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Abstract

Biomarkers for the early diagnosis of hepatocellular carci-
noma (HCC) are needed to decrease mortality from this cancer.
However, as new biomarkers have been slow to be brought to
clinical practice, we have developed a diagnostic algorithm that
utilizes commonly used clinical measurements in those at risk
of developing HCC. Briefly, as a-fetoprotein (AFP) is routinely
used, an algorithm that incorporated AFP values along with
four other clinical factors was developed. Discovery analysis
was performed on electronic data from patients who had liver
disease (cirrhosis) alone or HCC in the background of cirrhosis.
The discovery set consisted of 360 patients from two indepen-
dent locations. A logistic regression algorithm was developed
that incorporated log-transformed AFP values with age, gender,
alkaline phosphatase, and alanine aminotransferase levels. We

define this as the Doylestown algorithm. In the discovery set,
the Doylestown algorithm improved the overall performance
of AFP by 10%. In subsequent external validation in over 2,700
patients from three independent sites, the Doylestown algo-
rithm improved detection of HCC as compared with AFP alone
by 4% to 20%. In addition, at a fixed specificity of 95%, the
Doylestown algorithm improved the detection of HCC as
compared with AFP alone by 2% to 20%. In conclusion, the
Doylestown algorithm consolidates clinical laboratory values,
with age and gender, which are each individually associated
with HCC risk, into a single value that can be used for HCC risk
assessment. As such, it should be applicable and useful to the
medical community that manages those at risk for developing
HCC. Cancer Prev Res; 9(2); 172–9. �2015 AACR.

Introduction
Hepatocellular carcinoma (HCC) is the second leading cause of

cancer-related death worldwide and the leading cause of death in
patients with cirrhosis (1). Globally, hepatitis B virus (HBV)
infection is the leading cause of HCC, whereas most HCC cases
in theUnited States are related tohepatitisCvirus (HCV) infection
(2, 3).

Prognosis for HCC patients is related to tumor stage at time of
diagnosis, with higher rates of curative treatment and better
overall survival among those with early-stage tumors. Therefore,

HCC surveillance has been recommended in at-risk patients using
ultrasonography, with or without serum levels of the oncofetal
glycoprotein, a-fetoprotein (AFP; refs. 4, 5). However, there has
been extensive debate about the utility of AFP given its subop-
timal sensitivity and specificity (6–8). Thus, there has been a great
desire to identify newmolecules that could be used as biomarkers
for HCC (8–16). We have previously utilized novel biostatistical
methods to develop algorithms using biomarkers and basic
clinical information that can improve early HCC detection (17,
18). Although highly accurate, these algorithms included exper-
imental biomarkers that are years away from being widely avail-
able. Therefore, in the current study, we evaluated the perfor-
mance of an algorithm using just AFP and clinical information
and compared it to the performance of AFP alone for early HCC
detection.

Materials and Methods
Study populations

Clinical data from nested case–control studies from the Uni-
versity of Michigan (UM) and the HALT-C study (see below) were
used as a discovery set to develop the Doylestown algorithm. For
the UM cohort, patients with cirrhosis were enrolled from UM
Liver Clinics between September 2001 and August 2004, with the
full protocol described in detail elsewhere (19). Diagnosis of
cirrhosis was based on liver histology or clinical, laboratory, and
imaging evidence of hepatic decompensation or portal hyperten-
sion. Patients with a liver mass on ultrasound or elevated serum
AFP were required to have an MRI without evidence of HCC
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within 3 months prior to enrollment or 6 months after enroll-
ment. For this study, patients who developedHCCduring follow-
up were used as cases and age- (�10 years) and gender-matched
patients with cirrhosis served as controls. The diagnosis of HCC
was made by histopathology, including all T1 lesions, or by two
imaging modalities MRI or CT, showing a vascular enhancing
mass > 2 cm with delayed washout. Cirrhosis controls were
followed for a median of 12 months (range, 7–18 months) after
enrollment to confirm absence of HCC. A 20-mL blood sample
was drawn from each subject, spun, aliquoted, and serum stored
at �80�C until testing. Blood samples from HCC patients were
drawn prior to initiation of HCC-directed treatment. AFP was
tested using commercially available immunoassays utilizing
enhanced chemiluminescence at the UM Hospital Clinical Diag-
nostic Laboratory. The UM's Institutional Review Board approved
the study protocol. Patient information is provided in Supple-
mentary Table S1.

