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ABSTRACT

Context. In August 2008, the accreting milli-second X-ray pulsar (AMXP), IGR J00291+5934, underwent an outburst lasting ∼ 100
days, the first since its discovery in 2004.
Aims. We present data from the 2008 double-peaked outburst of IGR J00291+5934 from Faulkes Telescope North, the Isaac Newton
Telescope, the Keck Telescope, PAIRITEL, the Westerbork Synthesis Radio Telescope and the Swift, XMM-Newton and RXTE X-
ray missions. We study the outburst’s evolution at various wavelengths, allowing us to probe accretion physics in this AMXP.
Methods. We study the light curve morphology, presenting the first radio–X–ray Spectral Energy Distributions (SEDs) for this source
and the most detailed UV–IR SEDs for any outbursting AMXP. We show simple models that attempt to identify the emission mech-
anisms responsible for the SEDs. We analyse short-timescale optical variability, and compare a medium resolution optical spectrum
with those from 2004.
Results. The outburst morphology is unusual for an AMXP, comprising two peaks, the second containing a ‘plateau’ of ∼ 10 days
at maximum brightness within 30 days of the initial activity. This has implications on duty cycles of short-period X-ray transients.
The X-ray spectrum can be fitted by a single, hard power-law. We detect optical variability of ∼ 0.05 magnitudes, on timescales of
minutes, but find no periodic modulation. In the optical, the SEDs contain a blue component, indicative of an irradiated disc, and a
transient near-infrared (NIR) excess. This excess is consistent with a simple model of an optically thick synchrotron jet (as seen in
other outbursting AMXPs), however we discuss other potential origins. The optical spectrum shows a double-peaked Hα profile, a
diagnostic of an accretion disc, but we do not clearly see other lines (e.g. He I, II) that were reported in 2004.
Conclusions. Optical/IR observations of AMXPs appear to be excellent for studying the evolution of both the outer accretion disc
and the inner jet, and may eventually provide us with tight constraints to model disc-jet coupling in accreting neutron stars.
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1. Introduction

1.1. Accreting Milli-Second X-ray Pulsars

Low-Mass X-ray Binaries (LMXBs) comprise a compact pri-
mary (neutron star or black hole) and a low-mass (usually K
or M class) secondary with the compact object accreting mate-
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rial from its companion by means of Roche lobe overflow. It
was postulated in the early 1980s that accreting milli-second
X-ray pulsars would form a sub group of neutron star LMXBs
(e.g. Radhakrishnan & Srinivasan 1982; Alpar et al. 1982) and
thus prove to be the link between accreting LMXBs and isolated
milli-second pulsars. The mechanism believed to be responsi-
ble is the spin-up of an old, weakly magnetized, neutron star
caused by the accretion of matter and angular momentum from
a donor star. This would result in a compact transient X-ray bi-
nary (its transient nature demonstrating a period of increased
mass transfer rate onto the neutron star) with the neutron star
spinning so rapidly that, once the accretion has ceased, it can
once again become a rapid radio pulsar (see Wijnands 2006
and references therein). This was subsequently confirmed ob-
servationally with the discovery of pulsations from the transient
source SAX J1808.4−3658 (Wijnands & van der Klis 1998) in
1998 April and the first LMXB to be detected as a milli-second
radio pulsar, FIRST J102347.6+003841 (Archibald et al. 2009).

Properties of AMXPs include weaker peak luminosities in
outburst than ‘classical’ (i.e. not showing pulsations during out-
burst) neutron star LMXBs, extremely low-mass companions
and faint quiescent X-ray luminosities (≤ 1032 erg s−1), dom-
inated by a hard power-law component (see Wijnands 2006;
Wijnands et al. 2008 and references therein). For most AMXPs,
the duty cycle is a few weeks of outburst every few years. Taking
into account the recent (2009 August and September respec-
tively) discoveries of NGC 6440 X-2 (Altamirano et al. 2009;
Heinke et al. 2009) and IGR J17511−305 (Markwardt et al.
2009; Bozzo et al. 2010), there are currently twelve known
AMXPs (Wijnands et al. 2008). Observationally, these systems
have orbital periods of Porb ∼ 40 minutes - 4 hours. Little is
known about the optical counterparts of these systems; many
have not been detected in the optical/infrared regime, even
in outburst (e.g. XTE J1751-305; Jonker et al. 2003). Some
LMXBs suffer from a high level of absorption from interstel-
lar dust and/or lie at large distances, and those systems with de-
tections, particularly AMXPs, are often very faint (due to their
relatively low-mass donors), especially when in quiescence (see
D’Avanzo et al. 2009).

1.2. The Accreting Milli-Second X-ray Pulsar IGR
J00291+5934

The accreting millisecond X-ray pulsar IGR J00291+5934
(hereafter “00291+59”) was first discovered on 2004 December
2 (MJD 53341) in outburst during a routine Galactic Plane Scan
of the Cassiopeia region by INTEGRAL (Eckert et al. 2004). It
was given the co-ordinates RA 00:29.1, dec +59:34 (J2000.0)
with an error radius of 1.′5 (l = 120.◦1, b = −3.◦2). In three suc-
cessive pointings, the IBIS/ISGRI instrument recorded an aver-
age flux of 55 ± 5 mCrab (20 – 60 keV). During its only point-
ing, JEM-X detected the source with a flux of 23 ± 5 mCrab (3
– 10 keV) (Eckert et al. 2004). On the following day, using the
RXTE PCA (Rossi X-ray Timing Explorer Proportional Counter
Array), 00291+59 was confirmed as an X-ray pulsar with a spin
of 598.88 Hz (Markwardt et al. 2004a), corresponding to a spin
period of ∼ 1.7 ms. This made it the fastest known AMXP (and
the 6th one to be discovered). A sinusoidal frequency modula-
tion of 147.4 minutes (2.46 hours) found in X-ray (by RXTE)
was interpreted as the orbital period and no evidence of X-ray
eclipses was present (Markwardt et al. 2004b). The fast X-ray
variability was stronger and had lower characteristic frequencies
than any other neutron star LMXB, being more similar to that of
black hole systems (Linares et al. 2007).

Within days, optical and infrared counterparts were identi-
fied at RA 00:29:03.06, dec +59:34:19.0 (J2000.0) to an un-
certainty of ∼ 0.′′5 (Fox & Kulkarni 2004; Steeghs et al. 2004).
The source was bright with magnitudes of R ∼ 17.4; J = 16.8 ±
0.1; H = 16.8 ± 0.3; K = 16.1 ± 0.2. Later observations during
quiescence gave values of R = 23.1 ± 0.1 in 2005 October and
K = 19.0 ± 0.1 in 2005 January (Torres et al. 2008a). During
its decay, variability of ∼ 0.3 magnitudes (not associated with
the system’s orbital period) was noted on timescales of sec-
onds to hours in R-band (Bikmaev et al. 2005). An optical spec-
trum of 00291+59 was taken on December 5 by the William
Herschel Telescope (WHT) showing ‘weak evidence’ for broad
emission features at Hα and He II (4686 Å) (Roelofs et al.
2004; Torres et al. 2008a), both of which are considered diag-
nostics for outbursting LMXBs. A further spectrum was taken
on December 12 (still during outburst) using the 10-metre Keck
1 telescope (Fillipenko et al. 2004; Reynolds et al. 2006) which
detected broad (FWHM = 1200 km s−1) emission at Hα, Hβ and
He I (6678 Å) as well as narrow (FWHM = 300 km s−1) ‘very
weak’ features at He II (4686 Å). The optical-IR SED during
outburst was dominated by thermal emission with a NIR excess
thought to be due to synchrotron emission (Torres et al. 2008a).
Until the 2008 outburst, no further spectra of 00291+59 had been
published.

On 2004 December 4, radio observations with the Ryle
Telescope, Cambridge yielded a ‘probable detection’ of 1.1 mJy
at 15 GHz (Pooley 2004). 12 hours later, at the same frequency,
this signal had disappeared below the detection threshold of ∼
0.6 mJy (Fender et al. 2004a), suggesting that this was indeed
the transient source. A day later, the Westerbork Synthesis Radio
Telescope (WSRT) detected a radio source with mean flux den-
sity of 0.250 ± 0.035 mJy (at 5 GHz), with evidence of this fad-
ing during the 10 hour observation (Fender et al. 2004a). Very
Large Array (VLA) observations on December 9 gave a detec-
tion of 0.17 ± 0.05 mJy at 4.86 GHz (Rupen et al. 2004).

A reliable distance to the system is still to be determined.
An upper limit of 3.3 kpc based on X-ray absorption has been
suggested (Shaw et al. 2005), however Burderi et al. (2007) sug-
gest a value of between 7.4 and 10.7 kpc, based upon the pul-
sar’s spin-down rate. Most recently, an estimate of 2 – 4 kpc
has been made based upon the X-ray luminosity during out-
burst (Torres et al. 2008a). An upper limit on the system’s donor
has been estimated at 0.16 M⊙, implying it is most likely a hot
brown dwarf (Galloway et al. 2005). This was calculated from
its mass function and also its similarities with the best studied
AMXP, SAX J1808.4−3658.

