
The Double Points of Mathieu's
Differential Equation

By G. Blanch and D. S. Clemm

Abstract. Mathieu's differential equation, y" + (a — 2q cos 2x)y = 0, admits of
solutions of period ir or 2x for four countable sets of characteristic values, aiq),
which can be ordered as ariq), r = 0, 1, • • -. The power series expansions for the
ariq) converge up to the first double point for that order in the complex plane. [At
a double point, ar(g) = ar+2iq).] The present work furnishes the double points for
orders r up to and including 15. These double points are singular points, and the
usual methods of determining the characteristic values break down at a singular
point. However, it was possible to determine two smooth functions in which one
could interpolate for both q and aTiq) at the singular point. The method is quite
general and can be used in other problems as well. |

1. Introduction. Mathieu's differential equation

(1.0) y" + ia-2q cos 2x)y = 0
admits of four countable sets of characteristic values, ariq), corresponding to which
the solutions yix) are periodic, and of period tt or 27r. These four sets are associated
with solutions defined below.

(1.10) yiq, a2m, x) = J2 A2k cos 2kx ,    a = a2m(ç), m = 0, 1, • • • ,
ft-o

00

(1.11) yiq, a2m+i, x) = Y -¿Wi cos (2fc + l)x ,   a = a2m+iiq), m = 0,1, •■•
ft-0

00

(1.12) uiq, b2m, x) = X -os* sin 2kx ,    a = b2m, m = 1, 2, • • • ,
ft=i

00

(1.13) uiq, b2m+i, x) = X E2k+i sin (2fc + l)x ,   a = b2m+i, m = 0, 1, ■ • • .
ft-0

When q = 0, ariq) = bTiq) = r2, r = 0, 1, • • -, and the corresponding solutions
are yiq, r2, x) = cos rx, uiq, r2, x) — sin rx* If q 9e 0, the four sets of eigenvalues
are distinct, and there is only one periodic solution corresponding to a characteristic
value. The second, independent solution of (1.0), associated with the eigenvalue,
is not periodic.

If q is real and different from zero, it is known that the eigenvalues are all real
and simple. They can be ordered as follows:

a0 < bi < ai < b2, < • ■ ■ ,    q > 0

a0 < ai < bi < b2, <  ■ ■ • ,    q < 0 .

Received June 14, 1968.
* If r = 0, sin rx is a trivial solution; the odd solutions begin with r — 1.
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98 G.   BLANCH AND  D.   S.   CLEMM

If g is real, the sets {ariq)} and {briq)\ are characterized by (1.14) and (1.15)
below :

(1.14) The solutions yiq, ar, x), uiq, br, x) have r zeros in the interval 0 ^ x < it .

(1.15) As q —* 0, ariq) —> r2, bTiq) —» r2—valid in the complex g-plane .

Another important property is given in (1.2); it holds in the complex g-plane.

(1.2) a2m( —g) = a2m(g);   o2m(—g) = b2Aq) ;   a2m+ii~q) = b2m+iiq) .

Power-series expansions for the characteristic values, as functions of g, were
first developed by Mathieu [4]. An algorithm, suitable for computers, by means of
which one may obtain the successive coefficients of the power series has been given
in [6], The radii of convergence of these power series, however, remained largely
unknown since these depend on a knowledge of the double points (singular points)
in the complex plane. The present work supplies these singular points for orders
r ^ 15.

Mulholland and Goldstein [5] published the first multiple eigenvalue. They
found that for imaginary g, namely g = is, there is a singular point at s = 1.468 • • •
where a0(g) and a2(g) have a common value. [It can be shown that, aside from the
origin, double points can arise only between members of the same set; there can be
no double points connecting orders of different sets.] The value of a(g) at the singular
point, however, was obtained in [5] only in the order of magnitude. These authors
noted that a0 and a2 are real up to the singular point, and become complex conjugates
of each other after the singular point. They conjectured that if g is purely imaginary,
similar situations will hold for a\m and aim+2, for all m, and for b2m+2 and b2m+t. [It
should be noted that the eigenvalues of odd order have no singular points on the
90°-ray.]

Bouwkamp [2] verified and improved the first singular point, giving s =
1.468769, but he gave the value of a(ç) to only 3 decimals, namely a = 2.088. The
value of a(g) at a singular point is indeed difficult to obtain by the methods em-
ployed by the authors cited. In the method to be explained below this difficulty
disappears. Moreover, the procedure is general and is applicable to other problems
as well.

