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Abstract  

Addiction has for several decades come to be viewed as a disorder of the dopamine 

neurotransmitter system; however, this view has not led to new treatments. We review the 

origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit 

the release dopamine in the human striatum. There is robust evidence that stimulants 

increase striatal dopamine release, some evidence for alcohol, but little if any for cannabis 

and opiates. Moreover, there is good evidence that striatal dopamine receptor availability 

and dopamine release are diminished in individuals with stimulant or alcohol dependence 

but not in individuals with opiate, nicotine or cannabis dependence. These observations 

have implications for understanding reward and treatment responses in various addictions. 
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Addiction is one of the great health problems facing the world today. Deaths from addictive 

substances, including tobacco and alcohol, amount to many millions of people per year1, and 

currently available treatments for addiction have limited efficacy and application. Thus, there 

is a great need to better understand the brain mechanisms that are involved in addiction so 

that new, better-targeted interventions can be developed.  

Brain research made a major breakthrough in the 1970s when the potential role of 

dopamine in addiction was discovered. This breakthrough stemmed from the finding of Olds 

and Milner2 that rats would willingly and repeatedly self-stimulate particular areas in the brain 

with electricity, a process they called positive reinforcement. These areas were subsequently 

shown to comprise, in part, a set of dopamine neurons3, which explained why drugs that 

enhanced the actions of this neurotransmitter  (for example, stimulants) increased electrical 

self-stimulation4. A subsequent series of largely US studies revealed that blocking dopamine 

receptors with neuroleptic drugs impaired the reinforcing effects of stimulants in rats and 

primates. This research clearly placed dopamine as the central neurotransmitter in stimulant 

addiction5 and suggested it had roles in reward, motivation and incentive behaviour6. 

The next conceptual breakthrough came when a group of researchers in Sardinia, 

who pioneered the technique of brain microdialysis in rats, discovered that a range of other 

drugs of abuse (that is, not just stimulants) increased dopamine release in the nucleus 

accumbens, which is located in the ventral striatum7. This led to a general theory of 

addiction, which was that addictive drugs released dopamine but psychoactive drugs, that 

were not addictive, did not. The field developed rapidly from this point, with multiple 

replications of the early animal findings of dopamine being released by “addictive” drugs  

and reported confirmations in humans using neurochemical imaging. These findings led to 

immense investment in research to alter dopamine neurotransmitter function as a route to 

treat addiction. Disappointingly, despite four decades of intense research effort, this theory 

has not led to new treatments. In this Opinion article, we chart the history of the dopamine 

theory of addiction, explore the current evidence for this theory and suggest that initial 

optimism must now be cautioned with a more objective view of the role of dopamine in 

addiction.  

 

Dopamine and the drug ‘high’  

Studying in vivo dopamine function in humans became possible in the mid 1990’s with the 

development of radiotracer imaging techniques, such as 11C-raclopride positron emission 

tomography (PET) and 123I-IBZM single-photon emission tomography (SPECT). These 

tracers can be used to measure the availability of striatal dopamine D2/3 receptors and 

changes in striatal dopamine levels in the synapse (BOX 1)8.  

The critical breakthrough in imaging the human dopamine system in addiction came 
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in 1994 when it was demonstrated that the combination of intravenous infusion of a central 

stimulant drug and SPECT or PET neurochemical imaging of dopamine D2/3 receptors 

could be used to indirectly measure dopamine release in the human striatum (BOX 1)9, 10. 

The magnitude of this increase was later shown to predict the euphoria10 or ‘high’11 produced 

by the drug. This was interpreted as proving that the experience of pleasure (the rewarding 

action) of stimulant drugs in humans was mediated by striatal dopamine release, just as in 

rats 7. This was a powerful message that many researchers sought to develop. A succession 

of other human studies followed, which showed that alcohol12, 13, tobacco 14, ketamine 15 and 

cannabis 16 increase striatal dopamine release in healthy participants and in non-dependent 

drug users, thereby providing support for the dopamine theory of addiction (FIG. 1).  