Observations of 00291+59 were taken in quiescence with the
3.6 metre Italian TNG telescope. The data were taken over 3
nights in 2005 August (V and R-bands), September (J, H, K-
bands) and November (I-band) (D’Avanzo et al. 2007). Folding
of I–band images on the known orbital period yielded a semi-
amplitude of 0.28 ± 0.17 magnitudes with minimum luminos-
ity at phase 0, consistent with the neutron star being behind the
donor. Quiescent observations were also taken using the WHT in
Harris-I band (2006 September), which showed short-term flar-
ing of up to 1 magnitude above the average magnitude of 21.83
± 0.18 (Jonker et al. 2008). This data was folded on the known
period and, after removing the flares, a semi-amplitude of ∼ 0.06
magnitudes was found, with the system at its brightest at phase
0.34 ± 0.03.

Although the 2004 outburst denoted the discovery of
00291+59, it is worth noting that Remillard (2004) retrospec-
tively detected ‘marginal’ (5σ) similar outbursts from the source
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Fig. 1. FT North and INT i′-band light curve of the 2008 out-
burst. The dotted line represents the approximate i′-band quies-
cence level.

as detected by the RXTE All-Sky Monitor (ASM) in 1998
November (21 ± 4 mCrab) and 2001 September (18 ± 3 mCrab)
suggesting an outburst from this source every ∼ 3 years.

1.3. The 2008 Outburst

In 2008 August, 00291+59 again became active. This was first
detected by the RXTE PCA on August 13 with a flux of ∼
16 mCrab (2 – 10 keV). The PCA had been monitoring the
source without detection every three days since 2008 May
(Chakrabarty et al. 2008). A previous observation on August 10
had not detected the source. The August 13 detection was con-
firmed by Swift X-Ray Telescope (XRT) observations on August
15 (Markwardt & Swank 2008). Optical photometry was ob-
tained using the Wide Field Camera (WFC) on the Isaac Newton
Telescope (INT) (Torres et al. 2008b) and Faulkes Telescope
North (FTN) (Russell et al. 2008), noting an increase of > 4
magnitudes from quiescence to values comparable with the 2004
outburst (see Fig. 1). A detection in the UV was made by
the Swift UltraViolet/Optical Telescope (UVOT) instrument on
August 15 (Marshall et al. 2008) in the UVW2 filter (central
wavelength, 1928 Å). No radio detections were reported, al-
though the WSRT set a 3σ upper limit of 0.16 mJy (Linares et al.
2008) at 4.9 GHz on August 16. After a rapid fade, a sec-
ond brightening occurred ∼ 1 month later and was detected on
September 18, initially in the optical with FTN, subsequently
confirmed by Swift X-ray observations (Lewis et al. 2008b).
This second outburst was just ∼ 0.2 magnitudes fainter in i′-band
than the outburst peak on August 15.

Here, we present well-sampled optical light curves of both
2008 outburst peaks, plus a quasi-simultaneous optical spec-
trum, radio, NIR, UV and X-ray data. We describe the data col-
lection and reduction in Section 2. We analyse the light curve
morphology, the source’s optical variability, spectral properties
and broadband behaviour in Sections 3 – 5. We present the evo-
lution of the NIR–optical–UV SEDs (which are the most com-
plete of any AMXP to date) and the first broadband (radio–X–
ray) SEDs of 00291+59, and compare this outburst to the 2004
outburst and to other AMXPs in Section 6. Our conclusions are
presented in Section 7.

2. Observations and Data Reduction

2.1. Optical, UV and Near Infrared Data

Data are presented from Faulkes Telescope North (optical),
Swift UVOT (UV/optical), INT (optical), an optical spectrum
from Keck and PAIRITEL (NIR). The photometric observations
are listed in Table 1.

To convert the magnitudes to intrinsic de-reddened flux den-
sities, we use AV = 2.5 ± 0.3 for the interstellar extinction
towards the source (Torres et al. 2008a) and use the extinc-
tion curve of Cardelli et al. (1989). The resulting flux densities
will have absolute uncertainties due to the errors in the value
of the extinction, corresponding (since extinction increases at
shorter wavelengths) to 3%, 28% and 109% of the flux at K,
V and UVW2 wavelengths respectively (adopting values of AK

= 0.114 and AUVW2 = 2.664 from Table 3 and Equation 4 in
Cardelli et al. 1989). These errors are taken into account for the
SEDs presented in Section 6.

2.1.1. Faulkes Telescope North

00291+59 has been included as part of a monitoring campaign
of 30 LMXBs including 5 AMXPs (Lewis et al. 2008a) using the
two Faulkes Telescopes. Data have been collected using the 2-
metre robotic Faulkes Telescope North located at Haleakala on
Maui. It currently uses a Merope camera (EM01). Prior to 2008
August, the camera used was the Apogee ‘Hawkcam’ (EA01).
Both cameras were coupled with an E2V CCD42-40DD CCD
giving a 4.′7 × 4.′7 field of view and producing images of 2048 ×
2048 pixels binned 2 × 2 to give 1024× 1024 pixels at 0.278 arc-
second pixel −1. Science images are produced using the Faulkes
automatic pipeline which de-biases and flat-fields the raw im-
ages. Filters used are B, V, R (Bessell), i′ (Sloan-SDSS) and y
(Pan-STARRS). We monitored the source in i′-band, typically
acquiring a 200 second exposure every ∼ 2 weeks when the
source was visible from FTN. When the outburst was detected
on 2008 August 1, we increased the sampling to one observa-
tion every 2 days and used B,V, R, i′, y filters to investigate
colour changes. This shorter cadence continued until November
10, near the end of the fade of the second outburst peak.

Seeing values range from 0.′′4 to ∼ 3.′′1. Images were dis-
carded if the signal-to-noise ratio was low (often due to thin
cloud), or if the tracking or focus were poor. During the out-
burst, we detected the source in 133 images taken between 2008
August and November. We performed aperture photometry of
00291+59 and two nearby field stars (see Table 2 and Fig. 2)
using the aperture photometry package APPHOT in IRAF . Point-
spread-function (PSF) fitting was not used since minor errors in
tracking on some observations resulted in non-circular or non-
elliptical stars for which aperture photometry was more suitable.
A fixed aperture radius of 6 pixels along with a background an-
nulus of 10 – 20 pixels was adopted for all three stars in all filters.

Flux calibration in B, V and R-bands was achieved using
photometry of the standard star field PG 0231+051 from the
list of Landolt photometric stars (Landolt 1992), which are ob-
served regularly by FTN. Both the standard and the 00291+59
fields were observed on 2008 September 4, 6 and 14. Four stars
in the same field as PG 0231+051 with known B, V, R mag-
nitudes 1 were also used. Accounting for differences in airmass
between target field and standard, we calculated the B, V, R mag-
nitudes of the two chosen field stars in the 00291+59 field. From
the three dates used, the measured magnitudes varied by only

1 http://eso.org/sci/facilities/paranal/sciops/Bessell/PG0231+051.ps
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Table 1. Photometric observations (NIR, optical and UV detec-
tions) of 00291+59 used in this work.

Telescope UT Date MJD Exposure times
/ detector per filter
INT/WFC 2008-08-15 54693.0 120 r′,i′ (10), 30 i′ (2)
FTN/EA01,EM01 2008-08-15 54693.6 200 B,V,R,i′,y
Swift/UVOT 2008-08-15 54693.7 1462 UVW2∗

INT/WFC 2008-08-16 54694.2 120 r′,i′ (30), 30 r′

FTN/EA01,EM01 2008-08-16 54694.6 200 B,V,R,i′,y
INT/WFC 2008-08-17 54695.1 120 r′ (30), 120i′ (48),

30 r′

FTN/EA01,EM01 2008-08-17 54695.5 200 B,V,R,i′,y
INT/WFC 2008-08-18 54696.2 120 i′ (50)
FTN/EA01,EM01 2008-08-18 54696.5 200 B,V,R,i′,y
INT/WFC 2008-08-19 54697.1 120 i′ (48)
FTN/EA01 2008-08-22 54700.5 200 i′ (19)∗

