
The Downward Refinement Proper ty

Fahiem Bacchus and Qiang Yang*
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

N2L-3G1

Abstract

Using abstraction in planning does not guarantee an im­
provement in search efficiency; it is possible for an ab-
stract planner to display worse performance than one
that does not use abstraction. Analysis and experiments
have shown that good abstraction hierarchies have, or
are close to having, the downward refinement property,
whereby, given that a concrete-level solution exists, every
abstract solution can be refined to a concrete-level solu­
tion without backtracking across abstract levels. Work­
ing within a semantics for ABSTRIPS-style abstraction we
provide a characterization of the downward refinement
property. After discussing its effect on search efficiency,
we develop a semantic condition sufficient for guarantee­
ing its presence in an abstraction hierarchy. Using the
semantic condition, we then provide a set of sufficient
and polynomial-time checkable syntactic conditions that
can be used for checking a hierarchy for the downward
refinement property,

1 In t roduct ion

Plan formation is concerned with finding sequences of
operators that bring about certain goal states from cer­
tain initial states. This task is particularly difficult be­
cause of the exponential nature of the search spaces in­
volved. Abstraction [1, 2, 3, 4) is a widely adopted strat­
egy for lessening this computational burden.

It is well-known that if one has a good abstraction hi­
erarchy, then search can be made exponentially more effi­
cient. Korf [5] has shown that by using macro-operators
(a form of abstraction), the average time complexity
of planning search can drop from exponential to linear.
Similar speed-up results have been reported by Knoblock
[2] for ABSTRIPS-style abstraction. However, close exam­
ination reveals that the downward refinement property
(DRP) is a major assumption underlying both analyses.
This property simply states that if a non-abstract, con­
crete level solution to the planning problem exists, then
any abstract solution can be refined to a concrete solu­
tion without backtracking across abstraction levels. That

*This work is supported by grants from the Natural
Science and Engineering Council of Canada. The au­
thors' e-mail addresses are fbacchuslogos.waterloo.ca
and qyangClogos.waterloo.ca.

is, once a solution is found at the abstract level it need
never be reconsidered, just refined.

Furthermore, experiments with Abstrips [1] and
Abtweak [4] have shown that abstraction only increases
search efficiency in hierarchies that are close to having
the DRP, i.e., in hierarchies where most abstract solu­
tions can be refined. In hierarchies where this is not
the case, using abstraction can in fact decrease the effi-
ciency of the planner. Hence, it is important to charac-
terize those hierarchies that have the DRP. Such a char-
acterization could be to used to check whether a given
abstraction hierarchy has the DRP. In the presence of
the DRP a modified search strategy is applicable that
runs exponentially faster without giving up complete-
ness. A characterization could also be used to generate
an abstraction hierarchy for a given domain guaranteed
to have the DRR

In this paper, we will provide a semantics for
ABSTRIPS-style abstraction. We will then use this se­
mantics to give a definition of the DRP. After examin­
ing the effect of the DRP on search efficiency, we will
give a semantic condition that is sufficient to ensure the
DRP. This semantic condition yields both a better un­
derstanding of the nature of the DRP and collection of
syntactic conditions that are sufficient for guaranteeing
its presence. To be useful, we have focused on conditions
that can be tested in polynomial time, allowing a speci-
fication of a domain hierarchy to be checked quickly for
the DRP.

2 The Planning Representation

We will focus on planning problems that can be de-
scribed with a quantifier-free language, L, consisting of
a collection of predicates, of various arities; constants;
and variables, used to describe parameterized operators.
Such a language can be given a semantics by a traditional
first-order model, with a domain of discourse, relations
over the domain, and an interpretation function map­
ping the symbols of the language to semantic entities.
The result of such a model will be the assignment of a
truth-value to every formula of the language. Abstract-
ing away from the models we can focus on their end prod-
uct: the truth-value assignments. Treating these assign-
ments as functions from the formulas to T R U E / FALSE,
we can view distinct truth-value functions as alternate

286 Automated Reasoning

In general, a planning system will contain operator
templates instead of operators. These templates contain
variables which specify parameterized versions of the ac­
tual operators. The operators themselves are generated
by instantiating the variables in the template. We will
often refer to these operator templates as if they were ac­
tual operators. In these cases we are implicitly referring
to all of the template's instantiations.