HALT-C cohort. The clinical values from the UM data set were
combinedwith data froma selected set of patients from theHALT-
C study to develop the Doylestown algorithm (see below). The
design of theHALT-C study, including inclusion criteria, as well as
cirrhosis and/or HCC diagnostic criteria are described in a recent
publication in great detail (20). For our study, 151 individuals (49
HCC cases and 102HCVnon-HCC controls) were examined (21–
24). As this was a longitudinal study, for the HCC cases, data the
time closest to HCCdiagnosis were used. This was generally 0 to 3
months prior to HCC detection as described in ref. 20. More
information is found in the main HALT-C publication (20). The
study was performed in compliance with and after approval from
the respective institutional review boards of all sites. Patient
information is provided in Supplementary Table S2.

Early detection research network (EDRN) cohort. The first valida-
tion cohort consistedof 870patients (432HCCcases and438non-
HCC cirrhosis controls) enrolled in theNCI EDRN study (25). The
description below is taken from the recent publication describing
this cohort (24). Briefly, cases included consecutive adult patients
with HCC seen between February 2005 and August 2007 at seven
medical centers in theUnited States (25). The studywas performed
in compliance with and after approval from the respective insti-
tutional review boards of all sites. A complete blood count, a liver
panel, and AFP level were obtained at the local clinical center at
each visit using standard procedures and methods. Full informa-
tion regarding this group is found in ref. 25. Patient information is
provided in Supplementary Table S3. Briefly, the cirrhosis controls
were younger than those with early HCC (P < 0.0001), and there
was a male predominance in all groups and a predominance of
white ethnicity in cirrhotic controls andHCC cases. Themajority of
cases and controls had a viral etiology of their liver disease, with
HCV in61%controls and51%HCCcases,ofwhich58%hadearly-
stageHCC(BCLCstage0orBCLCstageA).HBVwas theunderlying
etiology of liver disease in 5% cirrhosis controls and 16% of the
HCC cases, ofwhich16%were early stage (BCLC stage 0 and BCLC
stage A). Early stage was defined by a single lesion between 2 and 5
cm or �3 lesions each �3 cm, without portal vein thrombosis or
extrahepatic metastasis (25).

Data from the Thomas Jefferson University. The second validation
study used data from Thomas Jefferson University (TJU), consist-
ing of 699 patients (113 HBV-related HCC and 586 HBV-positive

controls). The patients were identified from an existing clinic-
based patient cohort, which has been described in detail else-
where (26). Briefly, this set contained Asian American patients
who had HCC induced by chronic HBV infection (excluding all
other etiologies) or HBV-infected patients without HCC (exclud-
ing coinfection with HCV). Thus, both cases and controls were
treated according to American association for the study of liver
disease (AASLD) guidelines for their HBV and thus were DNA
negative. Patients without complete records of the analyzed
variables [i.e., age, gender, AFP, alanine aminotransferase (ALT),
and ALP] were excluded. Serum levels of AFP, ALT, and alkaline
phosphatase (ALK) were determined using commercially avail-
able kits at the Thomas Jefferson Hospital or other clinical
diagnostic laboratories. Patient information is provided in Sup-
plementary Table S4.

University of Texas Southwestern (UTSW) cohort. The third vali-
dation cohort used data fromUTSW and the ParklandHealth and
Hospital System, consisting of 1,229 patients (425HCC cases and
804 cirrhosis controls). Patient recruitment has been previously
described in detail (27). In brief, patients with HCC were iden-
tified using ICD9 codes and lists of patients seen in a multidis-
ciplinary HCC clinic, with all cases adjudicated to confirm they
met AASLD criteria. Patients with cirrhosis were identified using
ICD9 codes and adjudicated to confirm the presence of cirrhosis
on imaging. All control patientswere required tohave6months of
follow-up to confirm absence of HCC. Serum AFP and labs were
determined using commercially available immunoassays at
UTSW. Patient data collection and the study protocol were
approved by the Institutional Review Board at the UT Southwest-
ern Medical Center. Patient information is provided in Supple-
mentary Table S5.