From (1.0) and (1.2), it is sufficient to determine a(g) and the singular points
for values of q in the first quadrant of the complex plane. For, if ar(g) and 6r(g) are
known for q = p exp Oi<p), then ar( —g) is known from (1.2). Moreover, an examina-
tion of (1.0) shows that 5r(g), [or 5r(g)], when associated with yiq, ar, x),
[or uiq, br, x)] satisfies (1.0) when g is replaced by g. Hence, in what follows, define

(1.3) g = pe**, 0 < <p è 90° ;        ar(q) = arip, <j>) .

[Values on the real axis will not be discussed, since they are amply tabulated, and
there are no multiple eigenvalues, except when q = 0.]

2. Auxiliary Functions, Useful near a Singular Point. The continued-fraction
method formed the basis for the present calculations. A full discussion of the method
is given in [1]. In addition, a comprehensive code now exists [3] for obtaining all
solutions of Mathieu's equation, including the eigenvalues, for q > 0. A part of this
code was modified to operate with complex arithmetic. Certain other modifications
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the double points of mathieu's differential equation 99

were necessary, since one could no longer assume that all eigenvalues are simple
ones. For the sake of conciseness, the derivation of the particular continued fraction
forms will not be repeated here. The availability of [1] will be assumed and only the
necessary modifications will be explained below.

In essence, there is a complex-valued function, say Tia, q), such that, a necessary
and sufficient condition for a(g) to be an eigenvalue is that Tia, q) = 0. The order,
r, is not determined. It is obtained from continuity beginning with the eigenvalue
for p = 0, where the order is known and continuing at an interval, Ap, (for a fixed <p)
which is sufficiently small for adequate extrapolation of a first approximation. In the
discussion to follow, the symbols ar and ar(g) will be used to imply members of any
one of the four sets, since the discussion applies equally well to those eigenvalues
giving rise to odd solutions as to even solutions. In the few cases where a distinction
between the two is made, the fact will be stated. For brevity let

(2 01) To = T(-a' q)>       Tl = Tl(a' q) = dTia' q)/da '
T2 = Ttia, q) = d2Tia, q)/da2.

Assume that in the neighborhood of an eigenvalue, To, Ti, and T2 are continuous
functions of a. [No assumptions are made about \da/dp\ or |da/dg| ; these do become
infinite at a multiple eigenvalue.] It is shown in [1] that for real, positive values of g,
| ¡Til is bounded away from zero—indeed if g is positive, | ¡Til ^ 1/g. In the complex
plane, however, this is no longer true, since a double point is characterized precisely
by To = Ti = 0. However, if one is not too close to a singular point, then it is
possible to use Newton's method, the same as in the real case. Thus, let ar*_1 be a
sufficiently close approximation to ar(g). Define

(2.02) Aa/-1 = -ToiaJ1-1, q)/Ti{a^\ g)
(2.03) ark = a,*-1 + Aa^-1.

In practice, convergence to within a preset tolerance was obtained after four itera-
tions or less in the great majority of cases; rarely were more than 9 iterations re-
quired. Suitable precautionary tests have to be included to insure that the new
approximation, ark, is within a reasonable distance from arip — h, d>), so as to insure
that the approximation approaches the rth eigenvalue and no other.

Consider the Taylor series for T (a, g), namely

(2.04) Tia + Aa, q) = T0 + \aTx + |(Aa)2F2 + O(Aa)3.

Dropping terms in (Aa)3, and solving for a zero of Tia + Aa, q), one obtains

(2.05) Aa = - iTi/T2) + aHTi/T2)2 - 02To/T2))1'2,    <r = ±1.
The approximation (2.05) is more suitable near a singular point than (2.03). Since
the terms in (2.04) are in general complex numbers, the sign of a is more difficult to
determine than in the real case. Let

(2.06) wi = HTi/T2)2 - 02To/T2))112,
assuming that one of the two values of the radical has been taken. Define

(2.07) Aia = -iTi/T2) + Wl,        A2a = -0Ti/T2) - m .

If the iterative process is to converge, then eventually | Aa\ should approach zero.
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100 G.   BLANCH  AND   D.   S.   CLEMM

It is therefore reasonable to choose that value of Aa which is smaller in magnitude.
The ambiguous case, when both values of Aa are equal in magnitude, occurs only
in exceptional cases near a singular point. The method of dealing with it will be
further discussed in Section 3.