Planning Problems and Plans A plan II is a se-
quence of operators A planning problem is
a pair of state descriptions (J,G), where I is the initial
state, and G is the goal state. If we apply the plan II
to the initial state I the operators in will define a
sequence of state descriptions SQ Sn resulting from
the application of the operators:
where SQ = 1. A plan is a solution a planning prob-
lem {/ ,G), or is correct with respect to (/ ,G), if the
sequence of state descriptions generated by applying II
to I satisfies two conditions: (1) Si-1, and (2)
G Sn. That is, the plan is correct if the preconditions
of each operator are satisfied in the state to which it is
applied, and the final state satisfies the goal G-

Semantically, a planning problem corresponds to a
pair of sets from DW, A correct plan II for
{I,G) corresponds to a semantic solution II consisting of
a sequence of functions that traverse through
VW such that is in the domain of a1, each interme­
diate set of possible worlds, is in the domain of
the function next applied, and the final set of pos­
sible worlds is a subset of It is not difficult
to see that every syntactic solution has a corresponding
semantic solution and vice versa.

3 Abstraction
The type of abstraction we consider here is of the
ABSTRIPS-style, where abstract operators are generated
by eliminating preconditions. This type of abstraction
has been widely used in planning research [1, 4, 9, 10].
Every literal L in the language C is assigned one of
a finite number of integer criticality values denoted by
crit(L). The number of levels of abstraction is equal to
the number of distinct criticality values. In particular,
let there be k+1 different criticality values correspond­
ing to the integers { 0 , 1 , . . . , k } , where the highest level
of abstraction is k and level 0 corresponds to the concrete
level where no abstraction occurs.

gle world might require an infinite number of literals in its
definition.

5These semantics differ in important ways from the se­
mantics for STRIPS provided by Lifschitz [8], Future work
wi l l explore these semantics in more detail, and wil l treat the
more general case where the restriction to literals is removed.

Bacchus and Yang 287

288 Automated Reasoning

Forward Just i f icat ion A plan may contain extrane-
ous operators. Justification is a notion that characterizes

A

some of the redundant operators in I I ; i.e., operators
that can be removed without affecting its correctness.
In particular, in the version of justification we define, an
operator is called justified in II if it is the last opera­
tor in the sequence to guarantee that a particular literal
is satisfied before it is required as a precondition for a
subsequent operator or in the goal state.

Justification plays an important role in determining
what is a "good" refinement of an abstract plan.
Def in i t ion 1 (Forward Justified P(ans) Let L be a lit-

A

eral. We say that n is correct with respect to L, if and
only if, whenever Domain then
That is, correctness with respect to L ensures that when­
ever L is required as a precondition, it is supplied.

The first operator in the plan is forward justified
with respect to L if and only if upon removing it from
I I , II is no longer correct with respect to L.

Inductively, let Qi be the set of operators in II that
precede and that are not forward justified with respect
to L. Then is forward justified with respect to L if
and only if upon removing and all of the operators in
Qi from n, II is no longer correct with respect to L.

A

Now, we can define II to be forward justified if and
only if for every operator in II there is some literal L
such that ai is forward justified with respect to L.

This definition of forward justification is equivalent to
a syntactic definition given in [11]. It is not, perhaps,
the most natural definition of non-redundant plans from
a semantic point of view, and we have examined a num­
ber of alternatives. However, for the purposes of this
particular paper our definition has the advantage that it
corresponds with concepts previously defined in [11].

A .

If a plan II is not forward justified, then it can be con­
verted to a forward justified plan by simply removing the
non-justified operators. Furthermore, it is not difficult

A

to demonstrate that if Ft is a correct plan (with respect
to our fixed planning problem) then its forward justified
version will also be correct.

Since abstraction preserves the property that the state
descriptions are collections of literals, we continue to
have a one-to-one correspondence between abstract so­
lutions (plans) and sequences of semantic function ap-
plications, where the semantic functions now correspond
to abstract operators,

To simplify our subsequent discussion, we further re-
strict our attention to a special case where criticalities
are assigned to predicates only. That is, an atomic for­
mula and its negation always have the same criticality
value.

4 The Downward Refinement Property
Let us fix an arbitrary planning problem (I ,G). AH of
our subsequent discussion will be about plans, at var i-
ous levels of abstraction, that are intended as solutions
to this fixed problem. For simplicity, we will augment ev­
ery such plan with special initial and terminal operators.
The initial operator ao, has no preconditions and has /
as its add list. The terminal operator a n + 1 has G as its
preconditions and an empty add list. Both have empty

M o n o tonic Ref inement The idea behind monotonic
refinement is that it defines a "good" refinement of an
abstract plan. It captures the intuition that when an
abstract plan at level t is refined to level i - 1 we want to
preserve as much of the work done at the abstract level
as is possible. That is, we would not be gaining much
advantage from abstraction if we continually replanned
achievements of the higher level at the lower level. One
way such an undesirable effect could occur is to refine the
abstract plan by reversing all of the high-level operators
and then plan at the lower level from scratch. Restricting
the legal refinements to be monotonic guarantees that
such wasteful behavior will not occur.