Statistical methods
Data sets. As stated, a data set utilizing samples from the UM
(Supplementary Table S1) and HALT-C (Supplementary Table
S2) was used for feature selection and algorithm development.
This approach was adopted to increase the statistical learning
space and to ensure the development of robust algorithms.
Patients without complete records of the analyzed variables
(i.e., age, gender, AFP, ALT, and ALP) were excluded.

We applied univariate logistic regression to check the associ-
ation of each predictor with HCC. We also applied multivariate
logistic regression to check the association of each predictor with
HCC or cirrhosis alone adjusting for the effects of remaining
predictors, shown in Supplementary Table S6. More information
on feature selection andanalysis is provided in the Supplementary
Materials and Methods.

Building the Doylestown algorithm.We applied logistic regression
with the subsets of predictors. There were 21 subset features that
were selected from the feature selection algorithms and market
basket analysis. In addition, we added a full predictors subset and
AFP-alone subset to be conference subsets, and from this, we built
23 logistic regression algorithms. To judge the fitness of each
regression, we derived AIC, R2, Dxy, likelihood ratio test, Pearson
goodness-of-fit, log-likelihood, deviation statistic, and the area
under ROC curve (AUROC) of apparent validation (28). These
results are shown in Supplementary Table S7.

To avoid overfitting,we applied leave-one-out cross-validation,
bootstrap validation, and 3-fold cross-validation to validate the
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10 candidatemodels (Supplementary Tables S8–10). Based upon
the performance of the cross-validation and the properties of the
calibration, themodelwith logAFP, age, gender, ALK, andALTwas
selected for further development. We refer to this as the Doyles-
town algorithm (Supplementary Table S11). More information
on the models and methods used for algorithm development is
provided in the Supplementary Materials and Methods. Other
models such as conditional inference tree or classification and
regression treewere tried aswell, but this performancewas inferior
to that obtained with AFP in a logistic regression analysis (shown
in Supplementary Table S12).

External validation. For external validation, the Doylestown algo-
rithm was sent as an equation (as shown in Fig. 2A) to our
collaborators. All selection of patients, application of the algo-
rithm, and data analysis were performed at the specific external
validation sites.

Results
Model development and performance in training set

In our previous efforts to develop noninvasive tests for the early
detection ofHCC,we had utilized a combination of novel protein
and glycomic markers with AFP to detect HCC in the background
of liver cirrhosis (17, 18). However, it was noticed that the
performance of AFP alone was improved through inclusion of
factors such as age or gender in the algorithm. Thus, we examined
the performance of an algorithm that contained AFP values along
with several clinical variables but excluded our novel biomarkers
and compared this to the performance obtained with AFP alone.
The study design is shown in Fig. 1. Supplementary Table S6
shows the10 clinical factors analyzed, ofwhich 5were found tobe

associated with HCC, which included age, gender, ALK, ALT and
log-transformed AFP values. The logistic regression equation is
presented in Fig. 2A. Before external validation, we tested the
algorithm in the two data sets independently to determine how
the algorithm improved the performance of AFP. Briefly, in just
the 209 patients from the UM patient set, the mean value of AFP
was 11.8 ng/mL (SD, 34.6) in patients with cirrhosis and 9657.6
ng/mL (SD, 3975.3) in patients with HCC. In this initial analysis,
the AUROC of AFP was increased from 0.8398 (95%CI, 0.7870–
0.8926) with AFP alone to 0.9388 (95%CI, 0.9103–0.9674) with
theDoylestown algorithm (Fig 2B). Importantly, whenonly those
patients that had early-stage cancer were examined, the AUROC
was increased from 0.7983 (95% CI, 0.7251–0.8715) for AFP
alone to 0.9491 (95% CI, 0.9138–0.9843) for the Doylestown
algorithm.

When this algorithm was utilized on just the 151 samples from
the HALT-C study, as shown in Fig. 2C, the performance of AFP
was increased from 0.8153 (95%CI, 0.7430–0.8875) with AFP
alone to 0.8533 (95%CI, 0.7912–0.9153) for the Doylestown
algorithm. If only early cancers (n ¼ 39) were used, the perfor-
mance of AFP was 0.8026 (95%CI, 0.7192–0.8860) and 0.8339
(95%CI, 0.7627–0.9052) for theDoylestownalgorithm.Although
the increase was smaller (5%) than observedwith theUMdata set,
this difference was statistically significant (P < 0.0001).

