The Downward-Closure of Petri Net Languages™

Peter Habermehl!, Roland Meyer!, and Harro Wimmel?

L LIAFA, Paris Diderot University & CNRS

e-mail: {peter.habermehl,roland.meyer}@liafa.jussieu.fr

2 Department of Computing Science, University of Rostock
e-mail: harro.wimmel@uni-rostock.de

Abstract. We show that the downward-closure of a Petri net language
is effectively computable. This is mainly done by using the notions de-
fined for showing decidability of the reachability problem of Petri nets.
In particular, we rely on Lambert’s construction of marked graph tran-
sition sequences — special instances of coverability graphs that allow us
to extract constructively the simple regular expression corresponding to
the downward-closure. We also consider the remaining language types
for Petri nets common in the literature. For all of them, we provide algo-
rithms that compute the simple regular expressions of their downward-
closure. As application, we outline an algorithm to automatically analyse
the stability of a system against attacks from a malicious environment.

1 Introduction

Petri nets or the very similar vector addition systems are a popular fundamental
model for concurrent systems. Deep results have been obtained in Petri net
theory, among them and perhaps most important decidability of the reachability
problem [6, 10, 8], whose precise complexity is still open.

Petri nets have also been studied in formal language theory, and several no-
tions of Petri net languages have been introduced. The standard notion to which
we simply refer as Petri net language accepts sequences of transition labels in
a run from an initial to a final marking. Other notions are the prefix language
considering all markings to be final, the covering language where sequences lead-
ing to markings that dominate a given final marking are accepted, and terminal
languages where all sequences leading to a deadlock are computed.

We study the downward-closure of all these languages wrt. the subword or-
dering [4]. It is well known that given a language L over some finite alphabet
its downward-closure is regular; it can always be written as the complement of
an upward-closed set, which in turn is characterised by a finite set of minimal
elements. Even more, downward-closed languages correspond to simple regular
expressions [1]. However, such an expression is not always effectively computable.
This depends on L. For example, the reachability set of lossy channel systems is
downward-closed but not effectively computable [11], even though membership

* The first authors were supported by the French ANR projects Averiss and Veridyc.
The article appeared in Proc. of ICALP. LNCS. Springer-Verlag, 2010.

in the set is decidable. On the contrary, for pushdown-automata the problem
has been solved positively by Courcelle [2].

We show as our main result that the downward-closure of Petri net lan-
guages is effectively computable. This is done by a careful inspection of the proof
of decidability of the reachability problem due to Lambert [8]. From his so-called
perfect marked graph transition sequences (MGTS) we directly extract the sim-
ple regular expression corresponding to the downward-closure of the language.
Key to this is an iteration argument that employs Lambert’s pumping lemma
for Petri nets and the particular structure of MGTS in a non-trivial way.

We also establish computability of the downward-closure for the remaining
language types. For terminal languages we rely on the previous result, whereas
for covering and prefix languages we directly construct the expressions from the
coverability tree of the Petri net.

To be able to compute the downward-closure of a language is important for
several reasons. For example, it is precisely what an environment observes from
a language in an asynchronous interaction. A component which periodically ob-
serves the actions (or alternatively states) of another process will see exactly
the downward-closure of the language of actions the partner issues. Another
application of the downward-closure of a language is the use as a regular overap-
proximation of the system behaviour, allowing for safe inclusion checks between
a Petri net language and all types of languages for which inclusion of a regular
language (or even only simple regular expressions) is decidable.

We apply our results to automatically analyse the stability of a system against
attacks. Consider a malicious environment that tries to force the system into an
undesirable state. Then the downward-closure of the environment’s language
provides information about the intrusions the system can tolerate.

The paper is organised as follows. In Section 2, we provide preliminary defini-
tions concerning Petri nets, languages, and downward-closed sets. In Section 3,
we state our main result. The downward-closure of Petri net languages is ef-
fectively computable. In Section 4, we investigate the other language types. In
Section 5 we illustrate an application of our result before concluding in Section 6.