Consider (2.05) when

(2.10) \Ti/T2\2»\2To/T2\ .

Let us factor iTi/T2)2 from the radical; in view of the assumption (2.10), the radical
can be expanded by the binomial theorem and is in fact determined—again because
we choose the smaller of the two possible values of | Aa|. In this case (2.05) reduces
to

(2 u) Aa - - iTi/T2) + iTi/T2)il - i2T0T2/Ti2))1/2

= - iTo/Ti) (1 + ihT0T2/ Ti2) + ■■■).
It is clear that Aa of (2.11) differs little in nature from (2.02). This situation will
be true in regions where \Ti\ is sufficiently large.

On the other hand, consider a region where

(2.12) \2To/T2\»\iTi/T2)2\.

Again factoring the numerically dominant term of the radical, one obtains

(2.13) Aa = - iTi/T2) + ai-2T0/T2)1/2- (1 - iT^/ToT,))1'2.

In (2.13) the behavior of Aa is radically different from that in (2.02). Whether or
not the eigenvalue aiq) is a simple one, Tiak, q) must approach zero as ak approaches
a(g). If a(g) is not a simple eigenvalue, 7\ will also approach zero, in such a way that
(1 - iTi2/ToT2))U2 remains finite. The radical i-2To/T2)1/2 in (2.13) gives an in-
sight into the behavior of a(g) near a singular point. Suppose ar(g) = ar+2iq). As
the branches ariq) and ar+2(g) are generated, the values Tiak, q) will tend to be the
same, when the ak of the two branches approach each other—as they must. Let

(2.14) w = i-2To/T2)1,2-il - OTi2/ToT2))112

assuming either choice of the radical. It is to be expected that if Aia = i — Ti/T2)
+ w is a suitable increment for a^g), then A2a = i—Ti/T2) — w will be the corre-
sponding increment for aî:+2(g).

It is important to observe the following:
Near a singular point, the radical in (2.13) is eliminated in the functions (2.15) and

(2.16) defined below.

(2.15) FAiq) = |(ar(g) + ar+2iq)) = FAi + iFA2, say .

(2.16) FBiq) = (ar+2(g) - ar(g))2 = FBi + iFB2, say .

The functions FAiq) and FBiq) are smooth in the neighborhood of the singular
point, when T2 is smooth. They may have singularities elsewhere. For example, if
ar(gi) also has a double point with ar_2(gi), but not with ar+2(gi), then in the neigh-
borhood of qi, FA and FB will mirror the singularities at this point, and they will
not be smooth functions. However, the fact that both F^4(g) and FBiq) are smooth
near the singularity is of great importance in computation. For it permits us to by-
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THE  DOUBLE  POINTS  OF  MATHIEU'S  DIFFERENTIAL  EQUATION 101

pass a region close to the singular point, and to obtain the value of q at which aiq)
is singular by interpolation in a smooth function. In this way the double eigenvalue
can be obtained to any preassigned accuracy.

From a knowledge of FAiq) and FBiq), both ar(g) and ar+2(g) are determined,
up to an ambiguity of the subscripts. Thus let

(2.20) ariq) = ft + idi,        ar+2iq) = c2 + id2.

Then

(2.21) FAiq) = Hft + c2) + tj(di + d_) = FAi + iFA2,

(2.22) FBiq) = (ft - Ci)2 - (d2 - di)2 + ¿2(c2 - Ci)(d2 - di) = FBi + iFB2.

Three cases arise:
Case 1. FB2 9e 0. Then (c2 — Ci) and (d2 — di) are different from zero.

Define

(2.23) d2 - di = X(c2 - ci) .

Substituting (2.23) into (2.22) one obtains

(2.24) FBi = ia - ci)2il - X2) ,        FB2 = 2X(c2 - Ci)2.

Observe that X must have the sign of FB2. From (2.24) X is known; namely

(2.25) X = - iFBi/FB2) + p(l + iFBi/FB2)2)1/2,   p = ±1 .

Since the radical in (2.25) is always greater than \FBi/FB2\, the sign of X is the same
as the sign of p. However, it has already been noted that X must have the sign of
FjB2. It follows that p is uniquely determined by the sign of FB2, and so is X. With
X known, (2.22) yields

(2.26) c2 - ci = rg,

(2.27) d2 - di = r\g ,

(2.28) g = iFB2/2\y2,        r = ±1 .

