates as z-scores of the semi-annual climatic drivers. 

We evaluate the climatic covariates of GPP anomalies for semi-arid ecosystems from the 
empirical GPP product and modelled by LPJ-GUESS, focusing on T and P, and find similar 
responses of GPP to climate with both approaches across all latitude bands (Fig 2 A,B). 
Negative GPP anomalies in semi-arid ecosystems are mainly driven by warm and dry (low 
rainfall) climatic events in most latitudes, suggestive of drought. By contrast, positive GPP 



anomalies are dominated by cool and wet conditions.  Averaging the distributions over 
latitudes (Fig 2 A,B) and extracting the climatic covariates per percentile of the GPP 
distributions shows that GPP varies with climatic conditions on a straight line in T-P space 
(Fig S8), with a stronger covariation with P than T. This implies that the full GPP 
distributions are driven by similar climatic patterns, i.e. anomalies that differ in size and sign 
covary with corresponding differences in size and sign in the drivers. GPP extremes (the tails 
of the distribution of GPP among years) covary with ENSO across all latitudes (Fig 2 C,D). 
Both in the model and the empirical GPP product, GPP anomalies are more strongly 
associated with the positive phase of ENSO (El Niño) than the negative phase (La Niña), 
while the sign of the relationship varies with latitude. Positive ENSO tends to coincide with 
negative GPP anomalies in the tropics (30°S - 20°N), and with positive GPP anomalies north 
of 20°N.  

The agreement between climatic covariates of the data-based empirical GPP product and 
modelled GPP alongside the comparatively robust pattern of the covariation with climate 
suggests that GPP IAV for semi-arid ecosystems is mediated by climate. Since ENSO 
covaries with a considerable portion of the GPP distribution, we infer that ENSO is the 
dominating mode of global circulation variations driving GPP IAV over semi-arid 
ecosystems. Recent modelling studies have found that extreme El Niño events could become 
more common under climate change (25), which together with an increased atmospheric 
demand for water associated with global warming might exacerbate the impact of El Niño 
events over semi-arid ecosystems and further increase the role of semi-arid regions in driving 
global NBP IAV (26-28).    

We repeat the calculation of climatic covariates to simulated NBP for LPJ-GUESS and each 
of the TRENDY models. The resulting maps of covariates in T-P space are shown as average 
covariates of negative (low CO2 uptake or CO2 release) extremes (Fig 3 A,B) and positive 
(high CO2 uptake or low CO2 release) extremes (Fig 3 C,D). In general, semi-arid ecosystems 
stand out as regions in which strong CO2 uptake events are consistently associated with cool 
and moist conditions, and strong CO2 release events with warm and dry conditions. In tropical 
forests NBP covaries with both T and P as in semi-arid regions, but also with T alone. In high 
latitudes wet or warm and wet conditions lead to negative NBP extremes whereas warm and 
dry or dry conditions tend to lead to positive extremes, although the spatial heterogeneity of 
the covariates is large in this region (Fig 3).  

Our approach offers detailed spatial and temporal disaggregation of drivers and responses 
which is important when analyzing drivers or covariates of global NBP IAV because of the 
high temporal and spatial variability in P (Fig S9-11).  Using four upscaling levels with 
increasing spatial and temporal disaggregation (ranging from land surface mean P and T to 
using semi-annual P and T, averaged based on the spatial origin of each year’s global NBP 
anomaly (Eq S5 and S6)) we show that P and NBP IAV become more correlated at higher 
levels of disaggregation. At the highest disaggregation level, P is almost as strongly correlated 
with NBP IAV as T, suggesting a strong influence of soil moisture variations on global NBP 
IAV (28). This strong increase in P correlations with disaggregation resolves an apparent 
conflict between the findings of the present study, and those of studies using regionally 
averaged drivers which emphasize the role of T in governing IAV in atmospheric CO2 (28-

30). For semi-arid ecosystems T correlations are slightly stronger than P correlations with 
NBP IAV (Fig 4B), partly due to an asymmetric distribution of P and/or an asymmetric 
response of NBP to P IAV (Fig S12). The correlation of tropical forest P with NBP IAV 



increases when we use the semi-annual drivers, suggesting large importance of accounting for 
time lags and “period of climatic influence” of P variations (12), but P-NBP IAV correlations 
are still weaker than T-NBP IAV correlations (Fig 4C).   