FTN/EM01 2008-08-24 54702.6 200 B,V,R,i′

FTN/EM01 2008-08-25 54703.6 200 R,i′

FTN/EM01 2008-08-28 54706.5 200 B,V,R,i′,y
Swift/UVOT 2008-08-29 54707.9 1484 B∗

FTN/EM01 2008-08-30 54708.5 200 i′

FTN/EM01 2008-08-31 54709.5 200 i′

FTN/EM01 2008-09-04 54713.5 200 i′

FTN/EM01 2008-09-06 54715.5 200 i′

FTN/EM01 2008-09-13 54722.5 200 i′

FTN/EM01 2008-09-18 54727.5 200 i′

Swift/UVOT 2008-09-20 54729.1 115 B∗, 715 UVW2∗

FTN/EM01 2008-09-20 54729.5 200 i′

PAIRITEL/2M† 2008-09-21 54730.3 188 J∗, 730 H∗,K∗

PAIRITEL/2M† 2008-09-23 54732.3 1107 J∗,H∗,K∗

FTN/EM01 2008-09-23 54732.6 200 V,i′ (2), 200 R
FTN/EA01,EM01 2008-09-24 54733.6 200 V,R,i′

PAIRITEL/2M† 2008-09-25 54734.3 259 J∗,H∗,K∗

FTN/EA01,EM01 2008-09-25 54734.5 200 i′ (44)
FTN/EA01,EM01 2008-09-27 54736.5 200 R,i′ (2),B,V
FTN/EA01,EM01 2008-09-28 54737.5 200 B,V,R,i′

FTN/EM01 2008-09-29 54738.6 200 i′ (22)
PAIRITEL/2M† 2008-10-01 54740.3 1601 J∗,H∗,K∗

FTN/EM01 2008-10-04 54743.6 200 B,V,R,i′

PAIRITEL/2M† 2008-10-06 54745.2 47 J∗,1224 H∗

FTN/EM01 2008-10-19 54758.5 200 i′

FTN/EM01 2008-10-20 54759.5 200 R,i′

FTN/EM01 2008-10-27 54766.4 200 i′

FTN/EM01 2008-11-03 54773.5 200 i′ (10)∗

FTN/EM01 2008-11-06 54776.5 200 i′

MJD = Modified Julian Day. ∗combined (aligned and stacked) to pro-
duce one image; †2MASS Survey cam. Numbers in parentheses denote
multiple exposures, e.g. 120 r′,i′ (10) is 10 exposures of 120 seconds
in each of r′ and i′. For details of telescopes, cameras and filters, see
respective sections of text, 2.1.1, 2.1.2, 2.1.3 and 2.1.5.

∼ 0.01 mag, indicating the conditions were photometric on all
three dates. Magnitude errors were estimated from the (night-to-
night) range of measured magnitudes of the two field stars and
measured differences in the relative magnitudes of the stars in
the PG 0231+051 field.

For the i′-band flux calibration, the field centred on RA
23:48:20, dec +00:57:18 (J2000.0) was observed 9 times
on 2008 September 27, at airmasses from 1.58 – 2.04.
Instrumental magnitudes were measured for the star SDSS
J234817.22+005557.2 and its values compared with that given
in the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6).
Comparisons were made between this star and others in the
field to ensure that it was non-variable and that conditions re-
mained photometric. Having calculated the change in offset (be-
tween instrumental and known magnitudes) with airmass, and

Fig. 2. FT North finder chart (SDSS-i′) for IGR J00291+5934
from the 2008 outburst. North is up and East is to the left. Image
was taken on 2008 September 20, exposure 200 seconds, image
size is 1′× 1′. The magnitude of the target in the image is i′ =
18.45 ± 0.07.

Table 2. Optical and NIR magnitudes of the two comparison
stars in the 00291+59 field used for flux calibration.

Star 1 2 Reference
RA 00h29m05.38s 00h29m05.3s
Dec +59d34m32.17s +59d34m20.9s
B 17.03 ± 0.04 16.51 ± 0.04 FTN; this paper
V 16.02 ± 0.02 15.60 ± 0.02 FTN; this paper
r′ 15.41 ± 0.01 15.07 ± 0.01 Torres et al. 2008a
R 15.39 ± 0.05 15.07 ± 0.05 FTN; this paper
i′ 15.46 ± 0.02 15.22 ± 0.02 FTN; this paper
y 14.81 ± 0.14 14.72 ± 0.13 FTN; this paper
J 13.80 ± 0.02 13.75 ± 0.02 2MASS
H 13.39 ± 0.03 13.29 ± 0.03 2MASS
K 13.24 ± 0.03 13.24 ± 0.03 2MASS

2MASS is the Two Micron All Sky Survey.

accounting for the difference in exposure times between this and
the target field, we were able to derive magnitudes for stars 1
and 2 as shown in Table 2. The uncertainties include the in-
strumental uncertainties given by IRAF for stars 1, 2 and SDSS
J234817.22+005557.2, summed in quadrature with the value
quoted for SDSS J234817.22+005557.2 in SDSS DR6.

Spectroscopic standards were required for the y-band cali-
bration, since magnitudes in this Pan-STARRS y filter (which
has an effective wavelength of 1.004 µm) are not typically
known for photometric standard stars. The spectroscopic stan-
dards BD+28 4211 and Feige 110 (Oke 1990) were both used
on October 27 (4 and 5 exposures, respectively) and October
31 (one exposure of each). Both standards have smooth spec-
tra with known AB magnitudes in steps of 2 Å. Using the same
method as for the i′-band, we estimated the y-band magnitudes
of the two 00291+59 field stars. The uncertainties incorporate
the small differences in measurements between the two dates.
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Table 3. Swift UVOT optical/UV magnitudes and 3σ upper lim-
its of 00291+59.

Date MJD magnitudes
2008-08-15 54693.7 UVW2 = 19.70 ± 0.11
2008-08-21 54699.9 B > 20.57; UVW2 > 20.40
2008-08-23 54701.9 UVW2 > 20.13
2008-08-27 54705.6 V > 18.63; B > 20.71; U > 20.31

UVW1 > 20.49; UVM2 > 20.36
UVW2 > 20.98

2008-08-29 54707.9 B = 21.13 ± 0.19
2008-08-30 54708.6 UVW2 > 21.48
2008-09-04 54713.5 UVW1 > 21.44
2008-09-20 54729.1 B = 19.22 ± 0.16; UVW1 > 18.62

UVW2 = 20.11 ± 0.21
2008-10-23 54762.9 UVM2 > 21.41

Table 4. PAIRITEL NIR magnitudes and upper limits of
00291+59.

Date MJD J H K
2008-09-21 54730.3 16.65 ± 0.13 16.13 ± 0.13 15.85 ± 0.15
2008-09-23 54732.3 16.37 ± 0.12 15.67 ± 0.11 15.42 ± 0.13
2008-09-25 54734.3 16.64 ± 0.12 16.12 ± 0.12 15.91 ± 0.17
2008-10-01 54740.3 17.26 ± 0.17 16.60 ± 0.15 16.42 ± 0.19
2008-10-06 54745.2 18.56 ± 0.64 18.52 ± 0.60 > 17.09
2008-10-07 54746.2 > 17.30 > 16.90 > 17.60
2008-10-08 54747.2 > 17.39 > 16.79 > 17.49
2008-10-13 54752.2 > 17.33 > 16.79 > 17.40

2.1.2. Swift UVOT

The Swift UVOT observed 00291+59 on nine dates in 2008.
Four detections (at 5σ) of the source were made during the
2008 outburst (see Tables 1 and 3); two in B-band and two in
UVW2, which has an effective wavelength of 1928 Å. Individual
images were combined and magnitudes and upper limits were
derived using the standard Swift UVOT routines provided by
NASA’s High Energy Astrophysics Science Archive Research
Center (HEASARC). Apertures of 3′′were used centred on the
known coordinates of 00291+59. As a confirmation, we mea-
sured the B magnitude of field star 1 to be consistent with that
measured by FTN (see Table 2) to an accuracy of < 0.1 mag. On
some dates, > 10 images were acquired in the same filter, but the
counts of 00291+59 were never high enough to produce a light
curve. In Table 3 we list the UVOT magnitudes when detected
and upper limits for non-detections.

2.1.3. INT

Observations of 00291+59 were taken using the WFC at the
2.5 metre Isaac Newton Telescope (INT) at Roque de los
Muchachos, La Palma, Spain, between 2008 August 15 and
19. The WFC has an image scale of 0.333 arcsecond pixel −1.
Observations were made using the Sloan r′ and i′ filters. A total
of 188 observations were taken in i′-band over the 5 nights, with
a further 92 taken in r′-band over the first 3 nights. A master bias
and flat-field were created and used to reduce the raw images.
Photometry was performed in the same way as for the FTN data
(Section 2.1.1) with the same comparison stars, apertures and
annuli (in pixels). Flux calibration for i′-band was performed as
for the FTN i′-band data; for r′-band, the calibration values of
Torres et al. (2008a) were used (see Table 2).

2.1.4. Keck Spectrum

A single spectrum was acquired on 2008 Aug 28 using the Low
Resolution Imaging Spectrometer (LRIS) attached to the Keck 1
telescope. 00291+59 was observed using a 1.′′0 wide slit with the
CCDs on each spectrograph arm unbinned. The exposure time
for both blue and red arms was 900 seconds. The red arm was
used with the 400/8500 grating. The useful wavelength range
covered the 5470 – 9240 Å interval with a dispersion of 1.86 Å
per pixel and a spectral resolution of about 6 Å FWHM. The blue
arm was used with the 600/4000 grism to yield an useful wave-
length coverage of 3890 – 5600 Å with a dispersion of 0.62 Å
per pixel. The blue arm data were too noisy to obtain a meaning-
ful spectrum. Conditions were not considered to be photometric;
seeing was variable from 0.′′7 – 1.′′0. The spectrum was extracted
and reduced using KPNOSLIT in IRAF with 1′′slit and using the
standard star, Feige 110. We use the Starlink page DIPSO to mea-
sure equivalent widths.

