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Abstract 

Using abstraction in planning does not guarantee an im­
provement in search efficiency; it is possible for an ab-
stract planner to display worse performance than one 
that does not use abstraction. Analysis and experiments 
have shown that good abstraction hierarchies have, or 
are close to having, the downward refinement property, 
whereby, given that a concrete-level solution exists, every 
abstract solution can be refined to a concrete-level solu­
tion without backtracking across abstract levels. Work­
ing within a semantics for ABSTRIPS-style abstraction we 
provide a characterization of the downward refinement 
property. After discussing its effect on search efficiency, 
we develop a semantic condition sufficient for guarantee­
ing its presence in an abstraction hierarchy. Using the 
semantic condition, we then provide a set of sufficient 
and polynomial-time checkable syntactic conditions that 
can be used for checking a hierarchy for the downward 
refinement property, 

1 In t roduct ion 

Plan formation is concerned with finding sequences of 
operators that bring about certain goal states from cer­
tain initial states. This task is particularly difficult be­
cause of the exponential nature of the search spaces in­
volved. Abstraction [1, 2, 3, 4) is a widely adopted strat­
egy for lessening this computational burden. 

It is well-known that if one has a good abstraction hi­
erarchy, then search can be made exponentially more effi­
cient. Korf [5] has shown that by using macro-operators 
(a form of abstraction), the average time complexity 
of planning search can drop from exponential to linear. 
Similar speed-up results have been reported by Knoblock 
[2] for ABSTRIPS-style abstraction. However, close exam­
ination reveals that the downward refinement property 
(DRP) is a major assumption underlying both analyses. 
This property simply states that if a non-abstract, con­
crete level solution to the planning problem exists, then 
any abstract solution can be refined to a concrete solu­
tion without backtracking across abstraction levels. That 
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is, once a solution is found at the abstract level it need 
never be reconsidered, just refined. 

Furthermore, experiments with Abstrips [1] and 
Abtweak [4] have shown that abstraction only increases 
search efficiency in hierarchies that are close to having 
the DRP, i.e., in hierarchies where most abstract solu­
tions can be refined. In hierarchies where this is not 
the case, using abstraction can in fact decrease the effi-
ciency of the planner. Hence, it is important to charac-
terize those hierarchies that have the DRP. Such a char-
acterization could be to used to check whether a given 
abstraction hierarchy has the DRP. In the presence of 
the DRP a modified search strategy is applicable that 
runs exponentially faster without giving up complete-
ness. A characterization could also be used to generate 
an abstraction hierarchy for a given domain guaranteed 
to have the DRR 

In this paper, we will provide a semantics for 
ABSTRIPS-style abstraction. We will then use this se­
mantics to give a definition of the DRP. After examin­
ing the effect of the DRP on search efficiency, we will 
give a semantic condition that is sufficient to ensure the 
DRP. This semantic condition yields both a better un­
derstanding of the nature of the DRP and collection of 
syntactic conditions that are sufficient for guaranteeing 
its presence. To be useful, we have focused on conditions 
that can be tested in polynomial time, allowing a speci-
fication of a domain hierarchy to be checked quickly for 
the DRP. 

2 The Planning Representation 

We will focus on planning problems that can be de-
scribed with a quantifier-free language, L, consisting of 
a collection of predicates, of various arities; constants; 
and variables, used to describe parameterized operators. 
Such a language can be given a semantics by a traditional 
first-order model, with a domain of discourse, relations 
over the domain, and an interpretation function map­
ping the symbols of the language to semantic entities. 
The result of such a model will be the assignment of a 
truth-value to every formula of the language. Abstract-
ing away from the models we can focus on their end prod-
uct: the truth-value assignments. Treating these assign-
ments as functions from the formulas to T R U E / FALSE, 
we can view distinct truth-value functions as alternate 
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In general, a planning system will contain operator 
templates instead of operators. These templates contain 
variables which specify parameterized versions of the ac­
tual operators. The operators themselves are generated 
by instantiating the variables in the template. We will 
often refer to these operator templates as if they were ac­
tual operators. In these cases we are implicitly referring 
to all of the template's instantiations. 