Our analysis provides evidence that semi-arid ecosystems, largely occupying low latitudes, 
have dominated the IAV and trend of the global land C sink over recent decades. Semi-arid 
regions have been the subject of relatively few targeted studies that place their importance in a 
global context. Our findings indicate that semi-arid regions and their ecosystems merit 
increased attention as a key to understanding and predicting inter-annual to decadal-scale 
variations in the global carbon cycle. 
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Figure 1. Global and regional NBP mean, trend and variations. (A) Global NBP and GCP 
land flux time series (1982 – 2011). TRENDY models are plotted on a separate vertical axis 
with a time-invariant offset corresponding to the time period average GCP fLUC estimate (1.2 
Pg C). (B) Tropical forest NBP. LPJ-GUESS (red line) includes emissions from land use 
change. TRENDY models average (blue line) and 1st and 3rd quartiles of the ensemble 
(shaded blue area) do not include emissions from land use change. (C) NBP of semi-arid 
ecosystems from LPJ-GUESS (including land use change emissions) and TRENDY models 
(excluding land use change emissions). (D) Contribution of land cover classes to global mean 
NBP (1982-2011) (mean NBP of land cover class / mean global NBP). Horizontal lines in 
boxplots show from top, 95th, 75th, 50th, 25th, and 5th percentiles. (E) Contribution of land 
cover classes to global NBP trend (land cover class NBP trend / global NBP trend). (F) 
Contribution of land cover classes to global NBP interannual variations (Eq S1).  

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Climatic-covariates of semi-arid ecosystem GPP variations. (A) Distribution by 
latitude of the empirical GPP product anomalies normalized by average standard deviation of 
GPP in semi-arid lands. The distribution is colored according to the legend based on average 
local climatic covariates per latitude zone and distribution bin. (B) LPJ-GUESS GPP 
distribution calculated and colored as in (A). (C) Covariation of the multivariate ENSO index 
anomalies (MEI (31, 32)) with the empirical GPP product. (D) Covariation of MEI and 
modelled GPP anomalies per latitudinal zone. NB: the figure shows the covariates of 
latitudinal average local GPP anomalies and not the average covariates based on GPP IAV 
contribution to NBP IAV. 

 



 
 

Figure 3. Climatic covariates of NBP extremes. (A) Climatic covariates of LPJ-GUESS 
negative NBP extremes (1-10th percentiles). (B) Mean climatic covariates of TRENDY-
models negative NBP extremes (1-10th percentiles). (C) covariates of LPJ-GUESS positive 
NBP extremes (90-99th percentiles). (D) Mean climatic covariates of TRENDY-models 
positive NBP extremes (90-99th percentiles).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 4. Correlations between annual climatic drivers IAV (P and T) and global NBP IAV 
(mean of all 10 models). (A) Global P and T correlations to global NBP IAV. From black to 
white and left to right, bars represent annual P and T IAV correlations to global NBP IAV 
with increasing spatial and temporal disaggregation of P and T while averaging to global time 
series: (I) Black bars represent averaged global land surface P and T weighted by grid cell 
area. (II) Dark grey bars represent P and T weighted by 30-year average contribution to global 
NBP IAV (Eq S1, Fig S4). (III) Light grey bars represent averaged P and T weighted by each 
years contributions, thus accounting for the difference in the spatial distribution of 
contributions between years (Eq S5 and S6). (IV) White bars represent semi-annual climate 
drivers averaged to global time series using the annual spatial contributions as in (III) thereby 
accounting for the “period of climatic influence” and time lags of up to 24 months. (B) 
Correlations between P and T IAV and NBP IAV for semi-arid ecosystems. Weights, where 
applicable, are based on contributions to global NBP IAV as in (A) but with P and T averaged 
over semi-arid ecosystems only. (C) Correlations between P and T IAV and global NBP IAV 
for tropical forest. Weights, where applicable, are based on contributions to global NBP IAV 
as in (A) but with  P and T averaged over tropical forest only. 
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Materials and Methods 

 
LPJ-GUESS simulations 

The dynamic global vegetation model (DGVM) LPJ-GUESS (10, 11) was forced by 
climate from CRU TS3.21 (13) and time-variant information on land use (14). LPJ-
GUESS is a second-generation DGVM in which vegetation dynamics result from growth 
and competition for light, space and soil resources among woody plant individuals and a 
herbaceous understory in each of a number (100 in this study) of replicate patches in each 
grid cell. The patches account for the distribution within a landscape representative of the 
grid cell as a whole of vegetation stands with different histories of disturbance and stand 
development (succession). Disturbances are implemented as stochastic events with an 
expected frequency of 0.01 yr1 at patch level. In addition, wildfires are simulated 
prognostically based on fuel (litter) load, dryness and physical conditions (33). GPP, 
autotrophic and heterotrophic respiration, carbon allocation and phenology, canopy gas 
exchange, soil hydrology and organic matter dynamics follow the approach of LPJ-
DGVM (34, 35). Plant functional type (PFT) settings were as described in (10). 
 