2.1.5. PAIRITEL

NIR photometry was obtained with the 1.3m Peters Automated
Infrared Imaging Telescope (PAIRITEL) at Fred Lawrence
Whipple Observatory (FLWO) (Bloom et al. 2006) which im-
ages simultaneously a 8.′5 × 8.′5 field of view in the J, H and Ks
photometric bands. The observations consisted of a large num-
ber of dithered 7.8 s exposures on source. The dithered expo-
sures were first bias and flat-field corrected to be mosaiced to-
gether for each individual visit (see e.g. Blake et al. 2005). The
observations were made on 8 nights between 2008 September 21
and October 13, although observations after October 6 yielded
non-detections. Photometry was performed using the same com-
parison stars and method as previously described, however with
apertures of radius 3 pixels to compensate for the greater im-
age scale. The J, H, K 2MASS magnitudes of the two field stars
(Table 2) were used to calibrate the flux of 00291+59. The mag-
nitudes and upper limits are given in Table 4.

2.2. X-ray Data

We use pointed observations from the Swift XRT, XMM-
Newton and RXTE PCA and augment these with publicly avail-
able data from Swift Burst Alert Telescope (BAT) and RXTE
ASM. We obtain a light curve from the RXTE PCA data (14
detections in August and 13 in September). We list the X-ray
observations in Table 5.

2.2.1. Swift XRT

We analysed all Swift XRT observations of the field taken be-
tween 2008 August and October. We performed the standard
screening on all observations using the latest ‘xrtpipeline’ (v.
0.12.3). In each of the two observations where 00291+59 was
detected we extracted a source spectrum. In both cases, the XRT
was in photon counting (PC) mode and the observations suffered
from pile up. To correct for this, following the Swift Science
Data Centre (SSDC) recommendations 2, we used an annular
extraction region centred on 00291+59’s position with inner
radii of ∼ 20′′ and ∼ 10′′ for observations 00031253001 and
00031253005, respectively.

We thereby excluded the core of the PSF from our analy-
sis, resulting in encircled energy fractions at the inner radius

2 http://www.swift.ac.uk/pileup.shtml



6 F. Lewis et al.: The 2008 Outburst of IGR J00291+5934

 16

 17

 18

 19

 20

 21

 22

 23

M
ag

ni
tu

de

ou
tb

ur
st

 d
et

ec
te

d

re
-b

ri
gh

te
ni

ng
 d

et
ec

te
d

Keck
spectrum

Swift UVOT UVW2-band
Swift UVOT B-band

FTN B-band
FTN V-band
INT r’-band
FTN R-band

FTN and INT i’-band
FTN y-band

R-band quiescence
PAIRITEL J-band

PAIRITEL H-band
PAIRITEL K-band

Keck spectrum

-14

-13

-12

-11

-10

-9

-8

 54680  54690  54700  54710  54720  54730  54740  54750  54760  54770  54780

lo
g 

(X
-r

ay
 f

lu
x;

 e
rg

 c
m

-2
 s

-1
)

MJD

1 Aug 2008 1 Sep 1 Oct 1 Nov

Radio
non-
detection

Radio 4.9 GHz 3σ upper limit of 0.16 mJy
2-10 keV (Swift XRT)

2-10 keV (XMM Newton)
2-10 keV (RXTE ASM)
2-16 keV (RXTE PCA)
15-50 keV (Swift BAT)

Fig. 3. Upper: Optical, UV and NIR data from the 2008 outburst. Lower: X-ray and radio data from the same period. We also plot
earlier FTN i′-band non-detections and the date of the Keck spectrum in the upper panel and the radio and Swift XRT non-detections
in the lower panel.

of ∼ 50% and ∼ 40% for 00031253001 and 00031253005,
respectively. The annuli’s outer radius was fixed at ∼ 120′′.
Background spectra were accumulated far from the source
using regions of the same size. We created exposure maps
and ancilliary files using ‘xrtexpomap’ (v.0.2.5) and ‘xrtmkarf’
(v.0.5.6), respectively, thereby accounting for the energy lost
in the PSF core. We grouped the spectra to have a min-
imum of 20 counts per energy bin and fitted them within
Xspec (v. 11.3.2ag) using the latest available response matrices
(swxpc0to12s6 20010101v011.rmf) and the 0.5 – 10 keV en-
ergy range. The spectra were satisfactorily fitted (reduced χ2 of
0.9 for 77 and 33 degrees of freedom) with a simple absorbed
power law model. The measured fluxes, absorption and power
law parameters are given in Table 6, along with 3σ flux upper
limits when the source was not detected.

2.2.2. XMM-Newton

We analysed the X-ray Multi-Mirror satellite (XMM-Newton)
observation of 00291+59 taken on MJD 54703 (2008 August
25), which lasted approximately 33 kiloseconds. 00291+59 was
clearly detected in both the MOS1 and MOS2 detectors, which
operated in large window (medium filter) mode, at an average
net rate of ∼ 0.01 counts second−1. We excluded contaminating
flares from the observation, defined as segments with a count

rate above 10 keV higher than 1 count second−1. We then de-
fined source and background circular regions, both with a radius
of 30′′. We took into account the extraction area using the tool
‘backscale’ and created response matrices and ancilliary files
with ‘rmfgen’ and ‘arfgen’, respectively. We grouped the chan-
nels in the resulting spectra in order to have a minimum of 15
counts per energy bin, and fitted them within Xspec using the
0.5 – 10 keV energy range, using an absorbed power law model.
We note that, as with the majority of the Swift XRT observations
(see Section 2.1.1), the low count rates from the source preclude
us from studying variability in detail within the observation win-
dow, although we note that the level of variability is consistent
with the source being at a constant flux.

2.2.3. RXTE PCA

The PCA was used to monitor the X-ray flux during both out-
burst peaks (Chakrabarty et al. 2008; Galloway et al. 2008). We
use the 16 sec time resolution Standard 2 mode data to calcu-
late the X-ray flux in the 2 – 16 keV energy band. The energy-
channel conversion is done by using the pca e2c e05v02 table
provided by the RXTE team. The deadtime was corrected and
the number of background events within our energy range and
time interval was estimated using the FTOOL ‘pcabackest’, fol-
lowing the standard procedure suggested by the RXTE man-
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Table 5. X-ray observations of 00291+59 used in this work.

Telescope / Detector UT Date MJD Energy range (keV) Exposure times (ksec) Observation type
RXTE/PCA 2008-08-13 54691.9 2–16 1.0 Pointed
RXTE/ASM 2008-08-14 54692.3 1.5–12 – Monitoring 3σ detection
RXTE/PCA 2008-08-14 54692.9 2–16 3.8 Pointed
RXTE/PCA 2008-08-15 54693.3 2–16 0.9 Pointed
Swift/XRT 2008-08-15 54693.6 0.5–10 1.9 Pointed (PC mode)
RXTE/ASM 2008-08-15 54693.7 1.5–12 – Monitoring 3σ detection
RXTE/ASM 2008-08-16 54694.4 1.5–12 – Monitoring 3σ detection
RXTE/PCA 2008-08-16 54694.5 2–16 28.1 5 × Pointed
RXTE/PCA 2008-08-17 54695.8 2–16 5.9 2 × Pointed
RXTE/PCA 2008-08-18 54696.8 2–16 2.7 Pointed
RXTE/PCA 2008-08-19 54697.7 2–16 7.4 2 × Pointed
RXTE/PCA 2008-08-20 54698.3 2–16 2.2 Pointed
Swift/XRT 2008-08-21 54699.9 0.5–10 1.2 Pointed (WT mode)
Swift/XRT 2008-08-23 54701.8 0.5–10 0.4 Pointed (WT mode)
XMM/MOS 2008-08-25 54703.4 0.5–10 33 Pointed
Swift/XRT 2008-08-27 54705.4 0.5–10 2.2 Pointed (PC mode)
Swift/XRT 2008-08-29 54707.9 0.5–10 4.9 Pointed (WT mode)
Swift/XRT 2008-09-20 54729.0 0.5–10 1.0 Pointed (PC mode)
RXTE/PCA 2008-09-21 54730.5 2–16 0.9 Pointed
RXTE/PCA 2008-09-23 54732.4 2–16 1.2 Pointed
Swift/BAT 2008-09-24 54733.0 15–50 – Monitoring 3σ detection
RXTE/PCA 2008-09-24 54733.7 2–16 2.0 2 × Pointed
Swift/BAT 2008-09-25 54734.0 15–50 – Monitoring 3σ detection
RXTE/PCA 2008-09-25 54734.6 2–16 11.2 Pointed
Swift/BAT 2008-09-26 54735.0 15–50 – Monitoring 3σ detection
RXTE/PCA 2008-09-26 54735.9 2–16 2.5 Pointed
Swift/BAT 2008-09-27 54736.0 15–50 – Monitoring 3σ detection
RXTE/PCA 2008-09-27 54736.7 2–16 4.9 2 × Pointed
Swift/BAT 2008-09-28 54737.0 15–50 – Monitoring 3σ detection
RXTE/ASM 2008-09-28 54737.5 1.5–12 – Monitoring 3σ detection
RXTE/PCA 2008-09-30 54739.8 2–16 4.6 3 × Pointed
RXTE/PCA 2008-10-01 54740.1 2–16 0.7 Pointed
RXTE/PCA 2008-10-03 54742.8 2–16 10.2 Pointed
Swift/XRT 2008-10-23 54762.8 0.5–10 2.0 Pointed (PC mode)