Quite rapidly, the dopamine theory of addiction became generally accepted by the 

field, so that drugs which induced dopamine release were considered to pose a risk of 

abuse. An example of such a drug is modafinil, which is used to treat narcolepsy. A 11C-

raclopride dopamine imaging study found that modafinil produced an increase in dopamine 

release 17. This finding was interpreted to mean that modafinil carries a potential risk for 

abuse, despite the increase in dopamine release not being associated with an increase in 

‘liking’ scores17, and prior clinical evidence showing that modafinil was not reinforcing18. The 

dopamine theory of reward had a profound effect on the development of drugs that target the 

brain. Pharmaceutical companies routinely used rodent microdialysis assays of ventral 

striatal dopamine release to estimate the presumed abuse potential of new drugs, discarding 

compounds such as potential novel antidepressants if they elevated dopamine (D. J. N., 

unpublished observation). This is particularly concerning given the latest work using 

optogenetics to control dopamine neurons in mice shows that dopamine activity in ventral 

striatum is vital in resilience against depression19. 

However, studies of alcohol20, cannabis21, 22 and ketamine 23, 24 showed that these 

abused drugs do not inevitably induce dopamine release in humans. Moreover, unlike with 

stimulants, an association between striatal dopamine release and pleasurable or hedonic 

effects of these substances was less apparent. For instance, there was no relationship 

between increased striatal dopamine release and any behavioural, subjective or 

physiological effects of cannabis16, 21. In the case of alcohol, impulsivity and intoxication, but 

not ‘high’, were associated with increased dopamine levels12, 20.  

Despite these inconsistencies and the fact that all these drugs produced less 

dopamine release than intravenous administration of methylphenidate, a prevailing view 

developed that that the dopamine system had a central role in addiction that was applicable 

to all addictive drugs. Dopamine became characterized as the ‘pleasure’ neurotransmitter in 

human brain; that is, the one that produces reward.25-27 .This model of addiction even made 
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the cover of Time magazine http://content.time.com/time/covers/0,16641,19970505,00.html] 

and is widely quoted as a fact in current text books and by Wikipedia (for example, see the 

Wikipedia entries for “Reward system” and “Dopamine”). 

From the beginning there were doubts about whether this theory applied to drugs 

other than stimulants and even whether dopamine release was central to the rewarding 

effects of stimulants in humans28. Studies in rats showed that dopamine receptor blockade 

did not dampen the rewarding actions of opiates (for example, see29), and subsequent 

clinical trials revealed that blocking dopamine receptors was generally ineffective in blocking 

the rewarding effects of stimulants in humans 28 or in treating human addiction (even 

stimulant addiction)30. Moreover, several studies found that opiate administration was not 

associated with striatal dopamine release in opiate dependence. For example, a study in 

individuals addicted to heroin revealed that an intravenous dose of 50mg heroin had no 

effect on striatal dopamine levels despite producing a very pronounced euphoric ‘high’31. 

This finding was subsequently replicated in a study that further showed that expectation of a 

heroin reward (in the absence of actual heroin administration) also was not associated with 

dopamine release32.  

Various studies of nicotine mostly suggest that this drug causes a small increase in 

ventral striatal dopamine levels. For example, smoking cigarettes has been shown to 

produce a 7% reduction in 11C-raclopride PET binding (when compared with smoking de-

nicotinised cigarettes)33, whereas amphetamine produces a 10–20% reduction in the binding 

of this ligand 34-42 (FIG. 1). However, another study (in a small cohort) found that intranasal 

nicotine administration had no effect on ventral striatal dopamine release43. This finding may 

be consistent with the idea that some of the effects of tobacco are due, in part, to the burning 

of tobacco-producing substances that block monoamine oxidase B — the enzyme that 

degrades dopamine44. 