TRENDY-models 

The ensemble of TRENDY-model results is a combination of results for prepared 
for the global carbon budget of 2013 (1) and 2014 (36) through the TRENDY project, 
where the latest available version has been used. We use the S2 simulations where a time 
invariant pre-industrial land use mask (14) was applied (year 1860). The TRENDY 
model results presented here thus represent carbon cycle responses of the biophysical 
land surface to climate and CO2 change, omitting emissions due to land use change or 
regrowth. Simulations are forced with climate information from CRU-NCEP (37).The 
ensemble consists of results from nine ecosystem models and land surface models Table 
S1.  
 
 
Table S1. TRENDY models. 

Model name 
Carbon budget 

year 
Spatial resolution 

(longitude x latitude) 
Land surface 

model 
Dynamic 

vegetation 
Disturbance 

types 
Source 

CABLE 2014 0.5° x 0.5° yes no - (38, 39) 

ISAM 2014 0.5° x 0.5° yes yes - (40-42) 

JULES 2014 1.875° x ~1.6° yes yes - (43) 

LPJ 2013 0.5° x 0.5° no yes fire (35, 44) 

LPX 2014 1° x 1° no yes fire (45) 

ORCHIDEE 2013 0.5°x 0.5° yes yes crop harvest (46) 

O-CN 2013 1° x 1.2° yes no - (47, 48) 

VEGAS 2014 0.5° x 0.5° yes yes fire (49, 50) 

VISIT 2014 0.5° x 0.5° no no fire, erosion (51, 52) 
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Empirical GPP product 
The empirical GPP product originates from upscaled FLUXNET eddy-covariance 

tower measurements (21). The overall upscaling procedure involves three main steps: (I) 
processing and quality control of the FLUXNET data, (II) training a machine learning 
based regression algorithm (Model Tree Ensembles, MTEs (53)) for tower observed 
monthly GPP using site-level explanatory variables and satellite observed fraction of 
absorbed photosynthetic active radiation, and (III) applying the established MTEs for 
global upscaling, using gridded data sets of the same explanatory variables. 25 individual 
model trees were forced for each biosphere-atmosphere flux using gridded monthly 
inputs from 1982 to 2011. The best estimate of a biosphere-atmosphere flux for further 
analysis is the median over the 25 estimates for each pixel and month.  

Half-hourly FLUXNET eddy covariance measurements were processed using 
standardized procedures of gap filling and quality control (54, 55), and the data were 
subsequently aggregated into monthly means. 29 explanatory variables of four types were 
used to train the model tree ensemble to predict biosphere-atmosphere fluxes globally 
(see also Table 1 in 56), including (I) monthly fAPAR from the SeaWiFS sensor, 
precipitation, and temperature (both in situ measured); (II) annual changes of the fAPAR 
that describe properties of vegetation structure such as minimum, maximum, mean, and 
amplitude; (III) mean annual climate such as mean annual temperature, precipitation, 
sunshine hours, relative humidity, potential evapotranspiration, climatic water balance 
(precipitation–potential evaporation), and their seasonal dynamics; and (IV) the 
vegetation type according to the IGBP classification plus a flag regarding the 
photosynthetic pathway (C3, C4, C3/C4) (in situ information).   
 
Land cover classes 

We defined six land cover classes together covering the global land area, tropical 
forest, extra-tropical forest (boreal and temperate), semi-arid ecosystems, tundra and 
arctic shrub land, grasslands and land under agriculture (crops, here combined), and areas 
classified as barren (sparsely vegetated). 