2 Petri nets and their languages

Petri nets generalise finite automata by distributed states and explicite synchro-
nisation of transitions. A Petri net is a triple (P, T, F) with finite and disjoint
sets of places P and transitions T. The flow function F : (PxT)U(T x P) — N
determines the mutual influence of places and transitions.

States of Petri nets, typically called markings, are functions M € N that
assign a natural number to each place. We say that a place p has k tokens under
M if M(p) = k. A marking M enables a transition ¢, denoted by M][t), if the
places carry at least the number of tokens required by F, i.e., M(p) > F(p,t) for
all p € P. A transition ¢ that is enabled in M may be fired and yields marking
M’ with M'(p) = M(p) — F(p,t) + F(t,p) for all p € P. The firing relation is
extended inductively to transition sequences o € T*.

Let symbol w represent an unbounded number and abbreviate N U {w} by
N, . The usual order < on natural numbers extends to N,, by defining n < w for
all n € N. Similar to markings, w-markings are functions in NZ. The ordering
<o C Nf X Nf defines the precision of w-markings. We have M =<, M’ if
M(p) = M'(p) or M'(p) = w.

To adapt the firing rule to w-markings, we define w — n := w =: w4+ n for
any n € N. The relation defined above can now be applied to w-markings, and
firing a transition will never increase or decrease the number of tokens for a place
p with M(p) = w. An w-marking M’ is reachable from an w-marking M in a
net N if there is a firing sequence leading from M to M’. We denote the set of
w-markings reachable from M by R(M).

Definition 1. The reachability problem RP is the set
RP := {(N,M,M') | N=(P,T,F),M,M' € N* and M’ € R(M)}.

w

The reachability problem RP is known to be decidable. This was first proved
by Mayr [9, 10] with an alternative proof by Kosaraju [6]. In the '90s, Lambert
[8] presented another proof, which can also be found in [13].

To deal with reachability, reachability graphs and coverability graphs were
introduced in [5]. Consider N = (P, T, F) with an w-marking My € NE. The
reachability graph R of (N, My) is the edge-labelled graph R = (R(My), E,T),
where a t-labelled edge e = (M1, t, M) is in E whenever M [t) M.

A coverability graph C = (V, E,T) of (N, My) is defined inductively. First, M
isin V. Then, if My € V and M;[t) M2, check for every M on a path from M to
M, if M < My. If the latter holds, change Ms(s) to w whenever Ma(s) > M(s).
Add, if not yet contained, the modified M> to V and (Mj,t, M) to E. The
procedure is repeated, until no more nodes and edges can be added.

Reachability graphs are usually infinite, whereas coverability graphs are al-
ways finite. But due to the inexact w-markings, coverability graphs do not allow
for deciding reachability. However, the concept is still valuable in dealing with
reachability, as it allows for a partial solution to the problem. A marking M
is not reachable if there is no M’ with M’ > M in the coverability graph. For
a complete solution of the reachability problem, coverability graphs need to be
extended as discussed in Section 3.

Our main contributions are procedures to compute representations of Petri
net languages. Different language types have been proposed in the literature that
we shall briefly recall in the following definition [12].

Definition 2. Consider a Petri net N = (P, T, F) with initial and final mark-
ings Mo, My € N X a finite alphabet, and h € (X U {e})T a labelling that is
extended homomorphically to T*. The language of N accepts firing sequences to
the final marking:

Lp(N, Mo, My) :={h(o) | Molo)My for some o € T*}.
We write L(N, My, My) if h is the identity. The prefix language of the net
accepts all transition sequences:

Pr(N, Mp) := {h(c) | Mo[o)M for some o € T* and M € NP}

The terminal language of the Petri net accepts runs to deadlock markings, i.e.,
markings where no transition is enabled:

Tn(N, M) := {h(c) | Molo)M with o € T*, M € NF | and M is a deadlock}.
The covering language requires domination of the final marking:
Ch(N, My, My) := {h(c) | Molo)M > M; for some o € T* and M € N}

Note that the prefix language Py, (N, Mp) is the covering language of the marking
that assigns zero to all places, Pp(N, My) = Cr(N, My, 0).