Planning Problems and Plans A plan II is a se-
quence of operators A planning problem is 
a pair of state descriptions (J,G), where I is the initial 
state, and G is the goal state. If we apply the plan II 
to the initial state I the operators in will define a 
sequence of state descriptions SQ Sn resulting from 
the application of the operators:  
where SQ = 1. A plan is a solution a planning prob-
lem {/ ,G), or is correct with respect to (/ ,G), if the 
sequence of state descriptions generated by applying II 
to I satisfies two conditions: (1) Si-1, and (2) 
G Sn. That is, the plan is correct if the preconditions 
of each operator are satisfied in the state to which it is 
applied, and the final state satisfies the goal G-

Semantically, a planning problem corresponds to a 
pair of sets from DW, A correct plan II for 
{I,G) corresponds to a semantic solution II consisting of 
a sequence of functions that traverse through 
VW such that is in the domain of a1, each interme­
diate set of possible worlds, is in the domain of 
the function next applied, and the final set of pos­
sible worlds is a subset of It is not difficult 
to see that every syntactic solution has a corresponding 
semantic solution and vice versa. 

3 Abstraction 
The type of abstraction we consider here is of the 
ABSTRIPS-style, where abstract operators are generated 
by eliminating preconditions. This type of abstraction 
has been widely used in planning research [1, 4, 9, 10]. 
Every literal L in the language C is assigned one of 
a finite number of integer criticality values denoted by 
crit(L). The number of levels of abstraction is equal to 
the number of distinct criticality values. In particular, 
let there be k+1 different criticality values correspond­
ing to the integers { 0 , 1 , . . . , k } , where the highest level 
of abstraction is k and level 0 corresponds to the concrete 
level where no abstraction occurs. 

gle world might require an infinite number of literals in its 
definition. 

5These semantics differ in important ways from the se­
mantics for STRIPS provided by Lifschitz [8], Future work 
wi l l explore these semantics in more detail, and wil l treat the 
more general case where the restriction to literals is removed. 
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Forward Just i f icat ion A plan may contain extrane-
ous operators. Justification is a notion that characterizes 

A 

some of the redundant operators in I I ; i.e., operators 
that can be removed without affecting its correctness. 
In particular, in the version of justification we define, an 
operator is called justified in II if it is the last opera­
tor in the sequence to guarantee that a particular literal 
is satisfied before it is required as a precondition for a 
subsequent operator or in the goal state. 

Justification plays an important role in determining 
what is a "good" refinement of an abstract plan. 
Def in i t ion 1 (Forward Justified P(ans) Let L be a lit-

A 

eral. We say that n is correct with respect to L, if and 
only if, whenever Domain then  
That is, correctness with respect to L ensures that when­
ever L is required as a precondition, it is supplied. 

The first operator in the plan is forward justified 
with respect to L if and only if upon removing it from 
I I , II is no longer correct with respect to L. 

Inductively, let Qi be the set of operators in II that 
precede and that are not forward justified with respect 
to L. Then is forward justified with respect to L if 
and only if upon removing and all of the operators in 
Qi from n, II is no longer correct with respect to L. 

A 

Now, we can define II to be forward justified if and 
only if for every operator in II there is some literal L 
such that ai is forward justified with respect to L.  

This definition of forward justification is equivalent to 
a syntactic definition given in [11]. It is not, perhaps, 
the most natural definition of non-redundant plans from 
a semantic point of view, and we have examined a num­
ber of alternatives. However, for the purposes of this 
particular paper our definition has the advantage that it 
corresponds with concepts previously defined in [11]. 

A . 

If a plan II is not forward justified, then it can be con­
verted to a forward justified plan by simply removing the 
non-justified operators. Furthermore, it is not difficult 

A 

to demonstrate that if Ft is a correct plan (with respect 
to our fixed planning problem) then its forward justified 
version will also be correct. 

Since abstraction preserves the property that the state 
descriptions are collections of literals, we continue to 
have a one-to-one correspondence between abstract so­
lutions (plans) and sequences of semantic function ap-
plications, where the semantic functions now correspond 
to abstract operators, 

To simplify our subsequent discussion, we further re-
strict our attention to a special case where criticalities 
are assigned to predicates only. That is, an atomic for­
mula and its negation always have the same criticality 
value. 