De f in i t i on 2 (Monotonic Refinement) Let II1 and II2

be forward justified abstract solutions, with II1 being
an i-th level solution and II 2 an i—1-th level solution,
0 < i < k.

We say that I I 2 is a monotonic refinement of II1, if
when we forward justify Abs(i,II2) we obtain I I 1 . ■

Note that a monotonic refinement must be a correct
plan, i.e., a solution. When we refine an abstract plan
we push the operators in that plan to a lower level of ab-
straction, generating additional preconditions for those
operators. Monotonic refinement essentially means that
when we add new operators to refine the plan, i.e., to
make it correct again, they are added solely to achieve
these new preconditions or lower level goal conditions,
not to achieve previously satisfied conditions. Hence,
when we drop the new conditions again, by abstraction,
all of the operators we added during refinement will be-
come redundant. Thus, rejustifying the plan will yield
the original abstract plan.

Our definition of monotonic refinement is the seman­
tic version of a syntactic definition given in [11]. Hence,
by results from that work it can be shown that in ev-
ery ABSTRIPS-type abstraction hierarchy, completeness
is preserved even when search is restricted by considering
only monotonic refinements of abstract solutions [4].

The Downward Ref inement Proper ty

Def in i t ion 3 (DRP) An abstraction hierarchy has the
downward refinement property if and only if for every
forward justified i-th level abstract solution ft, there is
a monotonic refinement of II at level i - 1 , for 0 < i < k.
m

In other words, a hierarchy has the DRP if every so­
lution at an abstract level can be monotonically refined
to a solution at the next lower level of abstraction.

Example 1 Consider the Towers of Hanoi domain with
3 pegs, Peg1, Peg2, Peg3 and 2 disks Big, Small. Us-
ing predicates OnBig(x) and OnSmall(x), where x is
a peg, we can represent the location of the two disks.
The initial state is {OnBig(Peg1) OnSmaU(Pegi)} and
the goal state {OnBig(Peg3), OnSmall(Peg3)}. We
can define two operators MoveBig{x,y) which moves
the big disk from peg x to y, and MoveSmall(x, y)
which similarly moves the small disk. We have
that Pre(MoveSmali(x,y)) is {JsPeg(x), IsPeg(y),
OnSmall(x)}\ Add(MoveSmall(x,y)) is {OnSmall(y)};

and Del(MoveSmall(x,y)) is {OnSmall(x)}. For
the other operator we have Pre(MoveBig(x,y)) is
{JsPeg(x), IsPeg{y), ^OnSm&ll(y), ^OnSmail(x),
OnBig{x)}\ Add(MoveBi£(x,y)) is {OuBig{y)}; and
Del(MoveBi£(x,y)) is {OnBig(x)}.

Predicates that are not modifiable by any action, like
Ispeg, act as constraints at all levels of abstraction. For
example, the Ispeg preconditions insure that the param­
eters can only refer to pegs regardless of the level of
abstraction. Hence, we always place these 'Hype" predi-
cates at the highest level of abstraction, i.e., level k.6

There are two ways to construct an abstraction hi­
erarchy. We can put OnBig on the abstract level and
OnSmall on the concrete level, or we can assign the crit-
icalities the other way around. As we will demonstrate
later, the first choice produces a hierarchy that has the
DRP, while the second choice produces one that does
not.

5 Effects on Search Efficiency

The main reason for being concerned with the DRP is
its profound effect on search efficiency.

In planning, it is reasonable to require that complete-
ness is preserved when an one-level planning system is
extended to a multiple-level system. Hence, if a non-
abstract solution to a problem exists, the abstract plan­
ner should also be able to find a concrete solution.

To preserve the completeness of abstract planning, a
search method that is complete across abstraction levels
has to be adopted [4]. Typically, this means that one
cannot abandon alternate abstract paths in the search
tree when a solution is found at an abstract level. In-
stead, all paths have to be kept in the open list to be
explored later. This can greatly hamper the efficiency of
search.