ual 3. We reject all data with a measured flux (2 – 16 keV) of
F < 8 × 10−11 erg cm−2 s−1 because flux from background con-
tamination was likely significant. This is most evident from an
apparent PCA detection on MJD 54700 of F ∼ 6.1 × 10−11

erg cm−2 s−1 whereas a Swift XRT pointing fours hours ear-
lier did not detect the source, with an upper limit of 4.7 × 10−12

erg cm−2 s−1. The nearby intermediate polar V709 Cas is in the
PCA’s field of view, and contributes some contaminating flux
(see Linares et al. 2007) however the flux level of this source is
lower than the above flux limit, and therefore its contribution is
minimal.

2.2.4. Publicly Available Data From X-ray Monitors

Five 3σ detections were also made by the Swift BAT instrument
(15 – 50 keV). All five detections were during the second peak,
in 2008 September; BAT did not detect the source during the first
outburst peak. We include these public data in our analysis. We
also include four 3σ detections from the public archive of the
RXTE ASM (1.5 – 12 keV); three from the first outburst peak
and one from the second. All RXTE ASM fluxes were converted
to unabsorbed (adopting nH = 4.64×1021 cm−2 from Torres et al.
2008a) 2 – 10 keV fluxes using the HEASARC tool WebPIMMS
to compare with the Swift XRT and XMM 2 – 10 keV data. A
power law index of 1.6 (as measured by Swift; see Table 6) was
adopted.

3 http://heasarc.gsfc.nasa.gov/docs/xte/recipes/pcabackest.html

2.3. WSRT Radio Data

00291+59 was observed with the Westerbork Synthesis Radio
Telescope on 2008 August 15 – 16 (Linares et al. 2008). The ob-
servation was made between ∼ 20:30 – 06:30 UT at the median
frequency of 4.9 GHz, with a total bandwidth of 160 MHz. The
primary calibrator used was 3C 286. The calibration and analysis
of the data were done using Miriad (Sault et al. 1995).

No object was detected at the position of the target reported
by Rupen et al. (2004). The 3σ upper limit to the flux density
(measured in the image plane) was 0.16 mJy.

3. Analysis of the 2008 Outburst

The multi-wavelength light curve of the 2008 outburst is shown
in Fig. 3. The source displays two separate periods of activ-
ity, which we describe as ‘peaks’ within the overall ‘outburst’
(Fig.1). We display the initial X-ray detections (MJD 54691) of
the outburst and its subsequent detection in the optical/infrared
(OIR) at MJD 54693. FTN observations from long-term mon-
itoring (Lewis et al. 2008a) had provided non-detections, most
recently on August 3 and 9 (i′ >20.40 and 21.39 respectively),
showing that the OIR brightened by at least 0.5 mag day−1. We
show a well-sampled UV–IR fade over the following 30 days ac-
companied by RXTE PCA and Swift XRT monitoring. For the
first three days, the X-ray had an approximately constant flux
(the optical flux also seemed approximately constant) before the
source faded, more rapidly in X-ray than in OIR. We present
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data from Swift XRT observations in Table 6. The XRT X-ray
spectra are hard, and can be fit with an absorbed power law with
a photon index typical of AMXPs in outburst. Just 11 days af-
ter the first X-ray detection with Swift XRT, an XMM-Newton
detection showed it had drastically faded. From XMM simulta-
neous fitting of MOS 1 and 2 spectra using the ‘wabs*powerlaw’
model, we derive an unabsorbed 2 – 10 keV flux of 1.4 ± 0.3 ×
10−14 erg cm−2 s−1, i.e. more than four orders of magnitude lower
than the outburst peak fluxes. Further details of the XMM spec-
trum will be reported in Linares et al. (in preparation). We note
that long after the source was no longer detectable with Swift,
the source remained visible in the OIR (i′-band), eventually ap-
proaching its quiescent value at ∼MJD 54722 (31 days after the
outburst was first detected).

A second ‘peak’ was detected; this time, first in optical
(Lewis et al. 2008b), with the source re-brightening by 4 – 5
magnitudes to ∼ 18.3 (MJD 54727) in i′-band, very similar to
the magnitude of the first peak in August. It is clear that the 2008
August and September peaks differ, with the August peak fading
rapidly and the September peak remaining in a bright ‘plateau’
at near maximum luminosity for ∼ 10 days. This second peak
lasted ∼ 70% longer than its predecessor (i.e.∼ 50 days as op-
posed to ∼ 30 days). Whereas the i′-band light curve appeared
fairly constant during the September plateau, the X-ray and NIR

light curves brightened then faded slightly, before eventually all
bands faded towards quiescence. In the NIR, the 2004 outburst
was estimated to reach a maximum of K . 16 (Steeghs et al.
2004) from a quiescent K ∼ 19; in 2008, we measure (during
the second peak) K ∼ 15.5. This is slightly at odds with the
evidence in the R-band which suggests the 2008 outburst was
slightly fainter than that of 2004, however we note that the 2004
K-band magnitude was from observations 4 days after the initial
detection.

From Fig. 3 and Table 5, we can see that the RXTE ASM
(2 – 10 keV) detected the first peak on three occasions, and the
second peak only once. In contrast, Swift BAT (15 – 50 keV)
did not detect the first peak, and yet detected the second peak
on four occasions. However, we note that the respective sensi-
tivities of the ASM and BAT are variable in time, and indeed
we see that the photon indices as measured by Swift XRT were
consistent with being the same at the start of both peaks (see
Table 6). In Fig. 4, we plot data for the 2004 outburst alongside
the two separate peaks of the 2008 outburst, for the optical (up-
per panel) and X-ray (lower panel) fades. The 2004 outburst was
measured at its maximum at R ∼ 17.4 (Fox & Kulkarni 2004),
as compared with the 2008 outburst, which reached values of R
∼ 17.9. In the optical, there is a rapid fade between days ∼ 12 –
20 after all three peaks and the same is evident in X-ray up to at
least day 16. It is remarkable how identical the three X-ray light
curve decays are, given that the initial phases (before day 10 in
Fig. 4) are so different. The light curves are overlaid such that
these fades are aligned (the same shifts are applied in X-ray and
optical). Within the fade from the first peak, we see possible ev-
idence of optical reflares of ∼ 1 magnitude (∼ day 20 – 30, Fig.4
). This post-peak flaring activity has only been observed from
one other AMXP; SAX J1808.4−3658 in its X-ray light curve,
where the system flares by several orders of magnitude weeks
after the initial outburst (Patruno et al. 2009).

The 2008 August fade from peak to quiescence (in i′-band) is
measured as ∼ 4.6 magnitudes over a period of 29 days giving an
average fade of 0.16 ± 0.02 magnitudes day−1. The initial fade
(from day 2 to day 5 of the outburst) is steeper with a fitted value
of 0.45 ± 0.01 magnitudes day−1. The rise to the second peak
over ≤ 5 days was measured as ≥ 0.72 magnitudes day−1. This
second peak remained in a ‘plateau’ for ∼ 10 days, before fading
to quiescence at 0.21 ± 0.08 magnitudes day−1 over the follow-
ing 16 – 28 days (the range being due to the under-sampling of
this part of the light curve).

The recurrence of the second peak to a similar maximum
flux within ∼ 35 – 40 days is unique behaviour for an AMXP,
although there are some similarities to the persistent source,
HETE J1900.1−2455, which has been in outburst since its dis-
covery in 2005 (Elebert et al. 2008). Secondary maxima have
been noted previously for other LMXBs (e.g. Chen et al. 1997)
who suggested an increase in accretion rate due to re-processing
of X-rays from the initial outburst heating the disc and/or donor
star. Alternatively, Truss et al. (2002) and Truss (2005) show that
tidal instabilities in the disc could cause multiple outburst peaks,
but that this phenomenon is not as relevant for systems with large
mass ratios such as 00291+51, for which the neutron star is at
least a factor of ∼ 10 more massive than its companion. A fur-
ther scenario is that of propagation of cooling/heating waves in
a disc that may cause additional maxima in light curves (e.g.
Lasota 2001). We note that the smaller scale of AMXPs (shorter
orbital periods and smaller discs) and their shorter duty cycles
(as opposed to ‘classical’ LMXBs) means that we might expect
their discs to both empty and re-fill more quickly, explaining
their more rapid duty cycle. However, the previous outburst of
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Table 6. Swift XRT X-ray fluxes.