4 The Downward Refinement Property 
Let us fix an arbitrary planning problem (I ,G). AH of 
our subsequent discussion will be about plans, at var i-
ous levels of abstraction, that are intended as solutions 
to this fixed problem. For simplicity, we will augment ev­
ery such plan with special initial and terminal operators. 
The initial operator ao, has no preconditions and has / 
as its add list. The terminal operator a n + 1 has G as its 
preconditions and an empty add list. Both have empty 



M o n o tonic Ref inement The idea behind monotonic 
refinement is that it defines a "good" refinement of an 
abstract plan. It captures the intuition that when an 
abstract plan at level t is refined to level i - 1 we want to 
preserve as much of the work done at the abstract level 
as is possible. That is, we would not be gaining much 
advantage from abstraction if we continually replanned 
achievements of the higher level at the lower level. One 
way such an undesirable effect could occur is to refine the 
abstract plan by reversing all of the high-level operators 
and then plan at the lower level from scratch. Restricting 
the legal refinements to be monotonic guarantees that 
such wasteful behavior will not occur. 

De f in i t i on 2 (Monotonic Refinement) Let II1 and II2 

be forward justified abstract solutions, with II1 being 
an i-th level solution and II 2 an i—1-th level solution, 
0 < i < k. 

We say that I I 2 is a monotonic refinement of II1, if 
when we forward justify Abs(i,II2) we obtain I I 1 . ■ 

Note that a monotonic refinement must be a correct 
plan, i.e., a solution. When we refine an abstract plan 
we push the operators in that plan to a lower level of ab-
straction, generating additional preconditions for those 
operators. Monotonic refinement essentially means that 
when we add new operators to refine the plan, i.e., to 
make it correct again, they are added solely to achieve 
these new preconditions or lower level goal conditions, 
not to achieve previously satisfied conditions. Hence, 
when we drop the new conditions again, by abstraction, 
all of the operators we added during refinement will be-
come redundant. Thus, rejustifying the plan will yield 
the original abstract plan. 

Our definition of monotonic refinement is the seman­
tic version of a syntactic definition given in [11]. Hence, 
by results from that work it can be shown that in ev-
ery ABSTRIPS-type abstraction hierarchy, completeness 
is preserved even when search is restricted by considering 
only monotonic refinements of abstract solutions [4]. 

The Downward Ref inement Proper ty 

Def in i t ion 3 (DRP) An abstraction hierarchy has the 
downward refinement property if and only if for every 
forward justified i-th level abstract solution ft, there is 
a monotonic refinement of II at level i - 1 , for 0 < i < k. 
m 

In other words, a hierarchy has the DRP if every so­
lution at an abstract level can be monotonically refined 
to a solution at the next lower level of abstraction. 

Example 1 Consider the Towers of Hanoi domain with 
3 pegs, Peg1, Peg2, Peg3 and 2 disks Big, Small. Us-
ing predicates OnBig(x) and OnSmall(x), where x is 
a peg, we can represent the location of the two disks. 
The initial state is {OnBig(Peg1) OnSmaU(Pegi)} and 
the goal state {OnBig(Peg3), OnSmall(Peg3)}. We 
can define two operators MoveBig{x,y) which moves 
the big disk from peg x to y, and MoveSmall(x, y) 
which similarly moves the small disk. We have 
that Pre(MoveSmali(x,y)) is {JsPeg(x), IsPeg(y), 
OnSmall(x)}\ Add(MoveSmall(x,y)) is {OnSmall(y)}; 

and Del(MoveSmall(x,y)) is {OnSmall(x)}. For 
the other operator we have Pre(MoveBig(x,y)) is 
{JsPeg(x), IsPeg{y), ^OnSm&ll(y), ^OnSmail(x), 
OnBig{x)}\ Add(MoveBi£(x,y)) is {OuBig{y)}; and 
Del(MoveBi£(x,y)) is {OnBig(x)}. 