From (2.26)-(2.28) and (2.21), one now obtains

(2.30) ci = FAi - \rg ,       dj = FA2 - \r\g ,

(2.31) c2 = FA! + \rg,        d2 = FA2+ JrXg .

It is clear from (2.30) and (2.31) that changing the sign of t merely interchanges
ar(g) and ar+2(g).

Case 2. FB2\q) = 0. Either (c2 - ci) = 0 or else (d2 - di) = 0. Suppose FBi ^ 0.
If FBi < 0, the first equation of (2.22) shows that in this case (c2 — ci) = 0. Simi-
larly, if FBi > 0, then (d2 - di) = 0. Thus

If FBi < 0, c2 - c = 0; d2 - di = A-FBA'2.
If FBi > 0, d2 - di = 0; c2 - a = t(F501/2.

One may again solve for ck, dk, k = 1,2, as in (2.30)-(2.31).
Case 3. FBiiq) = FB2iq) = 0. This is a necessary and sufficient condition for

a(g) to be a multiple eigenvalue. In this case ar(g) = ar+2(g) = FAiq).

3- Method of Computation. Phase 1. This involved tabulation of ar(g)  for
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102 G.   BLANCH AND  D.   S.   CLEMM

d> = 90o(-5°)5°, p ^ 100, r = 0(1)15. The interval, Ap, ranged between 0.1 and
0.5, with the smaller intervals for low orders r. Along with ar(ç) and ar+2(g), which
were computed simultaneously, the functions F^4(g) and FBiq), defined in (2.15)-
(2.16), were also generated. This phase of the computations was performed with
8-significant digit arithmetic, using an IBM 7094 computer. Since the power-series
expansion for ar(g) converges for sufficiently small values of \q\, the code [3] was
adequate in a region where [g| i= Ah, h = Ap. Thereafter, for a fixed d,, the extra-
polation routine of [3] was used. From this point on modifications had to be intro-
duced, as outlined below.

Given an approximation arkiq), fc = 0, 1, ■ • -, one obtained T0, Ti, T2, as defined
in (2.01). The next approximation depended on the magnitude, |7\|, as follows:

Case (a). If |Ti\ ^ 0.1, the method of (2.02)-(2.03) was adequate.
Case (b). If [ T*i| < 0.1, formula (2.05) was used. It remains to be explained how

<r was chosen. For even orders on the 90°-ray, ar(g) is real up to the singular point
connecting ar(g) and ar+2(g), and thereafter the two become complex conjugates of
each another. The sign of the imaginary component was taken so that the values on
the 90°-ray would be continuous with those obtained on a neighboring ray—taken
here as <p = 89.99°. [Actual computation of ar(ç) on this ray was made within the
computer, in the neighborhood of the point where an imaginary component began
to enter.] It turned out that in all cases, the imaginary component of a4r(g) was
negative, and that of air+2 positive, in the immediate neighborhood of the singu-
larity. In the case of the eigenvalues associated with odd solutions of (1.0), bir+2
had a negative imaginary component and bir+i had the positive component. [In [5],
the authors also assigned the same signs to the imaginary component in the few
cases they treated, from considerations of the asymptotic behavior of the functions—
namely the fact that on the real axis, ar —> br+i- However, the asymptotic behavior
beyond the singular point is not the same on the imaginary axis as it is on the real
axis, and there is as yet no proof that the property in question holds on the imagi-
nary axis.]

On other rays, that value of Aa was chosen which gave the smaller magnitude
of | Aa|.* Ambiguity, when both values of | Ao| were the same up to a pre-assigned
tolerance, could occur only in the very close vicinity of a singular point. Since this
first tabulation was a coarse grid in the complex plane and the singular points form
only a countable set, the probability of ambiguity was small. An indication of any
ambiguity was read out for further examination and one additional test was per-
formed. Of the two possible choices of akiq), that one was taken which made
|ar(p — h, <p) — akip, <t>)\ least. In all cases, the ambiguity was resolved within the
computer. [Part of this coarse tabulation will be published in book form at a future
date.] For the higher orders, it was necessary to carry the calculations considerably
beyond p = 100, in order to explore regions containing singularities.