The global land surface was first divided into three main classes, forest, savanna and 
shrub lands, and grass lands and crop lands. This classification is based on a MODIS land 
cover classification (MCD12C1, type3) from satellite borne remote sensing (17), 
remapped using a majority filter to a spatial resolution of 0.5x0.5°. The MODIS forest 
category was split to tropical and extra-tropical forest using the Köppen-Geiger climate 
classification system (57). Tropical forest are defined by the Köppen-Geiger A climate 
group, where mean temperature of all months over the study period (1982-2011) do not 
fall below 18°C. Savanna and shrub lands were divided at a natural break at latitude 45°N 
into semi-dry ecosystems (latitudes < 45°N ) and tundra and arctic shrub lands (latitudes 
> 45°N). 
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Partitioning of interannual variations 
Partitioning of IAV to regions or grid cells follow the definition of Equation S1. For 

a given flux (NBP or GPP, Reco and Cfire), the contribution of the IAV of a grid cell or 
land cover class j to the global NBP IAV is defined as:  
 𝑓𝑗 = ∑ 𝑥𝑗𝑡|𝑋𝑡|𝑋𝑡𝑡∑ |𝑋𝑡|𝑡   (Eq. S1) 

 
where xjt is the flux anomaly (departure from a long-term trend) for land cover class j at 
time t (in years), and Xt is the global flux anomaly, so that 𝑋𝑡 = ∑ 𝑥𝑗𝑡𝑗 . By this definition 

fj is the average relative anomaly xjt/Xt for region j, weighted with the absolute global 
anomaly |Xt|. The definition ensures that j fj = 1, but allows individual fj to fall outside 
the range (0,1) if the global anomaly Xt arises from partially cancelling contributions xjt 
from different regions or regional components.  

This method is not limited to estimate the variability of a dataset but rather estimates 
the contributions to variations in a flux (e.g. global NBP) from its constituting fluxes (e.g. 
regional NBP or regional GPP, Reco, Cfire), which depends not only on the size of the 
constituting fluxes anomalies but also on their phase and sign (see Fig S3 for an 
example). Equation S1 can be applied to all detrended datasets fulfilling the basic 
requirement that components sum to the global, overall, flux. Therefore it can be applied 
to regional NBP, where regional NBP anomalies sum to global NBP anomalies. 
Similarly, it can be applied to NBP components, GPP, Reco and Cfire integrated over 
regions or at grid cell scale since their anomalies also sum to global NBP anomalies.  

The resulting scores for a region or grid cell (fj) represent its contribution to global 
variations. Regions or grid cells with high scores drive the overall variations while 
regions or grid cells with low scores contribute less. Regions or grid cells with negative 
scores dampen variations, the overall, global, variations would therefore be larger if these 
negative score regions were omitted. Maps of grid cell weights are shown in Fig S4. 
 
Optimisation of climatic co-variates 

In the first step the monthly climatic drivers (X) were linearly detrended by month 
(Xd) and divided by their monthly standard deviation, resulting in z-scores (Z) of monthly 
anomalies  
 𝑧𝑡 = 𝑋𝑑−𝑋𝑑̅̅ ̅̅σ𝑋𝑑   (Eq. S2) 

 
For each location/grid cell j, n (24 for precipitation and 12 temperature and shortwave 
radiation) parameters were determined using linear regression: 
 
Yj=bj1Zj1+bj2Zj2…bjnZjn+j  (Eq. S3) 

 

where Y is annual z-scores of GPP or NBP anomalies from 1982 through 2011, bj1-n 

represent regression parameters of monthly climatic influence on GPP or NBP annual 
anomalies. The semi-annual time series (Xsa) contains the sum of the products of the 
original climate variables and the normalized absolute regression parameters: 
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 𝑋𝑠𝑗𝑡 = ∑ ( |𝑏𝑗𝑖|∑ 𝑏𝑗𝑖𝑖 )𝑖 𝑋𝑗𝑖𝑡   (Eq. S4) 

 
where i represent the 12-24 months, and t years between 1982 and 2011. The monthly 

weights ( |𝑏𝑖|∑ 𝑏𝑖𝑖 ) represent the influence of the 12-24 months of climate variations on 

annual GPP variations.  
 
The MEI ENSO index (31, 32) was optimized for time lags similarly to the climatic 
covariates (n=24) with the differences that it was not detrended nor standardized to z-
scores. Because MEI is an index of ENSO, and therefore not spatially distributed, the 
same time series is used for all locations, but the monthly weights differ between 
locations. 
 