Performance in independent external validation sets
The potential of this algorithm was further tested through

blinded external validation in three sample sets consisting of
over 2,700 patients, which allowed for greater analysis of the
algorithm in those with early HCC. Validation cohort 1 (Fig. 1)
consisted of a large multicenter case–control study collected by

Algorithm development
and internal validation

External validation

Discovery cohort
Validation Cohort 1

Validation Cohort 2

Validation Cohort 3

360 Samples from 2 locations
(consisting of HBV, HCV, and non viral
liver disease)

870 samples from NCI (consisting of HBV,HCV, and non
viral liver disease)

699 Samples from Thomas Jefferson University (HBV-
associated liver disease)

1,229 Samples from the University of Texas Southwestern
(consisting of HBV, HCV, and non viral liver disease)

195 Samples with cirrhosis
165 Samples with HCC in the
background of cirrhosis

438 Samples with cirrhosis
432 Samples with HCC in the
background of cirrhosis

586 Samples with cirrhosis
113 Samples with HCC in the
background of cirrhosis

804 Samples with cirrhosis
425 Samples with HCC in the
background of cirrhosis

Application of 24 feature selection
algorithms to explore each potential
predictor

Development of 23 logistic
regression algorithms

Analysis of algorithm fitness

Internal cross validation by LOOCV,
3CV and individual analysis in each
independent cohort.

Selection of the Doylestown
algorithm.

Figure 1.
Study design. Model development
utilized 360 samples with HBV, HCV,
and nonviral liver disease. After model
development and internal validation,
external validation was performed
by independent analysis of the
Doylestown algorithm in three sample
sets consisting of over 2,700 patient
samples. Samples consisted of those
with HBV, HCV, and nonviral liver
disease.
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the EDRN of the NCI. This case–control study consists of 870
patients, 438 patients with liver cirrhosis and 432 patients with
HCC(Supplementary Table S3). In this study, AFPhadanAUROC
of 0.8109 in the detection of all HCC. Consistent with the
derivation cohort, the Doylestown algorithm increased the
AUROC to 0.8409 (Fig. 3A). This increase was statistically signif-
icant (P < 0.0001). In addition, if only patients with early cancers
(n ¼ 225) were examined, as Fig. 3B shows, a similar increase in
performance was seen (0.7856–0.8104). Importantly, in this
group of patients with early-stage HCC, at a fixed specificity of
95%, the sensitivitywas increased from31% for AFP alone to 43%
with the Doylestown algorithm. Thus, consistent with the previ-
ous analysis in a case–control study, the application of the
Doylestown algorithm could increase the detection of HCC and,
importantly, was able to increase the detection of early tumors in
potentially a clinically meaningful way, without any detrimental
impact on specificity.

As the EDRN validation set primarily consisted of patients
with HCV-associated cirrhosis, we wanted to ensure that a
similar performance could be obtained in HBV-associated liver
disease (validation cohort 2). This is important given patients
with chronic HBV comprise the largest at-risk group worldwide,
with high particularly high rates in Asia and Africa. Although
antiviral therapy significantly reduces the incidence of liver
cancer in these patients (�50% reduction), the risk remains very
high, almost 20- to 30-fold higher than the normal population
(29). Therefore, these patients will continue to require surveil-
lance for HCC. Thus, the second external patient cohort exam-
ined was from TJU and consisted of those with HBV-associated
liver disease and treated for their infection following AASLD
guidelines and were DNA negative at the time of the study. This
set comprised of 699 patients, 113 that had HBV-associated early
HCC and 586 of which had chronic HBV infections (Supple-
mentary Table S4). In this group, AFP had a mean value of 20.0
ng/mL (SD, 72.6) in the control group and 1568.3 ng/mL (SD,
6626.7) in the HCC group. As shown in Fig. 3C, similar to the
other studies performed, the AUROC of AFP alone was 0.8257

(95% CI, 0.7877–0.8637) when differentiating HCC from the
HBV disease group. Consistent with the previous data, the
Doylestown algorithm significantly increased the AUROC 7%
to 0.8920 (95% CI, 0.8633–0.9206). Again, this difference was
statistically significant (P < 0.0001) and highlights the ability of
this algorithm to improve the performance of AFP over a wide
range of diseases and conditions.