Predicates that are not modifiable by any action, like 
Ispeg, act as constraints at all levels of abstraction. For 
example, the Ispeg preconditions insure that the param­
eters can only refer to pegs regardless of the level of 
abstraction. Hence, we always place these 'Hype" predi-
cates at the highest level of abstraction, i.e., level k.6 

There are two ways to construct an abstraction hi­
erarchy. We can put OnBig on the abstract level and 
OnSmall on the concrete level, or we can assign the crit-
icalities the other way around. As we will demonstrate 
later, the first choice produces a hierarchy that has the 
DRP, while the second choice produces one that does 
not. 

5 Effects on Search Efficiency 

The main reason for being concerned with the DRP is 
its profound effect on search efficiency. 

In planning, it is reasonable to require that complete-
ness is preserved when an one-level planning system is 
extended to a multiple-level system. Hence, if a non-
abstract solution to a problem exists, the abstract plan­
ner should also be able to find a concrete solution. 

To preserve the completeness of abstract planning, a 
search method that is complete across abstraction levels 
has to be adopted [4]. Typically, this means that one 
cannot abandon alternate abstract paths in the search 
tree when a solution is found at an abstract level. In-
stead, all paths have to be kept in the open list to be 
explored later. This can greatly hamper the efficiency of 
search. 

On the other hand, one can do considerably better in 
hierarchies that satisfy the downward refinement prop-
erty. At any level of abstraction, search for alternate 
abstract plans can be terminated once a single correct 
plan has been found. In other words, search never back­
tracks to a previously explored abstract level. The DRP 
guarantees that any abstract solution can be refined to 
a concrete level one. Thus, if there is a concrete level so­
lution, search in this manner will find it without having 
to considering alternate abstract plans. 

Let b be the average branching factor of the search, 
and d be the length of an optimal solution. Then 
breadth-first search without abstraction will take on av­
erage 0(bd). On the other hand, say we have k levels 
of abstraction and assume that the branching factor is 
constant and equal to b in each abstract level. Further 
assume that at each level of refinement approximately 
k/d new operators are inserted.7 Then, if the DRP is 
not satisfied and we assume that there is only a 50% 
chance that an abstract solution can be refined to a so­
lution at the next lowest level, it can be shown that the 
average case complexity remains 0(bd). With the DRP, 

6 In actuality, since they are not changed by any action, 
type predicates do not play a role in determining the DSP. 

7These assumptions are similar to those made in [12]. 

Bacchus and Yang 289 



however, it can be shown that the average case com­
plexity becomes 0(k x b(d/k). That is, the search is 
exponentially, in k, more efficient. 

The downward refinement property has been imple­
mented as an option in the A B T W E A K planner [4], And 
experiments done in Towers of Hanoi domain with three 
disks have shown that there can be as much as a 10 fold 
improvement in search time and space when using the 
DRP. This often makes the difference between termina­
tion and non-termination. 

6 Semantic Condit ions for the D R P 
Given an abstraction hierarchy, one would like to tell 
whether it has the DRP. Alternatively, from a domain 
specification one may want to generate a hierarchy with 
the DRP guaranteed. We will now provide a set of condi­
tions sufficient to guarantee that the DRP holds. This is 
done by first providing a semantic condition, and then, 
in the next section, we will consider various syntactic 
realizations of this condition. 

First we provide a sufficient condition for monotonic 
refinement. 

Then the DRP is satisfied by the hierarchy, ■ 

Intuitively, when we refine an abstract solution it may 
no longer be a solution because of newly introduced and 
as yet unsatisfied low level preconditions. Hence, look­
ing at the situation between two adjacent operators in 
the abstract solution we see that the semantic state that 
is the result of the first operator may no longer be in 
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the domain of the second operator, because of unsatis-
fied low level preconditions. Our DRP condition states 
that the hierarchy has the property that a sequence of 
new operators can be found that will reconnect the two 
operators. Furthermore, this sequence has the property 
that it does not affect any higher level conditions; i.e., 
at the t-th level nothing is changed. 

7 Syntactic Checks for The D R P 
In this section, we present some sufficient syntactic con­
ditions for the DRP. These conditions are presented in 
order of increasing sophistication, and range of applica­
bility. Each of these conditions is a syntactic realization 
of Theorem 1. 