DATE MODE EXPOSURE FLUX nH PLind PLnorm

(ksec) (erg cm−2 s−1)∗ (1022 cm−2) (keV−1 cm −2 s−1) at 1 keV
August 15 PC 1.9 3.1 ± 0.1 × 10−10 0.6 ± 0.1 1.7 ± 0.1 8.1 ± 0.8 × 10−2

August 21 WT 1.2 <4.7 × 10−12 – – –
August 23 WT 0.4 <5.5 × 10−12 – – –
August 27 PC 2.2 <2.8 × 10−13 – – –
August 29 WT 4.9 <2.1 × 10−12 – – –
September 20 PC 1.0 1.3 ± 0.1 × 10−10 0.5 ± 0.1 1.6 ± 0.1 2.7 ± 0.4 × 10−2

October 23 PC 2.0 <5.7 × 10−14 – – –
∗Unabsorbed flux in the 2 – 10keV band. The errors on the fluxes and spectral parameters are 1σ. The flux upper limits are 3σ (using the
prescription for low number statistics given by Gehrels 1986) and assume a power law spectrum of photon index 1.5 with nH = 0.5 × 1022 cm−2.
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00291+59 was in fact brighter (in both X-rays and optical) but
did not display this double-peaked behaviour.

4. Optical Variability – orbital, long-term and

short-term

We have monitored 00291+59 since 2007 August and prior to
2008 mid-August, had not detected the source with FTN in
i′-band, most notably immediately preceding the outburst on
August 3 and 9. In 2008 August and September, 00291+59
reached R ∼ 18 on two separate occasions. For comparison,
its magnitude near the time of discovery in 2004 was R ∼ 17.
Between the two 2008 peaks, the data are consistent with the
source fading to quiescence in i′-band (within error bars); the
quiescent level in 2004 being I ∼ 22.4 (D’Avanzo et al. 2007;
Jonker et al. 2008).

During the August peak, we collected data from the INT in
both r′ and i′-bands (see Fig. 5), over timespans of ∼ 3 – 4 hours
(August 18 – 19) and runs of ∼ 30 – 60 minutes per filter (August
15 – 17 inclusive). We also observed 00291+59 intensively in i′-
band around the September peak for ∼ 4 hours and ∼ 3 hours
respectively with FTN. Whilst we note fluctuations of ∼ 0.05
magnitudes from one observation to the next (with a cadence of
∼ 240 seconds), we saw no evidence on any occasion for any
modulation associated with the orbital, or any other period.

This lack of evidence of orbital modulation is likely the re-
sult of the light from the accretion disc swamping much of the

lower amplitude orbital variability, and had been noted in the
previous outburst (Bikmaev et al. 2005; Reynolds et al. 2006;
Torres et al. 2008a). In quiescence, optical observations have
twice detected sinusoidal orbital modulation (D’Avanzo et al.
2007; Jonker et al. 2008) consistent with emission from an ir-
radiated companion star; this is similar to the example of the
AMXP, XTE J1814−338 (D’Avanzo et al. 2009), but opposed to
SAX J1808.4−3658 which displays orbital modulation in both
outburst and quiescence (Elebert et al. 2009). From the lower
panel of Fig. 5, we see that the amplitude of this modulation
seems to be greater as the system fades, even though these three
datasets are taken on consecutive nights.

In Table 7, we show the level of variability of 00291+59 and
a nearby faint field star. Table 7 demonstrates that the variabil-
ity in each of the INT runs increases as the system fades. We
note that we see significant variability in i′-band (3σ) on the
first night only (in 2008 August) and that we see less significant
variability (2σ) on 3 of the other 4 i′-band observing runs. For
the three r′-band runs in 2008 August and both i′ band runs in
2008 September, we detect variability at less than 2σ. Since the
2008 outburst, we have continued to monitor 00291+59, but to
date (March 2010), have seen no further activity in the system.

5. Spectral Analysis

We present a new Keck 1 spectrum (Fig. 6, taken in 2008
August) taken when the source was at R = 21.1 (i.e. when the
system was ∼ 3 magnitudes fainter than at its maximum, but
still 2 magnitudes above quiescence). Since the blue arm suf-
fered from poor signal-to-noise, we display the red arm spectrum
only, meaning that we are unable to compare our spectrum with
previous detections of Hβ, Hγ or Hδ or the He II feature at 4686
Å (Torres et al. 2008a). We note a prominent double-peaked Hα
feature at 6563 Å with a measured equivalent width (EW) of 29.2
± 1.7 Å and FWHM ∼ 35 Å (1600 km s−1), indicative of a ro-
tating accretion disc (Frank et al. 2002). The peak-to-peak sepa-
ration is 18 Å (∼ 820 km s−1) and we see the blue-shifted peak
being ∼ 48% stronger than that of the redshifted peak. Double-
peaked Hα emission has previously been seen in this source
Torres et al. (2008a), and also in the outbursting AMXP, XTE
J1814−338 (Steeghs 2003). Using our peak-to-peak value, and
following the method in Section 10.2 of Torres et al. (2008a),
we derive an inclination of ∼ 35◦, which is consistent with their
measurement of 27◦ ± 5◦.

We do not detect a He I feature at 5875 Å which Torres et al.
(2008a) detected weakly, nor do we see a He I feature at 6678
Å which had been previously noted in one single 300 second
spectrum (Fillipenko et al. 2004). At 7065 Å , we detect a line
with low signal-to-noise, which is likely the He I line as reported
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Table 7. Variability of 00291+59 and a faint field star.

Date —– Field star —– ————————– 00291+59 ————————
mean mag 1σ range mean mag 1σ range Significance of variability Variability level1

15 Aug i’ = 19.127 0.014 i’ = 18.016 0.043 3.2 σ 43 ± 14
r’ = 19.172 0.029 r’ = 17.833 0.041 1.4 σ < 130

16 Aug i’ = 19.121 0.028 i’ = 18.043 0.045 1.6 σ < 130
r’ = 19.188 0.042 r’ = 17.954 0.048 1.2 σ < 170

17 Aug i’ = 19.094 0.038 i’ = 18.447 0.086 2.3 σ 86 ± 38
r’ = 19.144 0.070 r’ = 18.296 0.057 0.8 σ < 270

18 Aug i’ = 19.109 0.033 i’ = 18.935 0.079 2.4 σ 79 ± 33
19 Aug i’ = 19.118 0.032 i’ = 19.378 0.077 2.4 σ 77 ± 32
25 Sep i’ = 19.139 0.023 i’ = 18.206 0.026 1.0 σ < 110
29 Sep i’ = 19.140 0.030 i’ = 18.543 0.033 1.1 σ < 120

1The level of variability in milli-mag (when it is detected at the > 2 σ level), or 3 σ upper limit.
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2

Fig. 6. Red arm spectrum from Keck 1, DIB denotes Diffuse
Interstellar Bands. For clarity, we mark the wavelengths of He
I lines at 6678 Å and 7065 Å (the latter being a marginal de-
tection in this spectrum). Insert: zoom in on double-peaked Hα
emission line profile.

in Torres et al. (2008a) from the spectrum in Reynolds et al.
(2006). We are also unable to detect the interstellar Na D doublet
(5889 Å, 5895 Å) but do detect a Diffuse Interstellar Band (DIB)
at 6284 Å (EW = 1.47 ± 0.09 Å) as in Torres et al. (2008a) as
well as telluric features at 6864 Å and 7600 Å.

Table 8 summarises the lines measured in all the published
optical spectra of this source. From it, we can see that the Hα
EW is larger at lower optical and X-ray luminosities. We note
that this relationship between Hα EW and X-ray luminosity is
consistent with the previously found trend for neutron star and
black hole XRBs (Fender et al. 2009).

6. Spectral Energy Distributions (SEDs)

In Fig. 7 we present the de-reddened (see Section 2.1) SEDs
compiled from the quasi-simultaneous NIR, optical and UV data
from 2008 August (top left panel) and September (top right).

Table 8. Spectra Equivalent Widths (Å).

Telescope WHT Keck I Keck I
Instrument ISIS LRIS LRIS

Date 2004-12-05 2004-12-12 2008-08-28
Hδ 4102 1.2±0.4 – –
Hγ 4341 1.7±0.3 – –

He II 4686 2.9±0.2 0.6 –
Hβ 4861 2.4±0.3 5.4 –
Hα 6563 6.5±0.4 9.6 29.2±1.7
He I 6678 – 1.0 –
Reference 1 2 3

R Mag 17.40 18.61 21.10
LX(erg s−1) 8.6 × 1035 1.7 × 1035 <2.6 × 1032

1 = Torres et al. 2008a, 2 = Reynolds et al. 2006 3 = this paper.
R-band magnitudes and X-ray luminosities are taken within one day of
the optical spectra (Torres et al. 2008a, this paper). X-ray luminosities
are from RXTE/PCA are based on a distance of 2.8 kpc as adopted in

Section 10.3 of Torres et al. (2008a).