Studies of Δ9-tetrahydrocannabinol (THC), the main psychoactive constituent of 

cannabis, found that this compound had even smaller effects on striatal dopamine release 

than nicotine. Administration of oral THC was associated with a non-significant reduction of 

around 2.5% in ventral striatal 11C-raclopride binding21, inhaled THC was linked with a 

significant reduction of around 3.5% in ventral striatal 11C-raclopride binding16, and 

intravenous THC was associated no significant change in 123I-IBZM SPET binding22. The 

changes in 11C-raclopride reported here for THC were all less than the test–retest variability 

of the tracer45, which means that it is possible that they are the result of normal variation in 

the PET signal rather than being produced by THC administration. Although THC 

administration produced marked behavioural effects in all of these studies, such as 

perceptual distortions, cognitive disorganisation21 and even psychotic symptoms22, it seems 

that these cannot be satisfactorily explained by striatal dopamine release.  

http://content.time.com/time/covers/0,16641,19970505,00.html
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Lower  dopamine function?  

If the dopamine system is critically and universally involved in dependence to all drugs, we 

might expect changes in dopamine function to be apparent across all addictions. Two 

markers of abnormal dopamine function in drug dependence have emerged: the lower 

availability of striatal dopamine receptors and the diminished release of striatal dopamine in 

response to a pharmacological challenge (so-called blunting).  

 

Lower striatal dopamine receptor availability. Early radio-tracer imaging studies revealed 

that cocaine users had lower striatal dopamine D2/3 receptor availability than matched 

controls46. This was attributed to the effects of cocaine: cocaine induces dopamine release, 

which could be expected to downregulate post-synaptic dopamine receptors, leading to 

reduced receptor availability. This result has since been replicated in further cohorts of 

cocaine 36, 47-51 and methamphetamine users 52-54. Moreover, at least in cocaine addiction, 

this reduction in receptor radiotracer binding has been shown to result from the decreased 

expression of postsynaptic dopamine D2/3 receptors, rather than to higher synaptic 

dopamine concentrations that would compete with the radio-tracer 49 or to altered receptor 

affinity for dopamine 50. Decreased dopamine receptor availability has also been reported in 

individuals who are alcohol-dependent55-60 and, interestingly, higher striatal dopamine 

receptor availability may be protective against alcohol dependence in high-risk individuals 

(relatives of individuals with alcohol dependence)61. 

However, differences in striatal dopamine receptor availability have not been as 

convincingly demonstrated in other addictions. Three studies have reported that individuals 

with opiate addiction have lower striatal dopamine receptor availability than healthy 

participants62-64, whereas we have found no change in receptor availability with opiate 

addiction31. In nicotine addiction, two related studies have reported lower striatal dopamine 

receptor availability in male but not female cigarette smokers 65, 66 and three studies have 

found no differences in receptor availability between individuals who smoke and healthy non-

smokers irrespective of gender67-69. There is no evidence of changes in striatal dopamine 

receptor availability in cannabis addiction70-74, and we could not find any published studies 

on such changes in ecstasy or ketamine users.  

The observation of lower striatal dopamine D2/3 receptor availability in drug 

dependence also presents something of a paradox. One might predict that if striatal 

dopamine release was pleasurable, then lower receptor availability would to lead to a 

reduction in this effect. However, a seminal study by Volkow and colleagues found the 

opposite; namely, individuals with low striatal dopamine D2/3 receptor levels (as measured 

by 11C-raclopride PET) reported more pleasurable effects from stimulants75, 76. Animal 

studies have also supported this finding. For example, in rats, low dopamine D2/3 receptor 
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levels in the striatum predict more cocaine 77 but not heroin self-administration 78, and in 

monkeys, higher striatal D2/3 receptor levels are associated with less cocaine intake79. In 

addition, increasing dopamine receptors (through viral vector-mediated expression of the 

receptors) in the ventral striatum of dependent rats reduces both cocaine 80 and alcohol 

intake 81.  

These findings present a real challenge to the original theory that dopamine release 

is responsible the euphoric effect of abused substances. If dopamine acting through D2/3 

receptors is necessary to experience a drug ‘high’, then lower receptor availability should 

result in less, rather than more, rewarding drug effects.  