Validation cohort 3 was from the UTSW and consisted of 1,229
patients—804 with a background of liver cirrhosis and 425 with
HCC (Supplementary Table S5). AFP had a mean value of 12 ng/
mL (SD, 39.0) in the control cirrhotic group and 23,681 ng/mL
(SD, 116,731) in the HCC group. As Fig. 4A shows, unlike the
other patient groups examined, AFP alone had an AUROC of
0.877 in the differentiation of cirrhosis from HCC. The Doyles-
town algorithm did not change this and had an AUROC of 0.876,
which was not statistically significant (P ¼ 0.9328). When only
patients with early-stage HCC were examined (n ¼ 139), AFP
alone had an AUROC of 0.7898. Surprisingly, the Doylestown
algorithm did not alter this and had an AUROC of 0.7709.

However, in our analysis of this sample set (see Supplementary
Table S5), it was noticed thatmany patients had very high levels of
AFP, with a mean level over 23,000 ng/mL and 154 patients with
AFP values >1,000 ng/mL, all of which hadHCC. Thus, when AFP
is already elevated to such a high level, this algorithm appears to
have limited impact. In addition, a large proportion of patients (n
¼ 763) had AFP <10 ng/mL (the mean level of AFP in this group,
4.00 ng/mL; SD, 2.17). Not surprisingly, in these patients, the
Doylestown algorithm did not alter the detection of HCC
(AUROC of 0.6313 for AFP and 0.6417 for the Doylestown
algorithm). In contrast, the Doylestown algorithm had the great-
est benefit for those with AFP in the range of 10 to 100 ng/mL,
where the AUROC was increased from 0.579 for AFP alone to
0.700 for the Doylestown algorithm. As Fig. 4B shows, when
patients were broken down into specific groups based on the AFP
level, the Doylestown algorithm increased the AUROC in almost
all groups, from thosewith AFP between 10 and 100ng/mL all the
way to AFP levels between 10 and 10,0000 ng/mL. As expected, at
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Figure 2.
Development of an AFP-based
algorithm for the detection of HCC. A,
the algorithm as developed. B, AUROC
for either AFP or the Doylestown
algorithm from just the samples from
UM. C, AUROC for either AFP or the
Doylestown algorithm from patients in
the HALT-C set. Dotted line, 95%
specificity.
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higher levels of AFP, the AUROC increase was less, and no further
increases were observed when patients with AFP >100,000 ng/mL
were included. An examination of patients with early-stage HCC
was done to see the performance of the algorithm in this subgroup
of patients. In patients with early-stage HCC AFP had an AUROC
of0.578 and theDoylestown increased this to 0.629. In contrast, if
only patients with late-stage HCC and AFP between 10 and 100
ng/mL were examined, AFP had an AUROC of 0.578 and the
Doylestown algorithm increased this to 0.756. To see if similar
increases in HCC detection were observed in the other sets, we
reevaluated the performance of the Doylestown algorithm in the
TJU patients only with AFP in the zone of 10 to 100 ng/mL (all of
these patients had early HCC). Consistent with the results shown
in Fig. 4C, the AUROC was increased in the TJU group from
0.5308 for AFP alone to 0.7940 for the Doylestown algorithm (n
¼ 104 controls and 40 cases; Fig. 4D). Consistent with this, an
examination of the EDRN set reveled that the AUROC increased
from 0.6439 to 0.7591 in patients with AFP between 10 and 100
ng/mL (n ¼ 106 controls and 202 cases; Fig. 4E) when patients
with all stages of HCC were examined. When only patients with
early-stage cancer (n¼109)whohadAFPbetween 10 and100ng/
mL were examined the AUROC also increased from 0.641 to
0.773 (see Fig. 4F).

In the discovery set, a similar increase was observed. For
example, in the UM set, a similar result was seen, where AFP's
AUROC in thosewith AFPbetween 10 and100ng/mLwas 0.6636
and this was increased to 0.9110 with the Doylestown algorithm.
And in the HALT-C data set, the AUROC of AFP in patients with

AFP between 10 and 100 ng/mL was 0.6583 and this was
increased by the Doylestown algorithm to 0.7077.