A necessary and sufficient condition for a singular point is that both the real and
imaginary components of FBiq) equal zero. It was therefore only necessary to
inspect the tabulations for changes in sign of FJ3i, and to note whether FB2 also
changed sign within the same region. This inspection did not require a computer.

Phase 2. This consisted of a more elaborate routine, carried out with double-pre-
cision arithmetic around the region in the (p — <t>) plane where a double point was
expected. It will be easiest to give an example.

* In the case of odd orders, this choice was also made on the 90°-ray.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Example. Even periodic solutions, r = 4. An examination of the coarse tabulation
showed that there is a double point in the range 17.6 < p < 18.8, and 35° > d, > 25°.
The "critical" region read into the computer was processed, and in a second attempt,
the 0-region was reduced to

<po = 30.5° (initial value of <t>), <¡>i = 29° (final value of d>).
Po = 17.6, initial value of p, pi = 18.8, final value of p.
h =  Ap = .05, A<j> =  -.05°.
The computation began with the first ray, d> = 30.5°. On that ray, a4(g) and

a6(g) were generated simultaneously, beginning with p = 0, by the method ex-
plained in Section 2. [In this region, no singularity connecting these two orders
exists.] Beginning with po a new method was used for extrapolating an approxima-
tion to a»iq) and ae(g), since these functions are not smooth near the expected
singularity. In this range the extrapolation was on the functions FAiq) and FBiq);
not on ar(g) and ar+2(g). From the extrapolated values of FA and FB, ar° and
ar+2 (the first approximation) was obtained through (2.30) and (2.31). Let

U = |ar(p — h,A) — ar°|2 + \ar+2ip — h, d>) — al+2\2 ;

the sign of r in (2.30) was chosen so that U was the lesser of the two values of U. If
both values of U were the same, the first r tested was assigned. Since convergence
of the successive iterations guaranteed that the final value obtained was an eigen-
value, to within an assigned tolerance, the possible ambiguity of the initial approxi-
mation could only mean that the value might have converged to ar+iiq) rather than
to ariq). Such a situation would not affect the eventual determination of the double
point. With this initial approximation, either (2.02)-(2.03) or (2.05) was used, de-
pending on the magnitude of |!Ti|. In practice the initial approximation started
with the computation of ar+2(g). Once this value was obtained to within the required
accuracy, the extrapolated value of FAiq) and the known value of ar+2(g) deter-
mined the initial approximation for ar°. At the interval chosen, the extrapolated
value of FA (g) was good to at least 4 decimal places—in many cases it was good to
8 decimals. This assured that the initial approximation would converge to the
companion-eigenvalue, ar. A test was made after ar(g) was obtained. If FAiq), as
computed from the generated values of ar+2(ç) and ar(g), differed by more than a
preassigned, close tolerance from the extrapolated value of FAiq), this value of ar
was discarded, and the value obtained from extrapolation was entered. A warning
was read out, for a posteriori examination. [It turned out that in practice, no such
warnings were read out in the computations leading to the published eigenvalues.]
Another test was made upon the set ar+iiq), ar(g). Such a test was necessary, since
close to a singular point, an initial approximation to ar+2(ç) might indeed have
converged to ar(g). This test consisted of the following.

Let

Ui = |ar+2(p - h,<p) - ar+2ip, 4>)\2 + |ar(p — h, <p) — arip, 4>)\2,

U2 = \ar+2ip — h, <j>) — aTip, </>)|2 + |ar(p — h, <f>) — ar+2ip, 4>)\2.

Whenever Ui ^ U2, the values ar+2(g) and ariq) were accepted. Whenever this was
not true, the subscripts were interchanged, and a warning to this effect was read
out. In practice, there were several such interchanges. Examination of the final
results indicated that the interchange was indeed necessary.
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Once a set ar+2(g) and ariq) was computed, the associated values of FAiq) and
FBiq) were obtained and stored. For a fixed d>, the stored values of FBi were tested
for a change of sign, as successive values of p were entered in the tabulation. Once
a change of sign was noted, tabulation continued until there were at least 9 values
in storage, with at least 4 values beyond the sign change. When that was available,
Aitken's method was used to compute p„ where FBiip/) = 0. Corresponding to this
value of p, values of arip„ d>) and ar+2ips, <p) were generated from first principles,
and corresponding value of FB2 was obtained. This ended the computations for that
particular value of <j>. The interpolations were made with both 8-point and 7-point
formulas, and both sets of results were stored. The computations then proceeded
to the next <j> of the grid. When at least 4 values of <p had been stored, the values of
FB2ips, d>3) were tested for a change in sign. Once a change in sign was noted, only
4 additional values of <p were processed. The value of <t>d for which FB2ips, <p) = 0
was again obtained by Aitken's method. Once fa was obtained, the corresponding
value of pd at the double point was again obtained by Aitken's method, from inter-
polation in the tabulated values of ps. In a similar manner, FA (p<¡, <pd) was obtained
by interpolation. The value of ar(g) = ar+2(g) = FAipd, <j>d) was read out, along
with corresponding values of T0, Ti, T2. Table 1, which follows, shows the behavior
of the functions ps(<#>) and of FB2ips, d>) for the present example, along with the
interpolated values of <t>d, Pd, and ar(g) at the double point. In all cases, acceptably
small values of |Fi| were noted.