 

Blunted dopamine release in dependence. In many, but not all addictions, individuals 

show a blunting of striatal dopamine release (that is, the release of striatal dopamine is 

decreased in these individuals compared with healthy individuals) after a pharmacological 

challenge with either the misused drug or a stimulant. This phenomenon was first reported in 

1997, in cocaine-dependent participants after a methylphenidate challenge 82 and has been 

replicated several times in stimulant-dependent participants36, 51. Decreased dopamine 

release has also been demonstrated in opiate dependence after a methylphenidate 

challenge 64 and in alcohol dependence after an amphetamine challenge 57, 60 (FIG. 2). By 

contrast, no marked blunting of dopamine release was found in cannabis dependence after 

an amphetamine challenge 72.  

Recent studies show that the extent of blunted striatal dopamine release in stimulant 

addiction may predict treatment response and vulnerability to addiction. In cocaine users, 

low stimulant-induced dopamine release was associated with a preference for cocaine to 

money 36 and worse treatment outcomes 51. An elegant study of young people at ultra-high 

familial risk of addiction who used stimulants occasionally but were not yet dependent 

showed that amphetamine-induced dopamine release in these individuals was reduced 

compared with that in well-matched controls 83. One interpretation of these data is that low 

dopamine release is a vulnerability to addiction, thus turning the dopamine theory on its 

head; instead of being the cause of addiction, dopamine might, if anything, have a role in 

resilience against becoming dependent and may be crucial for recovery from addiction 51.  

However, it is also possible that ultra-high risk participants had not become addicted 

because they experienced less dopamine release.  
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Addiction to the dopamine theory?  

It is worth reflecting on why enthusiasm for the universal dopamine theory of addiction 

developed and then came to dominate the addiction field. There are several interacting 

factors. First, the animal dialysis studies were so novel and compelling and were seemingly 

confirmed by the beautiful studies of Schultz, which showed that dopamine neurons fired in 

response to rewards in monkeys 84. However, the relative discrepancies in the magnitude of 

dopamine release elicited by different drugs 7 should have given the field pause for thought. 

The stimulants produced striatal dopamine elevations that were many-fold greater than 

those produced by the other drugs, yet human experience suggests that stimulants are not 

more pleasurable or addictive 85. Findings from studies investigating only stimulants 

(generally cocaine or amphetamine) were often discussed as though they applied to all 

addictions, even though there was no evidence for such an assumption 86. Indeed, where 

studies have been conducted using the same animal models, it is clear that stimulants differ 

from opioids, for example in terms of the effects of low dopamine receptor number and drug 

self-administration   77,78.  

Second, the methylphenidate experiment in humans showed such a clear 

relationship between dopamine release and the perceived ‘high’ that it appeared mechanistic 

— the more dopamine release the bigger the ‘high’ 75. However, what was overlooked was 

the fact that methylphenidate and other stimulants act specifically on the dopamine system 

to increase dopamine levels. Thus, dopamine must be the proximal mediator of any 

psychological response to stimulants, and it should not be surprising that the change in 

striatal dopamine release correlates with the subjective ‘high’. However, this is an 

association rather than proof that the change in striatal dopamine levels mediates the ‘high’ 

for stimulants. For other psychoactive drugs that only indirectly act on  dopamine neurons — 

such as alcohol and nicotine that act via modulating dopaminergic neuronal firing in the 

ventral tegmental area  — the association between changes in dopamine levels and ‘high’ 

has been harder to show. 

Increased dopamine release has also been reported in rewarding activities such as 

playing computer games 87, the placebo response to L-dopa 88, in meditation 89 and eating 

behaviours 90. These findings have been used to ‘prove’ the dopamine theory of addiction, 

as they associate rewarding activities with dopamine release and so generalize the model to 

one that says all rewarding activities must be mediated by dopamine release. However, 

these studies imaged small numbers of participants and are often not replicated. The 

apparent rush to publish that any given pleasure-inducing drug or behaviour can induce 

dopamine release reflects one of the more worrying and pervasive aspects of science today 

— the pre-eminence given to reporting ‘positive’ data in support of currently influential 

theories. There is a concern that the classic Popperian approach to science, namely refuting 
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hypotheses, may be lost in the desire to publish papers that ‘prove’ the theory and which are 

then well cited but are often not replicated.  