Complete Independence We start by considering 
the most trivial case for the DRP. Suppose that the k+1 
criticality levels decompose the operators into k+1 dis-
joint subsets, O o , . . . , Ok, so that all of the literals in the 
precondition, add and delete lists of each operator in Oi 

have the same criticality value, i. This condition, which 
we call complete independence insures that no operator 
used to achieve a condition in an i-th level solution will 
have any effect on any other levels, and furthermore it 
will not require any preconditions from other levels ei­
ther. 

It is not hard to see that complete independence en­
sures the DRP. On the semantic level, the k+l abstrac-
tion levels define k+1 independent subproblems. Any 
concatenation of the solution paths at two adjacent lev­
els of abstraction returns a monotonic refinement of the 
abstract solution. Thus, we have 

Theorem 2 Complete independence is sufficient to 
guarantee the DRP. 

Example 2 Consider again the Tower of Hanoi do­
main. Assume that there are two copies of the 2-disk 
version of the problem. Given the restriction that no 
disk for one problem is allowed to be moved to a peg for 
the other problem, a complete-independence hierarchy 
can be trivially built by putting one copy of the problem 
on the abstract level, and the other one on the concrete 
level. 

Complete low-level connect iv i ty The second con­
dition we can place on the preconditions is more useful 
than complete independence. 

De f in i t i on 4 (Complete Low-Level Connectivity) Let S1 

and S2 be any states such that Abs(i, S1) = Abs(i,S2). 
That is, S1 and S2 only differ with respect to literals at 
criticality levels less than i. Complete low-level connec­
t ivi ty is satisfied if for any two such states at any level 
of abstraction i, there is an i - 1 level solution, II to the 
planning problem (S1,S2) such that no operators in II 
add or delete a literal with criticality higher than level 
i-I 

Intuitively, this condition states that we can always 
achieve lower level preconditions without violating the 
higher level effects. According to the condition, every 
pair of states S1 and S2 are connected by a path, pro-
vided that Abs(i,S1) = Abs(i,S2). Furthermore, the 



condition requires that no operators on this path affect a 
higher level literal. This is equivalent to saying that the 
path never travels out of a state defined by higher level 
literals. Thus, the conditions of Theorem 1 are satisfied. 
Hence, we have the following theorem: 

Theorem 3 Complete low-level connectivity is suffi­
cient to guarantee the DRP. 

Example 3 Consider again the 2-disk Tower of Hanoi 
domain. Construct an abstraction hierarchy by placing 
the predicate OnBig on the abstract level, and OnSmall 
on the concrete level. If we fix the position of the big 
disk we can freely move the small disk from any peg 
to another. The hierarchy satisfies the complete low-
level connectivity condition. Now consider the opposite 
hierarchy where the predicate OnSmall is placed on the 
abstract level, while OnBig is on the concrete level. This 
hierarchy does not satisfy the complete low-level connec­
tivity restriction, since whether or not the big disk can 
be moved to another peg depends on where the small 
disk is located. In this case it is also possible to show 
that the hierarchy does not have the DRP. For example, 
there is no monotonic refinement of the abstract plan 
MoveSmall (Peg1, Peg3). 

Unfortunately the complete connectivity condition is 
difficult to check syntactically. However, special cases 
can be constructed which can be checked. We give one 
example. 

Def in i t ion 5 (Checkable Low-Level Connectivity) 
Complete low-level connectivity holds if for all levels i 
we have the following: 

Necessary Connect iv i t y The third condition we can 
place on the preconditions is the most genera). The pre-
vious connectivity condition requires that all low level 
states be connected. This, however, is too restrictive. 
Al l that is actually required is low level connectivity be­
tween pairs of states that could be generated during the 
refinement of a higher level plan. We call this condition 
necessary connectivity. 

In particular we have: 

postcondition state of does not contradict the precon­
ditions of at level t; and depends on preconditions 
at level i-1 so that there is the possibility of a problem 
when refining to this level. For every such pair and 

there must exist an operator such that:  

Intuitively, this condition is saying the following: for 
every pair of operators that might be sequenced in a plan 
at level i, there exists an operator whose preconditions 
at abstraction level i—1 are satisfied in any state that 
results from applying and that be used to achieve the 
i —1-th level preconditions of Moreover, the operator 

does not change any literal whose criticality value is 
greater than i - 1 . Therefore, on the semantic level, the 
conditions of Theorem 1 are satisfied, Thus, we have the 
following: 

Theorem 4 Necessary connectivity are sufficient to 
guarantee the DRP. 