Two further checks were performed. Whenever the interpolations by the 8-point
and 7-point formulas differed before the 9th decimal place, they were discarded, and
a finer grid in p, <p or both was processed. In addition, the following functions were
differenced, by ordinary or divided differences :

Argument Dependent function Type of differences

FB2ip„ <f>) d> Divided differences
<t> psi<}>) Ordinary differences
<p FAi and FA2 Ordinary differences

The numerically largest differences, of orders 2, 4, 6, 7, 8 were read out of the com-
puter for a posteriori examination. Whenever the 8th difference would have affected
the 8th decimal place of the final result, the computations were discarded, and a
finer grid was processed.

Table 1.    Computations relating to a4(g) = 043(g)

4> (in degrees) p.i<p) FB2iP„ 4,)
[At (p., A), FBiiPs, <t>) = 0.]

30.50 17.82825 50422 -4.74878 03757
30.45 17.85118 76733 -3.37330 03697
30.40 17.87436 99065 -1.98690 50855
30.35 17.89780 70715 -0.58930 72418
30.30 17.92150 46855 +0.81979 12146
30.25 17.94546 84630 +2.24069 96596
30.20 17.96970 43251 +3.67373 93790
30.15 17.99421 84104 +5.11924 41945
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Interpolated values :
At double point

<bd = 30.32903 89079°; Pd = 17.90770 95980 ,
a4(g) = a6(g) = 33.54015 64324 + i 6.36251 87840 ,

Tia, q) = .6(10-15) + i .35(H)-14) ; 7\(a, g) = .51(10-15) + i .32(10"14) ,

T2(a, g) = -.00186 - i .0178 .
Note. Within the computer, all values were listed to 15 significant figures. The

above table lists only ten decimals, and only the order of magnitude of Tkia, q),
fc = 0, 1, 2.

Table 2
Double points of Mathieu's equation, associated with even periodic solutions.

i (degrees) f (q)
Real Pert Imag. Pert

9

9

9

10

10

10

11

11

11

90.

59.18208061

44.60975039

36.02304851

90.

30.32903891

77.74433895

26.26120049

68.63569460

23.20168627

61.57215455

20.81211404

90.

55.91955555

18.89115596

82.35333500

51.28456166

17.31131065

76.00421757

47.40927141

15.98778925

70.63818332

44.11709801

14.86194679

1.46876861

3.76995749

7.26814689

11.97821151

16.47116589

17.90770960

22.85524712

25.06087566

30.42738210

33.44030379

39.19378450

43.04769498

47.80596570

49.16014417

53.88422425

58.27413845

60.33123310

65.95073725

69.92930518

72.71097078

79.24786295

82.77468530

86.30257222

93.77608193

2.08869890

6.17647404

12.79971624

21.92533616

27.31912767

33.54015643

38.40883857

47.63741382

52.02534500

64.21313050

68.15680853

83.26475268

80.65826424

86.79479850

104.79053631

98.76912388

107.93306428

128.78923395

119.40038738

131.56682190

155.25992075

142.54619965

157.69231520

184.20189088

0.0

1.23177966

2.76304492

4.49002890

0.0

6.36251878

2.53293279

8.35068598

5.55189444

10.43474552

8.96150250

12.60061661

0.0

12.69861754

14.83777144

3.83025506

16.71813422

17.13804526

8.20296334

20.98611513

19.49492409

13.04302555

25.47604566

21.90309228
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Table 2—Continued

é (degrees) P ar(q)

Real Part Imag. Part

12

12

12

12

13

13

13

13

î 4

14

14

14

15

15

15

15

90.