 

Does dopamine have other roles?  

Dopamine has many roles in normal brain function. In the cortex, dopamine is important for 

executive functions such as attention and working memory91; in the basal ganglia it is 

necessary for motivational salience, reward and fluent motor function; and in the 

hypothalamus it regulates prolactin release. Dopamine also has been shown to have a major 

role in the pathogenesis of a proportion of cases of psychosis 92 and to be involved in 

positive mood in humans 93.  

Changes in dopamine function in the basal ganglia can lead to compulsive-type 

behaviours. One theory of dopamine’s involvement in stimulant addiction is that the initial 

pleasurable effects of these drugs are detected in the nucleus accumbens, and that with 

repetitive use of the drugs, the drug taking behaviour becomes encoded as habit in the 

caudate and putamen, through progressive activation of the spiral of interacting striatal-

cortical circuits 94, 95. 

As in rats, dopamine receptor availability in humans might relate to impulsivity (which 

itself is a risk factor for addiction) 96, 97. It has been proposed that low D2/3 receptor 

availability and low dopamine release in the striatum — as described in substance addiction, 

obesity and attention deficit hyperactivity disorder (ADHD) — are neurobiological markers of 

increased impulsivity 96. The relationship between impulsivity and dopaminergic function has 

been investigated in another disorder with high levels of impulsivity, pathological gamblers 

(that is, individuals addicted to gambling). This disorder, was recently re-categorized from an 

‘impulse control disorder’ in DMS-IV to a ‘behavioural addiction ’in DSM-5 due to clinical and 

cognitive similarities with substance addiction. Thus pathological or disordered gambling 

serves as a useful model to study addiction in the absence of any drug-induced changes in 

neurotransmitter function 98.  

In contrast to substance addiction, no differences in baseline D2/3 receptor 

availability have been found in pathological gamblers compared with healthy controls 99, 100. 

However, in one of these studies, striatal D2/3 receptor availability was inversely correlated 

with mood-related or ‘rash’ impulsiveness 100 and in the other, D2/3 receptor availability 

positively correlated with impulsiveness in the substantia nigra, a dopamine D3 receptor-rich 

brain region99. Unlike the blunted stimulant-related dopamine release that is seen in 

substance addiction, dopamine release was increased in the dorsal striatum after 

amphetamine administration in pathological gamblers compared with healthy volunteers101. 

This increase in dorsal striatal dopamine was predicted by the availability of D3 receptors, 

and the authors of this study proposed that D3-related mechanisms might contribute to 
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sensitization in this behavioural addiction101. The finding of increased stimulant-related 

dopamine release in pathological gamblers would also be consistent with the development of 

pathological gambling that is associated with dopamine replacement therapy in Parkinson’s 

disease. Indeed, patient’s with Parkinson’s disease with impulsive-compulsive behaviours, 

such as pathological gambling, show increased ventral striatal dopamine release after the 

presentation of rewarding cues102 in a similar way to cocaine users who show increased 

dorsal striatal dopamine release after the presentation of cocaine related cues103.    

Therefore, depending on the disorder associated with impulsivity, either lower or 

higher dopaminergic function has been found. It may be that rather than a linear relationship, 

an inverted-U type of response function for dopamine underpins the relationship with 

impulsivity such that an increase or decrease in dopamine may be required to improve 

inhibitory control; for example, an increase in dopamine may improve inhibitory control in 

ADHD but a decrease in dopamine may improve such control in gambling associated with 

dopamine replacement in Parkinson disease.  

Dopamine may also have a role in regulating the motivation to seek drugs. The 

induction of craving is associated with cue-induced striatal dopamine release in cocaine 

users 103-105, although this is not the case in heroin addicts 32. Dopamine has been proposed 

to have a role in motivation more generally 94, which could explain why in stimulant users, it 

might both drive use and be necessary for recovery from addiction. Dopamine also has a 

role in executive function 106 (which includes inhibitory control) and, by acting through a top-

down cortico–striatal mechanism, may have a role in preventing addiction and other 

dyscontrol disorders such as overeating 107.  