These are some of the most complete SEDs ever compiled in this
frequency range for neutron star LMXBs (up to eight flux den-
sities measured, spanning one order of magnitude in frequency).
We have created SEDs whenever the data were acquired within
the same day. The errors in frequency (x-axis) represent the fre-
quency ranges of the filters. For each data point the error in the
flux density (y-axis) is derived from the error in the magnitude.
We adopt AV = 2.5; if the extinction is incorrect by 0.3 mag
(see Section 2.1), this propagates into additional errors in intrin-
sic flux density which are indicated by the separate error bars
(crosses) shown across the top of the top right panel, noting that
bluer wavelengths are affected more than redder ones. The effect
is systematic; if the extinction is AV = 2.8 then the intrinsic flux
densities were underestimated by the amount indicated by these
error bars.

Taking into account these uncertainties, we see that there is
generally a blue optical–UV SED (α > 0, where Fν ∝ να), with
a separate NIR excess which dominates the y, J, H, K filters,
moreso at higher flux densities. The blue component can be suc-
cessfully modelled by a single-temperature blackbody of tem-
perature T ∼ 3 × 104 K in both the August and September peaks
(Fig. 7, bottom panels), which is what we might expect from
an illuminated or viscously heated accretion disc (e.g. Hynes
2005). We are likely sampling a region of the blackbody just red-
ward of the peak, blueward of the Rayleigh-Jeans tail. However,
the errors due to uncertainties in the extinction could signifi-
cantly change the slope of the SED, and hence the derived black-
body temperature. If the extinction was higher than the measured
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Fig. 7. Top row: UV, optical and NIR fluxes for the 2008 peaks. Bottom row: Single black-body plus jet contribution model plotted
against fluxes for data at each peak.

range of AV = 2.5 ± 0.3 in Torres et al. (2008a), the intrinsic disc
spectrum would be bluer than expected from a Rayleigh-Jeans
tail, hence confirming the upper limit of AV . 2.8.

On the initial fade in August, the SED appears less smooth
than for the September decline, in particular a bright y-band flux
density on August 28. This may be due to rapid variability, which
we do detect to be stronger in the August peak compared to the
September peak (see Section 4).

Our October 4 (MJD 54743) observations show that the
blackbody is fading, and can either be modelled (Fig. 8, right
panel) by a cooler disc of the same area or a hot, smaller disc
(implying a change in outer disc size or changes in a disc warp,
resulting in a smaller total disc area but at the same tempera-

ture; see e.g. Hynes et al. 2002). At lower flux densities later on
in the decline of the outburst (October 4,6), the SEDs can be
approximated by a blackbody of possibly lower temperature (T
∼ 2 − 3 × 104 K). On October 20 (MJD 54759), the source was
about one magnitude above its quiescent level in R-band, and at
this point, we cannot easily constrain the spectrum, although in
Fig.8 (right), we overplot a cooler blackbody of ∼ 6 × 103 K.

A NIR excess has been reported for almost all AMXPs in
outburst. This excess is most apparent near the outburst peak
and is always absent at lower luminosities (see Russell et al.
2007 and references therein). It has typically been attributed to
synchrotron emission, likely from the jets in the system (e.g.
Wang et al. 2001; Giles et al. 2005; Krauss et al. 2005). The NIR
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excess has sometimes been seen quasi-simultaneously with a ra-
dio detection; this was the case for 00291+59 in the 2004 out-
burst (Torres et al. 2008a).

Here, for the 2008 outburst we also identify a NIR excess
above the disc blackbody which seems to disappear later in the
outburst when the source fades towards quiescence. However,
the excess is not consistent with optically thin synchrotron emis-
sion, for which we would expect a red SED with α ∼ −0.7.
Instead, we see an excess which is also blue (α > 0), most ap-
parent by a fainter K-band flux density compared to that in H or
J. The uncertainties in the extinction cannot explain this fainter
K-band flux density. We therefore conclude that the NIR excess
in 2008 September is not due to optically thin synchrotron emis-
sion.

In the lower panels of Fig. 7 we attempt to model the NIR
excess from the outburst peaks in August and September by a
simple jet model. Jets in AMXPs usually have a slightly inverted
(α ∼ +0.2) radio-to-optical SED (Russell et al. 2007) from the
optically thick (self-absorbed) jet. We take this value of α for
the optically thick jet, and α = −0.7 for the optically thin jet. If
the break between optically thick and optically thin lies around
the H-band then the NIR–to–UV SED from September can be
explained by this jet (producing the NIR excess) and the black-
body (producing the blue optical–UV emission). Were the break
at a lower frequency than H-band, we would expect the K-band
to be brighter than observed since it would now be optically thin.
Equally, were the break at a higher frequency, then we would ex-
pect a smooth increase in flux density (from α ∼ 0 to α > 0) as
the optically thick jet spectrum joins the disc spectrum. Instead,
the low K-band flux density shows that this cannot be the case
(although, see below). Only a jet break around H-band can pro-
duce the NIR excess seen in the SED (on several dates), if we
assume the jet is responsible for this NIR excess. The measure-
ment of the break in the jet spectrum is independent of the spec-
tral indices of the jet spectrum’s optically thick and thin regimes.
Although the data are consistent with this simple model (it is

not a fit, but an approximation), this by no means shows that
the origin of the NIR excess is the jet. More sophisticated mod-
elling of the broadband data (e.g. Maitra et al. 2009) are required
to confirm whether the NIR excess is consistent or not with a
jet origin. Some models predict an ‘optical bump’ in the SED
of the synchrotron emission from the jet (Markoff et al. 2005;
Pe’er & Casella 2009) which could be consistent with these data.

In the left panel of Fig. 8 we demonstrate that the NIR excess
can also be modelled with a second blackbody component. The
fainter K-band flux density is more satisfactorily explained in
this case, but the blackbody must have a temperature T ∼ 4×103

K and have an area around 60 times that of the accretion disc.
The temperature is consistent with (the photosphere of) a low-
mass star but the size is not. If the higher temperature blackbody,
which dominates the optical, can be explained by the underlying
viscously heated disc, the NIR excess may be explained by ir-
radiation of the disc. However, the inferred temperature of this
blackbody (∼ 4 × 103 K) is far too cool for this to be the case.
Alternatively, part of the disc may produce optically thin emis-
sion, where the free-free emission has a flatter spectra than the
blackbody from the disc. We may expect a circumbinary disc
(e.g. Blundell et al. 2008) surrounding the system to have a tem-
perature and size of this order, but we would not expect a cir-
cumbinary disc to be transient; the quiescent NIR flux is ∼ two
orders of magnitude fainter than this excess. It could be illumi-
nated by the X-ray photons from the central source, but the NIR
excess varies more rapidly than the disc, and so seems unlikely.

Quasi-simultaneous, broadband radio–to–X-ray SEDs are
presented in Fig. 9. We include data from the 2004 outburst
when there were radio detections of the source, because although
the data have been published, the broadband SEDs have not.
Radio data are taken from Pooley (2004); Fender et al. (2004a);
Rupen et al. (2004) and NIR, optical and X-ray data are from
Torres et al. (2008a) and the RXTE ASM.

During the 2004 outburst, a radio counterpart was detected
on three dates (peaking at ∼ 1 mJy) and a blue optical/IR SED
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Fig. 9. Evolution of the SED of 00291+59. Left panel: Broadband SEDs from the 2004 outburst and both 2008 outburst peaks. Right
panel: Blackbody plus jet contribution shown to approximate data from left panel.

with an IR-excess was observed at the same time (Fig. 9, top left
panel; see also Torres et al. 2008a). The radio–to–optical SED
can be reproduced by the simple blackbody + jet model, adopt-
ing α ∼ +0.1 for the optically thick jet spectrum and a jet break
in the mid-IR. The temperature of the blackbody is similar to
that found near the peaks of the 2008 outburst, but no UV data
were acquired in 2004. Again, this is simply a demonstration
that a jet + disc model can satisfactorily reproduce the radio–to–
optical SED. We are not claiming this is the broadband spectrum
of the jet, or the precise temperature of the disc. For example, it
could be that the optically thick jet has a steeper spectral index
of α > +0.1 and the jet break occurs at lower frequencies. On the
other hand, the optically thick jet cannot have a spectral index of
α ∼ 0 if it is to explain the radio data and the IR-excess because
the latter component is too bright. It is unlikely that the jet model
could explain the X-ray data – using α = −0.7 for the optically
thin jet, this component is at least one order of magnitude fainter
than the observed X-ray flux. Only if α ∼ −0.4 for the optically
thin jet (which is shallower than typically expected for optically
thin synchrotron emission) could this component dominate the
X-ray flux. This is similar to the result obtained for the neutron
star LMXB 4U 0614+09, for which the synchrotron-emitting jet
likely contributes no more than ∼ 1% of the X-ray 2 – 10 keV
flux (Migliari et al. 2006, 2010).