We are interested in the downward-closure of the above languages wrt. the
subword ordering < C X* x Y*. The relation a; ...a,, = b1 ...b, requires word
aj ...a;, tobe embedded in by ... by, i.e., there are indices 41, ..., 4, € {1,...,n}
with i1 < ... < i, so that a; = b;, for all j € {1,...,m}. Given a language
L, its downward-closure is L | := {w | w =< v for some v € L}. A downward-
closed language is a language L such that L | = L. Every downward-closed
language is regular since it is the complement of an upward-closed set which
can be represented by a finite number of minimal elements with respect to <.
This follows from the fact that the subword relation is a well-quasi-ordering on
words [4]. More precisely, every downward-closed set can be written as a simple
reqular expression over X (see [1]): We call an atomic expression any regular
expression e of the form (a + €) where a € X, or of the form (a; + -+ + a;,)*
where ay, . ..,a, € Y. A product p is either the empty word € or a finite sequence
eies ... e, of atomic expressions. A simple regular expression is then either @) or
a finite union p; + - - - 4+ p of products.

3 Downward-closure of Petri net languages

Fix a Petri net N = (P, T, F) with initial and final markings My, M; € N¥ and
labelling h € (X U {e})T. We establish the following main result.

Theorem 1. Ly (N, My, My)| is computable as (d) below.

Recall that any downward-closed language is representable by a simple regular
expression [1]. We show that in case of Petri net languages these expressions
can be computed effectively. In fact, they turn out to be rather natural; they
correspond to the transition sets in the precovering graphs of the net. To see
this, we shall need some insight into the decidability proof for reachability in
Petri nets. We follow here essentially the presentation given in [14] for solving
the infinity problem of intermediate states in Petri nets.

3.1 A look at the decidability of RP

We present here some main ideas behind the proof of decidability of RP accord-
ing to Lambert [8, 13]. The proof is based on marked graph transition sequences

(MGTS), which are sequences of special instances of coverability graphs C; al-
ternating with transitions ¢; of the form G = C;.t;.Cs .. .t,,—1.C),. These special
instances of coverability graphs are called precovering graphs in [8] and have
additional structure from which we shall only use strong connectedness. Each
precovering graph C; is augmented by two additional w-markings, the input m; i,
and the output m; ou+. The initial marking M; of C; is less concrete than input
and output, m;n <o M; and m; oy <o M;. The transitions ¢y, ..., t,—1 in an

MGTS connect the output m; o: of one precovering graph to the input m;11 in
of the next, see Figure 1.

mi,in M1, out ma2,in

Fig. 1. A marked graph transition sequence Cy.t1.Cs . . . t3.C4. Dots represent markings
and circles represent strongly connected precovering graphs with in general more than
one node. The initial marking is depicted in the center. Solid lines inside these circles
are transition sequences that must be firable in the Petri net. Dotted lines show the
entry to and exit from precovering graphs, which do not change the actual marking in
the Petri net. Both m; in <o M; and mi our =w M; hold for every i.

A solution of an MGTS is by definition a transition sequence leading through
the MGTS. In Figure 1 it begins with marking m; ;,,, leads in cycles through the
first precovering graph until marking m; o+ is reached, then ¢; can fire to reach
Ma,in, from which the second coverability graph is entered and so on, until the
MGTS ends. Whenever the marking of some node has a finite value for some
place, this value must be reached exactly by the transition sequence. If the value
is w, there are no such conditions. The set of solutions of an MGTS G is denoted
by L(G) [8, page 90].

An instance RP = (N, My, My) of the reachability problem can be formu-
lated as the problem of finding a solution for the special MGTS Ggrp depicted
in Figure 2. The node w (with all entries w) is the only node of the coverability
graph, i.e., we allow for arbitrary w-markings and firings of transitions between
mi,in = Mo and mq o = My, but the sequence must begin exactly at the (con-
crete) initial marking of the net and end at its final marking. The solutions to
this MGTS are precisely the runs in the net IV leading from My to My:

L(N, My, My) = L(Grp).