There is further evidence to support a possible protective role for dopamine in some 

drug users. A study in non-treatment seeking stimulant-dependent individuals 108 showed 

that the dopamine D2/3 receptor agonist pramipexole had different effects on psychological 

performance in a Stroop task and related functional MRI measures in individuals with high 

drug-related compulsivity versus individuals with low drug-related compulsivity. If this finding 

is replicated with cocaine and in people with other drug dependencies, it might lead to a 

more sophisticated view of dopamine in addiction and, potentially, to targeted interventions 

such as dopamine-promoting agents in people with addiction who exhibit impulsivity. 

Moreover, these results found using pramipexole108 may explain the partial efficacy of 

dopamine receptor agonists such as bromocriptine109, and dopamine metabolism inhibitors 

such as disulfiram30 in the treatment of alcohol and cocaine dependence, respectively. 

Other aspects of dopamine functioning in addiction such as the role of extra-striatal 

dopamine and the influence of drug cues on dopamine responses and future research needs 

are outlined in BOX 2.  
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Limitations 

Neurochemical imaging has provided crucial advances in our understanding of the role of 

the human dopamine system in addiction; however, there are limitations associated with the 

imaging technique and with the populations that have been imaged.  

Current dopamine radiotracers bind to D2/3 receptors irrespective of their synaptic 

location and most, with the exception of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-

naphtho[1,2-b][1,4]oxazin-9-ol (11C-PHNO) which preferentially binds to D3 receptors, bind 

to both dopamine D2 and D3 receptors. This means that for most studies it is difficult to 

assess whether differences in dopamine radiotracer binding between populations reflect 

altered D2 or D3 receptor availability. It also means that it is not possible to determine 

whether differences in binding reflect alterations in pre- or postsynaptic D2/3 receptors, 

although as animal studies show that the majority of striatal dopamine D2/3 receptors are 

localised postsynaptically110, most groups have interpreted differences as changes in 

postsynaptic D2/3 receptors. The sensitivity of neurochemical imaging to lower levels of 

dopamine release produced by pharmacological challenges is also limited by the variability 

in the PET or SPECT imaging signal, so that changes of 5% or less in binding could be a 

result of lower levels of dopamine release or variability in the signal. This is an important 

limitation as a primate study has shown that, at least for the SPECT radiotracer 123I-IBZM, 

which has a lower resolution than PET radiotracers such as11C]-raclopride, a 1% decrease in 

binding equates to a 40% increase in dopamine release111.  

There are also limitations in the types of populations imaged; the large majority of 

studies have imaged dependent populations and only a few (for example, see REF.83) have 

imaged those at high risk of developing addictions. This means that we do not know whether 

the changes in dopamine function reported in dependence are a consequence of substance 

use or are present before the onset of addiction and may mediate vulnerability.  

 The fact that there are only few dopamine neurochemical imaging studies available 

for the majority of the investigated substances, combined with the problem of different 

methods employed to define striatal regions (the latter partly due to the gradual improvement 

of scanning techniques over the past few decades), means that conducting meta-analyses in 

order to synthesize findings across each addiction has so far proven to be challenging.   
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Conclusions 

The dopamine theory of reward and addiction, which states that dopamine release mediates 

reward and so leads to addiction, has had huge traction. However, it became accepted as a 

‘universal’ theory without properly accounting for findings from studies in different drug 

addictions that did not support the theory. Tellingly, the dopamine theory has not led to any 

new treatments for addiction. We suggest that the role of dopamine in addiction is more 

complicated than the role proposed in the dopamine theory of reward. We propose that 

dopamine has a central role in addiction to stimulant drugs, which act directly via the 

dopamine system, but that it has a less important role, if any, in mediating addiction to other 

drugs, particularly opiates and cannabis.  