In the lower six panels of Fig. 9 we present the radio–to–X-
ray SEDs of both declines of the 2008 outburst. The unabsorbed
X-ray spectra are provided by the Swift XRT (see Section 2.2.1).
The simple blackbody + jet models from close to the outburst

peaks are shown in the right hand panels. We again find that if the
IR-excess originates in the jet, the synchrotron jet is unlikely to
produce the majority of the X-ray emission. If the optically thin
jet is extrapolated from the IR-excess to X-ray with α = −0.7,
the jet could contribute up to ∼ 10% of the X-ray flux. In the
lower right panel of Fig.9, we show an alternative jet model, jet
(ii), in which the optically thick-thin jet break is at a higher fre-
quency (1015Hz) and the optically thin spectrum has an index of
α = 0.6. This jet is able to reproduce the X-ray power law (the
index being the same as that measured by Swift XRT; see Table
6), but struggles to reproduce the shape of the IR-excess and disc
blackbody as well as the first jet model (i) does. We stress that
we are unable to make a direct measurement of the synchrotron
jet contribution to the X-ray flux; we simply note that with these
data, it is possible to reproduce the IR-excess and X-ray power-
law with a simple jet model, and that more complex modelling
(e.g. Markoff et al. 2005) and probably more complete SEDs are
required to make any solid measurement. The radio upper limit
near the Aug 2008 outburst peak puts a solid constraint on the
radio–to–optical jet spectral index of α > +0.1, if the IR-excess
originates in the jet, which is consistent with the average value
for AMXPs of α ∼ +0.2 (see discussion above). In the third right
panel the second, cool blackbody approximating the IR-excess
in 2008 September is also shown.

At first glance it appears the radio jet is intrinsically fainter
in 2008 August compared with 2004 December. We investigate
this possibility in Fig. 10, in which we plot the radio flux density
against the quasi-simultaneous X-ray flux. We find that on the
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date of the radio observation in 2008 August, the X-ray flux (2 –
10 keV) is fainter by a factor ∼ 2 than on the three dates in 2004
on which a radio detection was made. In addition, of the three
dates when radio emission was detected, the brightest radio flux
was observed on the date of the brightest X-ray flux.

Fig. 10 suggests there may be a relation between radio
and X-ray fluxes for 00291+59. The slope of a correlation
(β, where Fradio ∝ FβX) is expected to be steeper for neu-
tron star XRBs compared to black hole XRBs (see Gallo et al.
2003 and references therein). This has been observed with
some exceptions (Migliari & Fender 2006; Tudose et al. 2009).
Migliari & Fender (2006) include data of 00291+59 in their
analysis but they do not include all the radio detections made in
2004 (or the 2008 upper limit). From the three radio detections,
a very steep correlation slope is inferred; β ∼ 3.5. If we neglect
the brightest radio detection at 1.1 mJy (see below), the slope
is consistent (within errors) with what may be expected (e.g.
Migliari & Fender 2006); β = 1.4 (for NS XRBs) or β = 0.7
(for BH XRBs). Equally, these slopes are consistent with our
non-detection at a lower X-ray flux than those observed in 2004.
However, from these data, the correlation slope is poorly con-
strained.

In black hole XRBs, a bright radio flare is often seen when
the source makes a transition to the soft X-ray state, possi-
bly due to a fast, discrete jet ejection slamming into slower
jet material launched previously (Fender et al. 2004b). Although
00291+59 remained in a hard state throughout its 2004 outburst
(Fender et al. 2004b), the 1.1 mJy radio measurement is a fac-
tor of three times brighter than the other radio detections (at
similar X-ray fluxes). This suggests a discrete jet flare could
have been responsible for the brightest detection (as opposed
to the supposedly steady, hard state jet). Evidence for ejec-
tions in hard states has been found in other XRB transients,
e.g. GS 1354−64 (Brocksopp et al. 2001), XTE J1118+480
(Brocksopp et al. 2010), H1743-322 (Jonker et al. 2010).

The upper limit of 0.16 mJy in 2008 August is consistent
with a positive radio–X-ray correlation in 00291+59.
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Fig. 10. Radio flux density against quasi-simultaneous (within
one day) X-ray flux for 2004 and 2008 outbursts. The filled cir-
cles represent the 2004 detections (Pooley 2004; Fender et al.
2004a; Rupen et al. 2004); the cross represents the 2008 non-
detection (this paper). The solid line (without ticks) shows
the power-law fit to all three 2004 detections. For comparison,
slopes of β = 0.7 and 1.4 as may be expected theoretically are
also shown.

7. Conclusions

We present a unique multi-wavelength dataset of the 2008
double-peaked outburst of the AMXP, IGR J00291+5934, from
radio to X-ray, with coverage of both outburst peaks (2008
August and September). We show that, optically, the September
fade is similar in shape to the previous 2004 outburst, however
we note a difference between the 2008 August and September
peaks in that the former exhibits a more rapid fade, while the
latter displays a distinct plateau phase. This plateau, at near max-
imum luminosity, lasted ∼ 10 days before the system faded over
a longer timescale than in August. The plateau was also evident
in the X-ray light curves; for comparison, the X-ray flux faded
by > 4 orders of magnitude in < 10 days during the first outburst
peak in August. From Fig. 4, we see that the morphology of the
X-ray fade in both peaks, and in 2004, are very similar. The re-
brightening of the system within a few weeks in 2008 is unique
within AMXPs, and at odds to this source’s previous outburst.

We see short-term variability in the optical of ∼ 0.05 mag-
nitudes within the outburst down to a timescale possible of ∼
240 seconds, but no periodicity, on the previously published or-
bital period. This suggests changes in the accretion flow (likely
caused by the irradiation of the disc) dominate over ellipsoidal
modulations due to the companion star when the source is in out-
burst. In addition, the optical variability during the September
plateau was of a smaller amplitude than the August peak, at sim-
ilar flux levels.

We study the light curve morphology and evolution, pre-
senting the first radio–X-ray Spectral Energy Distributions for
this source and the most detailed UV–IR SEDs for any outburst-
ing AMXP. In the optical, the SEDs contain a blue component,
which can be fitted by a blackbody, likely from the disc (at max-
imum luminosity, T ∼ 3 × 104 K) and a transient near-infrared
excess. This excess is consistent with a simple model of a syn-
chrotron jet (as seen in other outbursting AMXPs), however we
cannot exclude other potential origins such as the presence of
a second, cooler (T ∼ 3.7 × 103 K) transient blackbody of un-
certain origin. We display UV–IR SEDs for 12 dates during the
outburst, and find that the IR excess fades more rapidly than the
optical disc flux. Our optical spectrum shows the double-peaked
Hα profile of an accretion disc but we do not clearly see other
lines (e.g. He I, II) that were observed in 2004.

The lack of a radio detection prevents us drawing many con-
clusions about the long wavelength part of the SEDs. However,
our upper limit is consistent with an optically thick jet (with
α ∼ +0.2) between radio and NIR, as seen in other AMXPs.
Our radio–X-ray SEDs suggest that there is a break in the
H-band between an optically thick and optically thin jet. Our
simple modelling is also able to account for the radio–optical
SED from 2004 which also consists of a blue disc and a NIR-
excess (Torres et al. 2008a). Extending the optically thin jet from
infrared–X-ray suggests that the synchrotron jet could account
for up to ∼ 10% of the observed X-ray emission, although we
note that one synchrotron jet model is able to reproduce the ob-
served hard X-ray power law if the break in the jet spectrum is
at a higher frequency than the OIR SED data suggest.

The unusual nature of this double-peaked outburst has impli-
cations for the study of AMXPs in particular, and neutron star
X-ray transients in general. Not only is this source’s double-
peaked outburst intriguing, it is difficult to understand what
physical processes were different to cause the previous outburst
in 2004 to follow a more ‘traditional’ single-peaked morphol-
ogy. Observing such systems can place tighter constraints on
the range of duty cycles of neutron star XRB outbursts. For
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short period systems such as AMXPs, it allows us to study the
evolution of both the outer accretion disc and the inner syn-
chrotron jet, providing data for more accurate modelling of disc-
jet coupling in neutron star XRBs. This study illustrates the
importance of rapid, regular multi-wavelength monitoring of
AMXP outbursts, and of regular optical monitoring of X-ray bi-
naries in quiescence. As was the case with the second outburst
peak of IGR J00291+5934, new outbursts can often be detected
by such monitoring with 2-metre class telescopes such as the
Faulkes Telescopes and YALO/SMARTS (e.g. Jain et al. 2005;
Maitra & Bailyn 2007) before X-ray detection.
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