Hence, to decide RP it is sufficient to solve arbitrary MGTS. Lambert defines for
each MGTS a characteristic equation that is fulfilled by all its solutions. In other
words, the equation is a necessary condition for solutions of the MGTS. More

mi,in mi,out

Fig. 2. MGTS representation of an instance (N, m1,in, M1,0ut) of the reachability prob-
lem. The MGTS consists of one precovering graph with a single node w which represents
the w-marking where all places have an unbounded number of tokens and from which
every transition can fire. A solution for this MGTS is a transition sequence from my in
to m1,out-

precisely, the author derives a system of linear equations Ax = b where A and
b range over integers. It encodes the firing behaviour of the precovering graphs
and intermediary transitions and can become quite large. There is one variable
for every marking entry m; ;n, and m; oy (including zero and w entries) as well as
one variable for each edge in every precovering graph. Since markings must not
become negative, solutions sought must be semi-positive. This (possibly empty)
set of semi-positive solutions can always be computed [7].

If the characteristic equation was sufficient for the existence of solutions of
an MGTS, RP would have been solved immediately. While not valid in general,
Lambert provides precise conditions for when this implication holds. Generally
speaking, a solution to the characteristic equation yields a solution to the MGTS
if the variables for the edges and the variables for all w-entries of the markings are
unbounded in the solution space. An MGTS with such a sufficient characteristic
equation is called perfect and denoted by G. Unboundedness of the variables can
be checked effectively [7].

Since not all MGTS are perfect, Lambert presents a decomposition procedure
[8]. It computes from one MGTS G a new set of MGTS that are to a greater
degree perfect and have the same solutions as G. This means each transition se-
quence leading through the original MGTS and solving it will also lead through
at least one of the derived MGTS and solve it, and vice versa. The degree of
perfectness is discrete and cannot be increased indefinitely. Therefore the de-
composition procedure terminates and returns a finite set ' of perfect MGTS.
With the assumption that m ;, and my, o+ are w-free, the corresponding de-
composition theorem is simplified to the following form.

Theorem 2 (Decomposition [8,13]). An MGTS G can be decomposed into
a finite set I'c of perfect MGTS with the same solutions, L(G) = Ugc . £(G).

When we apply the decomposition procedure to the MGTS Ggp for the instance
RP = (N, m1 in, M1 0ut) Of the reachability problem (Figure 2), we obtain a set
I'cpp of perfect MGTS. For each of these perfect MGTS G we can decide whether
it has solutions, i.e., whether £(G) # 0. If at least one has a solution, we obtain
a positive answer to the reachability problem, otherwise a negative answer. This

means, the following algorithm decides RP:

input RP = (N, M1 in, M1,0ut)

create Gprp according to Figure 2

decompose Grp into Ig,, with G perfect for all G € I'q,,,
if 3G € I'c,,, with L(G) # () answer yes else answer no.

The reachability problem is not only decidable. If it has a solution, it is also
possible to calculate a solving transition sequence. Consider a perfect MGTS
G =C1.t1.Cy .. .t,_1.C,, and let each precovering graph have the initial marking
M; (cf. Figure 1). We search for covering sequences w; that indefinitely increase
the token count on w-places of M;. More precisely, u; is a transition sequence
from M; to M; with the following properties.

— The sequence u; is enabled under marking m; ;.
— If M;(s) =w > my,in(s), then u; will add tokens to place s.
— If M;(s) = my; in(s) € N, then u; will not change the token count on place s.

In case M;(s) = w = my,in(s), no requirements are imposed. Sequence w; is
accompanied by a second transition sequence v; with similar properties, except
that the reverse of v; must be able to fire backwards from m; oy+. This decreases
the token count on w-places and lets v; reach the output node m; oyt from M;.
Having such pairs of covering sequences ((u;,v;))1<i<n available for all precov-
ering graphs, the following theorem yields a solution to the perfect MGTS.

Theorem 3 (Lambert’s Iteration Lemma [8,13]). Consider some perfect
MGTS G with at least one solution and let ((u;,v;))1<i<n be covering sequences
satisfying the above requirements. We can compute kg € N and transition se-
quences B;,w; from M; to M; such that for every k > ko the sequence

(ur) " Br (w1)*(v1) 1 (u2)* Ba(w2) ¥ (v2) ¥ ta . .t 1 (un)* Br(wn)F (v,)F

s a solution of G.