Addiction is a complex mixture of behaviours and attitudes that vary from drug to 

drug and from user to user, and it is unlikely that a single neurotransmitter could explain 

every aspect of addiction. We foresee that addiction will be conceptualised as a multiple 

neurotransmitter disorder in which the dopamine system is central to stimulant addiction but 

in which other neurotransmitter systems, such as the endogenous opiate or GABA systems, 

have important roles in other drug addictions. For example, endogenous opiates have been 

shown to be released by stimulants 112 and alcohol 113; higher opiate receptor availability has 

been found in cocaine 114, 115, opiate 116 and alcohol dependency 117-119; and alcohol 

dependence and pathological gambling can, to some extent, be treated with opioid 

antagonists such as nalmefene 120-122. Moreover, individuals with alcohol dependence have 

lower limbic GABAA receptor availability 123, whereas participants with a history of cigarette 

smoking have higher limbic GABAA receptor availability 124.  

In conclusion, this account of the rise and fall of the universal dopamine theory of 

addiction serves as a lesson in neuroscience research. Unifying theories, though intrinsically 

appealing, should be subject to careful scrutiny just like other theories — and perhaps even 

more so, as they can lead the field into directions that ultimately prove to be unfruitful.  
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Box 1 | Imaging dopamine receptors and dopamine release 

 

Imaging dopamine in the human striatum.  

Positron emission tomography (PET) and single-photon emission computed tomography 

(SPECT) are quantitative radioactive imaging techniques that can be used to measure the 

availability of receptors and transporters, as well as the release of neurotransmitters. In the 

case of the dopamine system, radiotracers such as 11C-raclopride (for PET) and [123I]-

iodobenzamide (for SPECT) can reliably measure the availability of dopamine D2/3 

receptors in the human striatum, the brain area with the highest density of these receptors. 

This includes the ventral striatum (also known as the nucleus accumbens), the region of the 

striatum that seems particularly involved in the acquisition of drug addiction. Most D2/3 

radiotracers, and in particular the ones with agonist properties such as 

 [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol (11C-PHNO), 

also have the ability to compete with the brain’s endogenous dopamine to bind to D2/3 

receptors125. Increases in extracellular dopamine levels elicited by pharmacological 

challenges, such as with methylphenidate 126 or amphetamine10, or non-pharmacological 

manipulations, such as stress, playing a video game or cue-induced drug craving8, can be 

detected as a decrease in the radiotracer binding due to increased competition for the 

striatal D2/3 receptor (for a review, see REF8).  

 

Extrastriatal dopamine imaging  

The development of higher affinity radiotracers for D2/3 receptors such as 18F-fallypride, 

((S)-N-((1-ethyl-2-pyrrolidinyl)methyl)-5-bromo-2,3-dimethoxybenzamide) (18F-FLB 457) 127 

and [11C]-PHNO 128 has made it possible to image these receptors in brain regions outside 

the striatum (for example, in the frontal cortex), where the density of D2/3 receptors is lower. 

Radiotracers such as 11C-propyl-norapomorphine and in particular 11C-PHNO not only have 

high-affinity agonist properties but also have a higher affinity for dopamine D3 receptors over 

D2 receptors. This additional quality enables quantification of D3 availability and release in 

key areas of the brain in addiction such as the globus pallidum, ventral tegmental area, 

amygdala and hypothalamus129.  
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Box 2 | Key Issues and perspectives for future research 

  

To optimise our understanding about the relationship between the human dopamine system 

and addictive drugs, future research should consider a number of questions. First, who is 

being imaged? In selecting research participants, it is crucial to carefully describe factors 

that likely influence dopamine function, such as the lifetime use of alcohol and drugs, prior or 

current treatments, and periods of and current length of abstinence. Most individuals with a 

drug addiction use more than one substance and, other than tobacco smoking, such 

comorbidity is usually an exclusion criterion for studies in addiction. Selection of a control 

group that matches potentially important confounders — such as intelligence quotient or 

years of education, family history and alcohol, tobacco and other drug use — can be 

challenging. 