On the other hand, one can do considerably better in
hierarchies that satisfy the downward refinement prop-
erty. At any level of abstraction, search for alternate
abstract plans can be terminated once a single correct
plan has been found. In other words, search never back­
tracks to a previously explored abstract level. The DRP
guarantees that any abstract solution can be refined to
a concrete level one. Thus, if there is a concrete level so­
lution, search in this manner will find it without having
to considering alternate abstract plans.

Let b be the average branching factor of the search,
and d be the length of an optimal solution. Then
breadth-first search without abstraction will take on av­
erage 0(bd). On the other hand, say we have k levels
of abstraction and assume that the branching factor is
constant and equal to b in each abstract level. Further
assume that at each level of refinement approximately
k/d new operators are inserted.7 Then, if the DRP is
not satisfied and we assume that there is only a 50%
chance that an abstract solution can be refined to a so­
lution at the next lowest level, it can be shown that the
average case complexity remains 0(bd). With the DRP,

6 In actuality, since they are not changed by any action,
type predicates do not play a role in determining the DSP.

7These assumptions are similar to those made in [12].

Bacchus and Yang 289

however, it can be shown that the average case com­
plexity becomes 0(k x b(d/k). That is, the search is
exponentially, in k, more efficient.

The downward refinement property has been imple­
mented as an option in the A B T W E A K planner [4], And
experiments done in Towers of Hanoi domain with three
disks have shown that there can be as much as a 10 fold
improvement in search time and space when using the
DRP. This often makes the difference between termina­
tion and non-termination.

6 Semantic Condit ions for the D R P
Given an abstraction hierarchy, one would like to tell
whether it has the DRP. Alternatively, from a domain
specification one may want to generate a hierarchy with
the DRP guaranteed. We will now provide a set of condi­
tions sufficient to guarantee that the DRP holds. This is
done by first providing a semantic condition, and then,
in the next section, we will consider various syntactic
realizations of this condition.

First we provide a sufficient condition for monotonic
refinement.

Then the DRP is satisfied by the hierarchy, ■

Intuitively, when we refine an abstract solution it may
no longer be a solution because of newly introduced and
as yet unsatisfied low level preconditions. Hence, look­
ing at the situation between two adjacent operators in
the abstract solution we see that the semantic state that
is the result of the first operator may no longer be in

290 Automated Reasoning

the domain of the second operator, because of unsatis-
fied low level preconditions. Our DRP condition states
that the hierarchy has the property that a sequence of
new operators can be found that will reconnect the two
operators. Furthermore, this sequence has the property
that it does not affect any higher level conditions; i.e.,
at the t-th level nothing is changed.

7 Syntactic Checks for The D R P
In this section, we present some sufficient syntactic con­
ditions for the DRP. These conditions are presented in
order of increasing sophistication, and range of applica­
bility. Each of these conditions is a syntactic realization
of Theorem 1.

Complete Independence We start by considering
the most trivial case for the DRP. Suppose that the k+1
criticality levels decompose the operators into k+1 dis-
joint subsets, O o , . . . , Ok, so that all of the literals in the
precondition, add and delete lists of each operator in Oi

have the same criticality value, i. This condition, which
we call complete independence insures that no operator
used to achieve a condition in an i-th level solution will
have any effect on any other levels, and furthermore it
will not require any preconditions from other levels ei­
ther.

It is not hard to see that complete independence en­
sures the DRP. On the semantic level, the k+l abstrac-
tion levels define k+1 independent subproblems. Any
concatenation of the solution paths at two adjacent lev­
els of abstraction returns a monotonic refinement of the
abstract solution. Thus, we have

Theorem 2 Complete independence is sufficient to
guarantee the DRP.

Example 2 Consider again the Tower of Hanoi do­
main. Assume that there are two copies of the 2-disk
version of the problem. Given the restriction that no
disk for one problem is allowed to be moved to a peg for
the other problem, a complete-independence hierarchy
can be trivially built by putting one copy of the problem
on the abstract level, and the other one on the concrete
level.

Complete low-level connect iv i ty The second con­
dition we can place on the preconditions is more useful
than complete independence.