Lambert proved that such covering sequences u;, v; always exist and that at least
one can be computed [8]. Firing u,; repeatedly, at least ko times, pumps up the
marking to the level necessary to execute 3;(w;)*. Afterwards v; pumps it down
to reach my; . Transition ¢; then proceeds to the next precovering graph.

3.2 Computing the downward-closure

According to the decomposition theorem, we can represent the Petri net language
L(N, My, My) by the decomposition of the corresponding MGTS Grp. We shall
restrict our attention to perfect MGTS G that have a solution, i.e., £L(G) # 0.
They form the subset F(‘;/RP of I'c,,. As the labelled language just applies a
homomorphism, we derive

Ln(N, Mo, My) = h(L(N, Mo, Mp)) =h(|) L@G)=] nL@G)).

GEFC{RP GeFC{RP

Since downward-closure — | and the application of h commute, and since
downward-closure distributes over U, we obtain

Ln(N, Mo, M) = | WLG)L).

The main result in this section is a characterisation of £(G) | as a simple regu-
lar expression ¢g. By the previous argumentation this solves the representation
problem of £y, (N, My, My)| and hence proves Theorem 1. We compute ¢¢ for
the language of every perfect MGTS G € T C‘;/RP. Then we apply the homomor-
phism to these expressions, h(¢¢), and end up in a finite disjunction

Li(N, Mo, My)| =£(> h(¢g))- ()

We spend the remainder of the section on the representation of £(G) | . Surpris-
ingly, the simple regular expression turns out to be just the sequence of transition
sets in the precovering graph,

o :=T7.(t1 +€). 15 ... (tn—1 +€). T,
where G = C1.t1.Cy .. . t,,—1.C,, and C; contains the transitions T;.
Proposition 1. £(G)] = L(¢g).

The inclusion from left to right is trivial. The proof of the reverse direction
relies on the following key observation about Lambert’s iteration lemma. The
sequences u; can always be chosen in such a way that they contain all transitions
of the precovering graph C;. By iteration we obtain all sequences uf . Since u;
contains all transitions in T;, we derive

Trc(Juhl=Jurl -

keN keN

Hence, all that remains to be shown is that u; can be constructed so as to contain
all edges of C; and consequently all transitions in T;. Lets start with a covering
sequence u; that satisfies the requirements stated above and that can be found
with Lambert’s procedure [8]. Since C; is strongly connected, there is a finite
path z; from M; to M; that contains all edges of C;. The corresponding transition
sequence may have a negative effect on the w-places, say at most m € N tokens
are removed. Concrete token counts are, by construction of precovering graphs,
reproduced exactly. Since u} is a covering sequence, we can repeat it m+1 times.
By the second requirement, this adds at least m + 1 tokens to every w-place. If
we now append z;, we may decrease the token count by m but still guarantee a
positive effect of m + 1 —m = 1 on the w-places. This means

rm—+1

Ui 1= Uy 2

is a covering sequence that we may use instead of u/ and that contains all tran-
sitions. This concludes the proof of Proposition 1.

4 Downward-closure of other language types

We consider the downward-closure of terminal and covering languages. For ter-
minal languages that accept via deadlocks we provide a reduction to the previous
computability result. For covering languages, we avoid solving reachability and
give a direct construction of the downward-closure from the coverability tree.

4.1 Terminal languages

Deadlocks in a Petri net N = (P’,T, F) are characterised by a finite set P of
partially specified markings where the token count on some places is arbitrary,
Mp € NP with P C P’. Each such partial marking corresponds to a case where
no transition can fire. Hence, the terminal language is a finite union of partial lan-
guages that accept by a partial marking, 7;,(N, Mo) = Uy, ep Ln(N, Mo, Mp).
We now formalise the notion of a partial language and then prove computability
of its downward-closure. With the previous argumentation, this yields a repre-
sentation for the downward-closure of the terminal language.