Spatial and temporal weighting of P and T 

In the correlation analysis of P and T IAV and global NBP IAV we average P and T 
globally using four methods with increasing spatial and temporal disaggregation. 
 
(I) Annual grid cell P and T are weighted by their area. 
 
(II) Annual grid cell P and T are weighted by their 30-year average contribution to global 
NBP IAV (Eq S1, Fig S4).  
 
(III) Annual grid cell P and T are weighted each year (1982-2011) by the positive 
contribution  of a grid cell NBP anomaly (NBPa) to that years global NBP anomaly 
(NBPga):   
 𝐶𝑝𝑗𝑦 = 𝑚𝑎𝑥 ( 𝑁𝐵𝑃𝑎𝑗𝑦𝑁𝐵𝑃𝑔𝑎𝑦 , 0)  (Eq. S5)   

 
where Cp is the positive contribution of an NBP anomaly in grid cell j for year y. The 
weights (W) used for averaging are found by normalizing the positive grid cell 
contributions to unity:   
 𝑊𝑗𝑦 =  𝐶𝑝𝑗𝑦∑ 𝐶𝑝𝑗𝑦𝑛𝑗=0   (Eq. S6) 

 
where n is the number of grid cells globally or regionally.  
 
(IV) Semi-annual grid cell P and T are weighted according to (III). This method thereby 
accounts for the spatial origin of annual global NBP anomalies and use climate optimized 
to target the “period of climatic influence” for P and T as well as for time lags of up to 24 
months for P.  
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Fig. S1. Map of land cover classes. Tropical forests are shown in light green, extra-
tropical forest in dark green, semi-arid ecosystems in orange, tundra and arctic shrub land 
in grey, grasslands and crops in blue, sparsely vegetated regions in white. 
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Fig. S2. NBP time-series of land cover classes from LPJ-GUESS and TRENDY-models. 
LPJ-GUESS accounts for emissions associated with land use change and the TRENDY-
model results do not, explaining part of the difference between the two datasets. (A)  
NBP from LPJ-GUESS over tropical forest (red line), TRENDY-ensemble mean NBP 
(blue line) and 25th to 75th percentile (1st and 3rd quartiles) NBP (light blue shading). 
(B) Extra-tropical forest. (C) Semi-arid ecosystems. (D) Tundra and arctic shrub land. (E) 
Grasslands + crops. (F) Sparsely vegetated. 
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Fig. S3. Illustration of application of Equation S1. The black solid line represent a global 
signal and the blue and the red lines represent two components that sum to the global 
signal. Since component 1 varies in phase with the global signal with larger anomalies its 
contribution is larger than 100%, in this example, 180%. Component 2 on the other hand 
varies with smaller amplitude and with an opposite phase, and, since it together with 
component 1 sums to the global signal it must have a contribution of -80%, which would 
also be the result of Equation S1. Component 2 is in this example therefore dampening 
the global variations that would arise from only component 1.  
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Fig. S4. Local NBP contributions to global NBP interannual variations. (A) Local NBP 
contributions to global NBP IAV as simulated by LPJ-GUESS (%). (B) Local NBP 
contributions to global NBP IAV, mean of TRENDY models (%). 
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Fig. S5. Standard deviations (sd) of NBP IAV over land cover classes. (A) calculated on 
aggregated local NBP per land cover class; and (B) calculated for each grid cell and 
averaged for each land cover class. Legend as in Figure 1 (D-F). LPJ-GUESS shows 
higher variation among grid cells compared with TRENDY model ensemble owing 
mainly to stochastic representations of vegetation dynamic processes including 
mortality and disturbances. LPJ-GUESS sd is comparable to other models in (A) because 
effects of stochastic disturbances cancel between grid cells, while effects of among-grid 
variability are conserved in (B).  
NB: the figures show local standard deviations per area unit (m-2) and not contributions to 
global IAV. Because the variations are presented per area unit, differences in total extent 
between the land cover classes are not accounted for in these figures.   
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Fig. S6. Regional positive and negative NBP contributions to global NBP IAV. Panels A 
and B sum to the overall contribution to global NBP IAVs presented in Figure 1C. 
Legend as in Figure 1 (D-F). (A) Sum of positive only regional contributions to global 
NBP IAVs. (B) Sum of negative only regional contributions to global NBP IAV. The two 
panels illustrate how the contribution per land cover class could change by assessing a 
subset of a land cover class, e.g. dividing extra tropical forest into temperate and boreal 
forest. Since the overall contribution of a land cover class is the sum of local 
contributions, the maximum contribution of a subset of a land cover class, if all 
negatively contributing grid cells are removed, are shown in panel A. The relatively large 