Example 4 Consider the following extended Tower of 
Hanoi domain with two disks, where there is an addi-
tional peg, Peg4 that is completely disconnected from 
the other three pegs. That is, although initially a disk 
can be placed on Peg4, no disk can be moved to or away 
from it. 

If we place OnBig at the abstract level and OnSmall 
at the concrete level, then the extended Tower of Hanoi 
domain satisfies the necessary connectivity condition. 
However, since Peg4 is disconnected from the rest of the 
pegs, the concrete-level states are not completely con­
nected- Therefore, the hierarchy does not satisfy the 
complete low-level connectivity condition. 

Example 5 Consider the robot planning domain de­
scribed by Sacerdoti [ l ] . A robot can travel between 
several rooms, where each pair of rooms is connected by 
one or more doors. A door can be either opened or closed 
by the robot. In addition, a number of boxes also exist, 
which can be either pushed around by the robot. To be 
more complex, we can also allow the robot to carry a 
box from one location to another. To carry a box, the 
robot has to first pick it up. 

The domain is described by a number of predicates 
(see [\] for a complete description). An abstraction hi­
erarchy can be built by assigning criticality values to 
the predicates in the following way. The highest level 
of abstraction consists of all type-preconditions, such as 
Connects, which asserts that a door connects two ad­
jacent rooms. The next level down are predicates In-
room, At and Nextto. Further down are predicates that 
describe the status of the door, Status(dx,Open) or St&-
tus(dxtClosed). The lowest level are the predicates Hold­
ing and Handempty. 

Suppose that all the goals are described by predicates 
Inroom and/or Nextto. Then the above hierarchy sat-
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isfies the DRR In particular, the hierarchy satisfies the 
complete low-level connectivity condition. For example, 
the robot can either close or open a door once it is next 
to the door, without changing any location predicates. 
Similarly, the robot can pick up or put down a box with­
out changing any door status or location predicates. 

Example 6 Consider a problem of inter-city traveling 
by an agent. Assume that the agent can travel between 
cities by bus, train, or plane. Also assume that within 
each city, the agent can travel between a number of key 
locations by means of public transportation- Finally, 
the agent can travel to particular addresses in the local 
vicinity of each key location by walking. An abstraction 
hierarchy for this problem domain can be built by placing 
city-level locations at the highest level, the key locations 
at the next level, and the addresses at the concrete level. 
This hierarchy satisfies the DRP: once the agent is in a 
particular city he will never have to leave the city to 
travel between key locations in the city, and once he is 
at the nearest key location he never travel to another 
key location to travel between local addresses. 

8 Conclusions and Future Work 

In this paper, we have formalized the downward refine­
ment property for ABSTRlPS-type of abstraction hierar­
chies. The DRP guarantees completeness of planning 
even when search refrains from backtrack across ab-
straction levels. Our analysis shows that an exponential 
amount of savings in search can be achieved. We have 
presented a general semantic condition for guaranteeing 
the DRP, and have derived a number of syntactic con­
ditions from it. Although we lack the space it can be 
demonstrated that these conditions can be checked in 
polynomial time. Another topic we have not addressed 
is the use of our syntactic checks in the automatic gen­
eration of abstraction hierarchies that are guaranteed to 
have the DRR It is possible to specify an algorithm that 
accomplishes this task. 

This work is a step towards understanding abstract 
problem-solving in general. A number of extensions will 
be made in future work. One such extension is to design 
a richer set of conditions that allows for a broader range 
of application. Another is to explore the use of statistical 
information in the verification and generation of abstrac­
tion hierarchies. As stated above, all of our conditions 
are sufficient for guaranteeing the DRP. In practice, it 
may be the case that a large portion of a domain satis­
fies the property, but not all of it. This might cause the 
statistical phenomena that most, but not all, abstract 
solutions can be monotonically refined. We intend to 
explore the ramifications of this type of behavior. For 
example, if we have additional statistical information, 
then we may be able to make inferences as to how close 
the hierarchy is to having the DRP and the effect this 
would have on search efficiency. 
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