A partial marking Mp € N with P C P’ denotes a potentially infinite set of
markings M that coincide with Mp in the places in P, M|p = Mp. The partial
language is therefore defined to be L£,(N, Mo, Mp) := Uyg, s, £n(N, Mo, M).
We apply a construction due to Hack [3] to compute this union.

Fig. 3. Hack’s construction to reduce partial Petri net languages to ordinary languages.

We extend the given net N = (P, T,F) to N, = (P'"UP,, T UT,,F,) as
illustrated in Figure 3. The idea is to guess a final state by removing the run
token and then empty the places outside P C P’. As a result, the runs in N
from My to a marking M with M|p = Mp are precisely the runs in N, from M]
to the marking My, up to the token removal phase in the end. Marking M] is
My with an additional token on the run place. Marking My coincides with Mp
and has no tokens on the remaining places. Projecting away the new transitions
t with h.(t) = € characterises the partial language by an ordinary language.

Lemma 1. [:h(N, MQ,MP) = Ehuhe(NeaMgaMf)-

Combined with Theorem 1, a simple regular expression ¢y, is computable that
satisfies L, (N, Mo, Mp) | = L(¢nm,). As a consequence, the downward-closure
of the terminal language is the (finite) disjunction of these expressions.

Theorem 4. 7;,(N,My) | = L(Znpep du,)-

Note that the trick we employ for the partially specified final markings also
works for partial input markings. Hence, we can compute the language and the
terminal language also for nets with partially specified input markings.

4.2 Covering languages

We extend the coverability tree to a finite automaton where the downward-
closure coincides with the downward-closure of the covering-language. Hence,
the desired regular expression is computable. The idea is to add edges to the
coverability tree that represent the domination of markings by their successors
and thus, by monotonicity of Petri nets, indicate cyclic behaviour. The final
states reflect domination of the final marking. In the remainder, fix N = (P, T, F)
with initial and final markings Mo and My and labelling h € (X' U {e})7.

The coverability tree CT = (V,E,) is similar to the coverability graph
discussed in Section 2 but keeps the tree structure of the computation. Therefore,
the vertices are labelled by extended markings, A(v) € (NU{w})¥', and the edges
e € E C VxV by transitions, A(e) € T. A path is truncated as soon as it repeats
an already visited marking.

We extend CT to a finite automaton FA = (V,vo, Vi, EU E', AU X) by
adding backedges. The root of CT is the initial state vg. States that cover My
are final, Vy :={v eV | A(v) = M > My}. If the marking of v dominates the
marking of an E-predecessor v/, AM(v) = M > M’ = A\(v'), we add a backedge
e’ = (v,v') to E' and label it by N (e’) = e. The downward-closed language of
this automaton is the downward-closed covering language without labelling.

Lemma 2. L(FA)| =C(N, My, M)]| .

To compute L(FA) | we represent the automaton as tree of its strongly con-
nected components SCC(F A). The root is the component Cj that contains vy.
We need two additional functions to compute the regular expression. For two
components C,C’ € SCC(FA), let yc,cv = (t + ¢) if there is a ¢-labelled edge
from C to C’, and let vo,cr = 0 otherwise. Let 7 = ¢ if C' contains a final
state and 7 = @) otherwise. Concatenation with Ye,cr = 0 or 7¢ = 0 suppresses
further regular expressions if there is no edge or final state, respectively. Let T
denote the transitions occurring in component C' as edge labels. We recursively
define regular expressions ¢¢ for the downward-closed languages of components:

¢c = Té~(TC + Z 'YC,C’-QbC')-

C'eSCC(FA)

Due to the tree structure, all regular expressions are well-defined. The following
lemma is easy to prove.

Lemma 3. L(FA)| = L(¢¢,)-

As the application of h commutes with the downward-closure, a combination of
Lemma 2 and 3 yields the desired representation.

Theorem 5. C,(N, My, My)| = L(h(¢dcy,)).

Note that h(¢¢c,) can be transformed into a simple regular expression by dis-
tributivity of concatenation over + and removing possible occurrences of ().