negative contribution of grasslands and crops is likely due to the distribution of the land 
cover class across climate zones globally resulting in differences in climate variations and 
sensitivities to climate variations between locations. 
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Fig. S7. Regional NBP component contributions to global NBP IAV. Legend as in Figure 
1 (D-F). (A) Regional GPP contributions to global NBP IAV.  (B) Regional ecosystem 
respiration (autotrophic + heterotrophic respiration) contributions to global NBP IAV. 
Decomposition of biomass residues originating from land use change is included in the 
LPJ-GUESS Reco. (C) Regional wildfire emission (Cfire) contributions to global NBP 
IAV.   
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Fig. S8. Climatic covariates and temporal loadings of semi-arid ecosystems. (A) Climatic 
T-P space covariates of GPP percentiles 1-99 averaged over all semi-arid land weighted 
by grid cell area. Circles indicate the climatic covariates of the 5th percentile and 
diamonds indicate the 95th percentile covariates. The similar slope of the empirical GPP 
product and modelled GPP indicates that variations in both datasets covary with similar 
variations in T and P. The full distribution of both GPP datasets covary stronger with P 
than T; indicated by a general slope inclining towards the vertical P axis; over all 
percentiles of the GPP distributions, the corresponding P standardized anomaly is about 
twice that of the standardized T anomaly. (B) Lines indicate the monthly weights of 
monthly T IAV influence on GPP IAV. Bars represent the average T covariates for the 
5th and 95th percentiles. (C) Lines indicate the monthly weights of monthly P IAV 
influence on GPP IAV. Bars represent the average P covariates for the 5th and 9th 
percentiles. (D) Lines indicate the monthly weights of the monthly downward shortwave 
radiation (S) IAV influence on GPP IAV. Bars represent the average S covariates for the 
5th and 9th percentiles. 
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Fig. S9. Spatial properties of interannual variations of temperature and precipitation. (A) 
Correlations between global mean land surface temperature and local temperature 
interannual variations. (B) Correlations between global mean land surface precipitation 
and local precipitation interannual variations. (C) Local correlations between temperature 
and precipitation interannual variations. 
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Fig. S10. Spatial properties of interannual variations of temperature and precipitation 
over tropical vegetated land. (A) Correlations between mean tropical vegetated land 
surface temperature and local temperature interannual variations. (B) Correlations 
between mean tropical vegetated land surface precipitation and local precipitation 
interannual variations. (C) Local correlations between temperature and precipitation 
interannual variations.  
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Fig. S11. Correlations between mean tropical vegetated land precipitation (black line) 
and tropical forest and semi-arid ecosystem interannual variations. The figure illustrates 
how an averaged climate signal can be affected by a region with large variations. In this 
example precipitation anomalies are larger over tropical forest than semi-arid ecosystems, 
leading to a domination of tropical forest precipitation in the aggregated time series. 
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Fig. S12. Climatic covariates of contribution weighted average NBP IAV distributions. 
(A) Climatic covariates of global NBP IAV, spatially weighted by 30-year average 
contributions to global NBP IAV (Eq S1, Fig S4). LPJ-GUESS is shown in red and 
TRENDY-models average in blue. Shaded area illustrates where NBP covaries more with 
T than P, and white where NBP covaries more with P than T. (B) Climatic covariates of 
semi-arid ecosystems NBP IAV, spatially weighted by 30-year average contributions to 
global NBP IAV. Positive anomalies (percentiles >50) covaries more with P than 
negative anomalies due to an asymmetry in the P distribution (positive P anomalies > -
negative P anomalies), and/or an asymmetrical response of NBP to P.  (C) Climatic 
covariates of tropical forest NBP IAV, spatially weighted by 30-year average 
contributions to global NBP IAV.  
NB: The figures show the average climatic (semi-annual) covariates of NBP IAV 
weighted by average contributions over 1982-2011, and is therefore not fully comparable 
to the correlations presented in Figure 4 at the highest level of disaggregation, where the 
global P and T time series are based on the spatial contributions of each year. In contrast 
to the correlations however, the percentile-covariation distributions shown in here are not 
sensitive to the non-normal distribution of P (as in (B)). 
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