De f in i t i on 4 (Complete Low-Level Connectivity) Let S1

and S2 be any states such that Abs(i, S1) = Abs(i,S2).
That is, S1 and S2 only differ with respect to literals at
criticality levels less than i. Complete low-level connec­
t ivi ty is satisfied if for any two such states at any level
of abstraction i, there is an i - 1 level solution, II to the
planning problem (S1,S2) such that no operators in II
add or delete a literal with criticality higher than level
i-I

Intuitively, this condition states that we can always
achieve lower level preconditions without violating the
higher level effects. According to the condition, every
pair of states S1 and S2 are connected by a path, pro-
vided that Abs(i,S1) = Abs(i,S2). Furthermore, the

condition requires that no operators on this path affect a
higher level literal. This is equivalent to saying that the
path never travels out of a state defined by higher level
literals. Thus, the conditions of Theorem 1 are satisfied.
Hence, we have the following theorem:

Theorem 3 Complete low-level connectivity is suffi­
cient to guarantee the DRP.

Example 3 Consider again the 2-disk Tower of Hanoi
domain. Construct an abstraction hierarchy by placing
the predicate OnBig on the abstract level, and OnSmall
on the concrete level. If we fix the position of the big
disk we can freely move the small disk from any peg
to another. The hierarchy satisfies the complete low-
level connectivity condition. Now consider the opposite
hierarchy where the predicate OnSmall is placed on the
abstract level, while OnBig is on the concrete level. This
hierarchy does not satisfy the complete low-level connec­
tivity restriction, since whether or not the big disk can
be moved to another peg depends on where the small
disk is located. In this case it is also possible to show
that the hierarchy does not have the DRP. For example,
there is no monotonic refinement of the abstract plan
MoveSmall (Peg1, Peg3).

Unfortunately the complete connectivity condition is
difficult to check syntactically. However, special cases
can be constructed which can be checked. We give one
example.

Def in i t ion 5 (Checkable Low-Level Connectivity)
Complete low-level connectivity holds if for all levels i
we have the following:

Necessary Connect iv i t y The third condition we can
place on the preconditions is the most genera). The pre-
vious connectivity condition requires that all low level
states be connected. This, however, is too restrictive.
Al l that is actually required is low level connectivity be­
tween pairs of states that could be generated during the
refinement of a higher level plan. We call this condition
necessary connectivity.

In particular we have:

postcondition state of does not contradict the precon­
ditions of at level t; and depends on preconditions
at level i-1 so that there is the possibility of a problem
when refining to this level. For every such pair and

there must exist an operator such that:

Intuitively, this condition is saying the following: for
every pair of operators that might be sequenced in a plan
at level i, there exists an operator whose preconditions
at abstraction level i—1 are satisfied in any state that
results from applying and that be used to achieve the
i —1-th level preconditions of Moreover, the operator

does not change any literal whose criticality value is
greater than i - 1 . Therefore, on the semantic level, the
conditions of Theorem 1 are satisfied, Thus, we have the
following:

Theorem 4 Necessary connectivity are sufficient to
guarantee the DRP.

Example 4 Consider the following extended Tower of
Hanoi domain with two disks, where there is an addi-
tional peg, Peg4 that is completely disconnected from
the other three pegs. That is, although initially a disk
can be placed on Peg4, no disk can be moved to or away
from it.

If we place OnBig at the abstract level and OnSmall
at the concrete level, then the extended Tower of Hanoi
domain satisfies the necessary connectivity condition.
However, since Peg4 is disconnected from the rest of the
pegs, the concrete-level states are not completely con­
nected- Therefore, the hierarchy does not satisfy the
complete low-level connectivity condition.

Example 5 Consider the robot planning domain de­
scribed by Sacerdoti [l] . A robot can travel between
several rooms, where each pair of rooms is connected by
one or more doors. A door can be either opened or closed
by the robot. In addition, a number of boxes also exist,
which can be either pushed around by the robot. To be
more complex, we can also allow the robot to carry a
box from one location to another. To carry a box, the
robot has to first pick it up.

The domain is described by a number of predicates
(see [\] for a complete description). An abstraction hi­
erarchy can be built by assigning criticality values to
the predicates in the following way. The highest level
of abstraction consists of all type-preconditions, such as
Connects, which asserts that a door connects two ad­
jacent rooms. The next level down are predicates In-
room, At and Nextto. Further down are predicates that
describe the status of the door, Status(dx,Open) or St&-
tus(dxtClosed). The lowest level are the predicates Hold­
ing and Handempty.

Suppose that all the goals are described by predicates
Inroom and/or Nextto. Then the above hierarchy sat-

Bacchus and Yang 291

isfies the DRR In particular, the hierarchy satisfies the
complete low-level connectivity condition. For example,
the robot can either close or open a door once it is next
to the door, without changing any location predicates.
Similarly, the robot can pick up or put down a box with­
out changing any door status or location predicates.