5 Applications to stability analysis

Consider a system modelled as a Petri net Ny. It typically interacts with some
potentially malicious environment. This means, N, = (Ps, Ty, F,) is embedded!
in a larger net N = (P, T, F') where the environment changes the token count or
restricts the firing behaviour in the subnet Ny. Figure 3 illustrates the situation.
The environment is Hack’s gadget that may stop the Petri net and empty some
places. The results obtained in this paper allow us to approximate the attacks
system N, can tolerate without reaching undesirable states.

Consider an initial marking MJ of N, and a bad marking M; that should
be avoided. For the full system N we either use M§, M; € N as partially
specified markings or assume full initial and final markings, My, M, € N with
Ml p, = Mg and My|p, = M;. The stability of N is estimated as follows.

Proposition 2. An upward-closed language is computable that underapproxi-
mates the environmental behaviour N, tolerates without reaching My from M§.

We consider the case of full markings My and M}, of N. For partially speci-
fied markings, Hack’s construction in Section 4.1 reduces the problem to this
one. Let the full system N be labelled by h. Relabelling all transitions of N,
to € yields a new homomorphism A’ where only environmental transitions are
visible. By definition, the downward-closure always contains the language itself,
Ly (N, Mo, My)| 2D Ly (N, My, My). This is, however, equivalent to

Ly (N, My, My)| C Ly (N, Mo, My).

By Theorem 1, the simple regular expression for Ly (N, My, M) | is com-
putable. As regular languages are closed under complementation, the expression
for L/ (N, My, My) | is computable as well. The language is upward-closed and
underapproximates the attacks the system can tolerate.

Likewise, if we consider instead of Mj a desirable good marking Mg, then
language Ly (N, My, My) | overapproximates the environmental influences re-
quired to reach it. The complement of the language provides behaviour that
definitely leads away from the good marking. Note that for covering instead of
reachability similar arguments apply that rely on Theorem 5.

! Formally, N = (P, T, F) is embedded in N' = (P',T',F')if P C P/, T C T', and
F'(sxmyu(rxs) = F. If homomorphism h labels N and h' labels N’ then h/|p = h.

6 Conclusion

We have shown that the downward-closures of all types of Petri net languages
are effectively computable. As an application of the results, we outlined an al-
gorithm to estimate the stability of a system towards attacks from a malicious
environment. In the future, we plan to study further applications. Especially in
concurrent system analysis, our results should yield fully automated algorithms
for the verification of asynchronous compositions of Petri nets with other models
like pushdown-automata. A different application domain is compositional verifi-
cation of Petri nets. For an observer of a system, it is sufficient to check whether
it reaches a critical state in the composition with the downward-closure of the
system’s language. However, cyclic proof rules are challenging.

References

1. P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Using forward
reachability analysis for verification of lossy channel systems. Form. Methods Syst.
Des., 25(1):39-65, 2004.

2. B. Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS,
44:178-186, 1991.

3. M. Hack. Decidability questions for Petri nets. Technical report, Cambridge, MA,
USA, 1976.

4. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3), 2(7):326-336, 1952.

5. R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,
3(2):147-195, 1969.

6. S. R. Kosaraju. Decidability of reachability in vector addition systems (preliminary
version). In STOC, pages 267-281. ACM, 1982.

7. J. L. Lambert. Finding a partial solution to a linear system of equations in positive
integers. Comput. Math. Applic., 15(3):209-212, 1988.

8. J. L. Lambert. A structure to decide reachability in Petri nets. Theor. Comp. Sci.,
99(1):79-104, 1992.

9. E. W. Mayr. An algorithm for the general Petri net reachability problem. In
STOC, pages 238-246. ACM, 1981.

10. E. W. Mayr. An algorithm for the general Petri net reachability problem. SIAM
J. Comp., 13(3):441-460, 1984.

11. R. Mayr. Undecidable problems in unreliable computations. Theor. Comp. Sci.,
297(1-3):337-354, 2003.

12. J. L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223-252, 1977.

13. L. Priese and H. Wimmel. Petri-Netze. Springer, 2003.

14. H. Wimmel. Infinity of intermediate states is decidable for Petri nets. In ICATPN,
volume 3099 of LNCS, pages 426—434. Springer, 2004.