66.03683674

41.28283447

13.89188815

84.44343693

62.04316195

38.81510667

13.04686266

79.59090305

58.541C7283

36.64559325

12.30377417

75.31192241

55.44272850

34.72213986

11.64492867

95.47527271

96.81379444

101.10868908

109.53576981

110.02736921

112.05003644

117.13152570

126.52722577

125.76627897

128.48655463

134.37293031

144.75069208

142.69395383

146.12619098

152.83446572

164.20636770

162.10702112

168.20157306

186.30653256

215.61459283

187.24248763

196.36226473

217.40701681

249.49758698

214.89467225

227.02465063

250.99173315

285.85051698

245.06010153

260.18561672

287.05897499

324.67308978

0.0

18.29431821

30.16660867

24.35813133

5.12750451

23.91319567

35.04027512

26.85631162

10.82481143

29.86467710

40.08236608

29.39444380

17.03092757

36.12005618

45.28040307

31.96977006

14

14

14

14

15

15

15

15

16

16

16

16

17

17

17

17

Table 3
Double points of Mathieu's equation, associated with odd periodic solutions.

é (degrees)
/

b  (q)

Real Part Imag.  Part
r+2

90.

72.46057467

60.97874908

52.82618856

90.

46.71423788

80.58233121

41.94897328

73.08912353

38.12170543

66.96914596

6.92895476

11.27098527

16.80308983

23.53467876

30.09677284

31.47295165

38.52292501

40.62318483

48.13638186

50.98928567

58.94150633

11.19047360

18.77370055

28.88860879

41.51634588

50.47501616

56.64571353

65.07456904

74.26939582

82.19724671

94.38230111

101.83496931

0.0

1.88381571

4.19467426

6.82630952

0.0

9.71571559

3.18163148

12.82090012

6.88343235

16.11176782

11.02097811

4

5

6

7

8

8

9

9

10

1C

11
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Table 3—Continued

é (degrees) P KW
Real Part Imag. Part

r+2

9

10

10

10

11

11

11

12

12

12

13

13

13
14

14

14

14

15

15

15

15

34.97532055

90.

61.86698774

32.33961544

83.56378920

57.54201185

30.09725025

78.06133695

53.82495450

28.16459857

73.29652000

50.59302351

26.48038795

90.

69.12577961

47.75482811

24.99865911

85.11157324

65.44128256

45.24085886

23.68423768

62.57420650

69.59879328

70.94273869

75.38022473

82.10894361

84.14413219

89.40913113

95.80595671

98.54925096

104.66235807

110.69230161

114.16118710

121.14106880

125.43541131

126.77081443

130.98261358

138.84622074

142.02943128

144.04436333

149.01584316

157.77861135

116.98071992

117.86892416

123.98133068

142.06185385

139.49186015

148.63118156

169.62353277

163.63313127

175.78032210

199.66403556

190.28830309

205.42527964

232.18197149

213.37256864

219.45339815

237.56314715

267.17619891

242.02085606

251.12488713

272.19146415

304.64576791

19.56564754

0.0

15.53425785

23.16482626

4.47887410

20.37826431

26.89507274

9.51589661

25.51790587

30.74469753

15.04368354

30.92500454

34.70392490

0.0

21.00996902

36.57640523

38.76445692

5.77614871

27.37294857

42.45272306

42.91916094

11

12

12

12

13

13

13

14

14

14

15

15

15

16

16

16

16

17

17

17

17

The entries in Table 3 show that 6i(g) has no double points when g is in the first
quadrant of the complex plane. However, since 6i( — g) = ai(g), there is a double
point of 6i(g) in the third quadrant—and also its conjugate in the second quadrant.
From the present tabulation, it is now known for the first time that the power series
expansions for ai(g) and a3(g) converge up to p = 3.7699 • • • . Similarly, one may
obtain the limit of convergence of the power series for orders up to 15 from the
present tabulation.

If one rearranges the values in Tables 2 and 3, listing the first double point, the
second point, etc., it seems plausible that all the double points have been obtained
for orders less than or equal to 15. However, there is as yet no mathematical proof
of this conjecture. It is hoped the present tabulation will aid in obtaining more
accurate asymptotic approximations in the various regions of the complex plane.
With the aid of these, it may be possible to describe more completely the behavior
of the eigenvalues for large values of |g|.
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