Example 6 Consider a problem of inter-city traveling
by an agent. Assume that the agent can travel between
cities by bus, train, or plane. Also assume that within
each city, the agent can travel between a number of key
locations by means of public transportation- Finally,
the agent can travel to particular addresses in the local
vicinity of each key location by walking. An abstraction
hierarchy for this problem domain can be built by placing
city-level locations at the highest level, the key locations
at the next level, and the addresses at the concrete level.
This hierarchy satisfies the DRP: once the agent is in a
particular city he will never have to leave the city to
travel between key locations in the city, and once he is
at the nearest key location he never travel to another
key location to travel between local addresses.

8 Conclusions and Future Work

In this paper, we have formalized the downward refine­
ment property for ABSTRlPS-type of abstraction hierar­
chies. The DRP guarantees completeness of planning
even when search refrains from backtrack across ab-
straction levels. Our analysis shows that an exponential
amount of savings in search can be achieved. We have
presented a general semantic condition for guaranteeing
the DRP, and have derived a number of syntactic con­
ditions from it. Although we lack the space it can be
demonstrated that these conditions can be checked in
polynomial time. Another topic we have not addressed
is the use of our syntactic checks in the automatic gen­
eration of abstraction hierarchies that are guaranteed to
have the DRR It is possible to specify an algorithm that
accomplishes this task.

This work is a step towards understanding abstract
problem-solving in general. A number of extensions will
be made in future work. One such extension is to design
a richer set of conditions that allows for a broader range
of application. Another is to explore the use of statistical
information in the verification and generation of abstrac­
tion hierarchies. As stated above, all of our conditions
are sufficient for guaranteeing the DRP. In practice, it
may be the case that a large portion of a domain satis­
fies the property, but not all of it. This might cause the
statistical phenomena that most, but not all, abstract
solutions can be monotonically refined. We intend to
explore the ramifications of this type of behavior. For
example, if we have additional statistical information,
then we may be able to make inferences as to how close
the hierarchy is to having the DRP and the effect this
would have on search efficiency.

Acknowledgements Thanks to Craig Knoblock and
Josh Tenenberg for helpful comments.

292 Automated Reasoning

References
[1] Earl Sacerdoti. Planning in a hierarchy of abstrac­

tion spaces. Artificial Intelligence 5:115-135, 1974.
[2] Craig A. Knoblock. A theory of abstraction for hi­

erarchical planning. In Paul Benjamin, editor, Pro-
ceedings of the Workshop on Change of Representa­
tion and Inductive Bias, Boston, MA, 1989. Kluwer.

[3] David Wilkins. Domain-independent planning:
Representation and plan generation. Artificial In­
telligence, 22, 1984.

[4] Qiang Yang and Josh D. Tenenberg. Abtweak: Ab-
stracting a nonlinear, least commitment planner. In
Proceedings of Eighth National Conference on Arti­
ficial Intelligence, Boston, MA, 1990.

[5] Richard Korf. Planning as search: A quantitative
approach. Artificial Intelligence, 33:65-88, 1985.

[6] Hector J. Levesque. Al l I Know: A study in au-
toepistemic logic. Technical Report KRR-TR 89-3,
University of Toronto, Toronto, Ont., Canada M5S
1A4, 1989.

[7] Joseph Y. Halpern and Yorham Moses. A guide to
the modal logics of knowledge and belief. In Proc.
International Joint Conference on Artifical Intelli­
gence (IJCAI), pages 480-490, 1985.

[8] Vladimir Lifschitz. On the semantics of strips. In
Proceedings of the Workshop on Reasoning about
Actions and Plans, Timberline, Oregon, 1986.

[9] Jens Christensen. A hierarchical planner that gener­
ates its own abstraction hieararchies. In Proceedings
of the 8th AAAI, pages 1004-1009, Boston, MA.,
1990.

[10] Craig A. Knoblock. Learning abstraction hier­
archies for problem solving. In Proceedings of
Eighth National Conference on Artificial Intelli­
gence, Boston, MA, 1990.

[11] Craig Knoblock, Josh Tenenberg, and Qiang Yang.
Characterizing abstraction hierarchies for planning.
In Proceedings of Ninth National Conference on Ar-
tificial Intelligence, Anaheim, CA., 1991.

[12] Craig Knoblock. Automatically Generating Abstrac­
tions for Problem Solving. PhD thesis, School
of Computer Science, Carnegie Mellon University,
1991. Technical Report CMU-CS-91-120.