 Second, how is dopamine release induced? Stimulants are traditionally used in 

studies to increase dopamine levels. However, this pharmacological challenge may not be 

salient to individuals with addiction. For instance, many individuals with alcohol use 

disorders do not find stimulants rewarding, so in these individuals, any changes in dopamine 

levels that are induced by stimulants reflect what is available for release but does not inform 

us about ‘dopamine and reward’. Indeed, in such individuals, stimulant administration may 

be experienced as aversive. In some studies, addicted individuals were administered their 

‘drug-of-choice’, but not in the way they would normally self-administer it (for example, 

nicotine inhalators versus smoking), thereby reducing the salience of the drug, which could 

affect dopamine responses. An inherent limitation of PET protocols is that the drug-taking 

context cannot be simulated, but at least pharmacological and behavioural challenges 

should be optimised to reflect ‘usual’ drug behaviour.  

 Third, what is the role of cortical dopamine function? Most neurochemistry studies in 

addiction have imaged dopamine function in the human striatum. Such studies do not 

capture the importance of dopamine in mediating processes that are key to addiction, such 

as compulsion and executive function, which are largely cortical. We suggest that an 

important step for future studies is to focus on cortical dopamine function in addictions, 

particularly as great advances in human cortical dopamine imaging have been made over 

the past decade.  
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Figure 1 | The effect of abused substances on human ventral striatal dopamine 

release The studies contained in the figure use the the dopamine D2/3 receptor PET 

radiotracer 11C-raclopride to investigate the effect of abused substances on dopamine 

release in the ventral striatum. Decreases in 11C-raclopride PET binding occurs as a 

consequence of increased competition between dopamine and the tracer and so percentage 

decreases in 11C-raclopride binding reflect increased synaptic ventral striatal dopamine 

levels. These studies show consistent significant increases in ventral striatal dopamine 

levels produced by amphetamine and alcohol administration, less consistent increases 

produced by nicotine, and non-significant or small increases associated with diamorphine, 

THC or ketamine administration. The data presented here are derived from published 

studies describing changes in the ventral striatum, as this striatal area is the most relevant 

one to the theory of reward and dopamine; some studies are therefore not represented since 

data were available only for whole striatum. *Studies in which the change in 11C-raclopride 

binding was reported as non-significant. THC, Δ9-tetrahydrocannabinol. Data from REFs12-16, 

21, 23, 24, 31-43, 130-132. The studies contained in the figure are broadly comparable although there 

is some variability in the number participants imaged between studies and statistical tests 

used (largely t-tests). 
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Figure 2 |Investigating diminished ventral striatal dopamine release in addictions. 

These studies use the dopamine PET radiotracer 11C-raclopride to investigate whether 

diminished (‘blunted’) ventral striatal dopamine release occurs after administration of a 

stimulant (amphetamine or methylphenidate) in a range of substance addictions.  Decreases 

in 11C-raclopride PET binding occurs as a consequence of increased competition between 

dopamine and the tracer and so percentage decreases in 11C-raclopride binding reflect 

increased synaptic ventral striatal dopamine levels. The studies contained in the figure 

demonstrate significantly diminished ventral striatal dopamine release in alcohol, cocaine 

and heroin dependent individuals, and also in individuals at ultra-high risk to develop 

addiction, but no diminished release in cannabis or methamphetamine users. We selected 

studies which administered either amphetamine or methylphenidate as these directly target 

the dopamine system to ensure that any differences in dopamine levels would reflect 

changes in this system. For each study, the percentage change in 11C-raclopride binding is 

given for healthy participants and for the addicted population whose substance of addiction 

is depicted by the bar colour. The error bars show standard deviation. *Denotes a significant 

difference (according to the original study) in 11C-raclopride binding between the healthy 

participant and addiction groups. Data from REFs36, 51, 54, 57, 60, 64, 72, 83. Volkow and 

colleagues60 do not report standard deviation in change in 11C-raclopride PET binding. The 
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studies contained in the figure are broadly comparable although there is some variability in 

the number participants imaged between studies and statistical tests used (largely t-tests).  

 

 