Discussion
In this article, we demonstrated the usefulness of incorpo-

rating biomarkers and relevant clinical variables into a statis-
tical model for predicting the incidence of HCC. Specifically, we
investigated the predictive performance of AFP alone or after
the inclusion of clinical factors, such as age, gender, and serum
ALK, and ALT levels. As shown, the inclusion of these clinical
variables increased the AUROC of AFP 4% to 12% and had
equal benefit regardless of tumor size or the etiology of liver
disease. It is also important to note that the inclusion of these
factors did not have a detrimental impact on the specificity of
AFP. For example, in the HALT-C control group, no patient who
had an AFP of <20 ng/mL was misclassified by the Doylestown
algorithm (i.e., no increase in false positives). In contrast, of the
20 patients within the HALT-C control group who had AFP
values greater than 20 ng/mL and were misclassified by AFP as
having HCC, the Doylestown algorithm correctly reclassified 12
of these (60%). Additionally, as Table 1 shows, at a fixed
specificity of 95%, the Doylestown algorithm improved the
sensitivity in all the studies performed—even in cases where
AFP already performed strongly. Thus, we strongly believe that
this algorithm could be used as a simple replacement for AFP
with immediate clinical benefit and, more importantly, without
any harm to the patients.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

False positive rate

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Tr
ue

 p
os

iti
ve

 ra
te

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.8409,Equation
AUC = 0.8109,log(AFP)

AUC = 0.8104,Equation
AUC = 0.7856,log(AFP)

AUC = 0.8257
AUC = 0.8920

A

C

B

Figure 3.
Validation of the Doylestown algorithm in
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Several recent reports have described similar algorithms that
contain many of the same factors presented here. Most notably,
El-Serag and colleagues have recently described an algorithm to
predict HCC in patients with HCV and cirrhosis (30). While our
system contains many of the same factors (AFP, age, ALT), it was
developed and tested in individuals with HCV, HBV, and patients
with nonviral liver disease and thus expanded upon the work
presented by El-Serag, and colleagues, which only examinedHCV
patients. Our analysis also included both internal and external
validation frommultiple sources, whichwas different from the El-
Serag study. However, both of these studies clearly indicate that
improvements to AFP can be attained through the inclusion of
clinical variables into a simple algorithm to increase the detection
of HCC.

One concern with the algorithm performance is the potential
variation in the clinical testing of these factors. The perfor-
mance of tests such as ALK, ALT, and AFP can vary when

performed in one laboratory to another. This interassay per-
formance variation could theoretically impact the ability of an
algorithm to correctly classify a patient. In model development,
given a fixed age and gender, assay variations in all three
continuous variables of up to 15% can occur without misclas-
sification, with greater variation tolerated in individual mar-
kers. However, the true flexibility will only be determined when
the clinical community uses the model.

The data presented in this article also have several limitations
that will have to be addressed in future studies. The first is
potential selection bias in the external validation. That is, only
patients with the required clinical factors were used in the
external validation. It is possible that this imparted some
selection bias that may have affected the results. In addition,
this study was done with clinical information collected either at
the time of HCC detection or close to it. Thus, a longitudinal
study will have to be performed to truly determine how this
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Figure 4.
Validation of the Doylestown algorithm
in the UTSW patient set. A, AUROC of
AFP or the Doylestown algorithm in the
UTSW sample set. B, AUROC of either
AFP alone or the Doylestown algorithm
in patients with varying ranges of AFP.
For graph, the Y axis is the AUC for either
AFP or the Doylestown algorithm in the
specifiedpatients. For theXaxis, group0
are patients with AFP<10; group 1 are
patients with 10<AFP�100; group 2 are
patients with 10<AFP�200; group 3 are
patients with 10<AFP�300; group 4 are
patients with 10<AFP�400; group 5 are
patients with 10<AFP�500; group 6 are
patients with 10<AFP�600; group 7 are
patients with 10<AFP�700; group 8 are
patients with 10<AFP�800; group 9 are
patients with 10<AFP<900; group
10 are patients with 10<AFP�1,000;
group 11 are patients with
10<AFP<¼ 10,000; group 12 are patients
with AFP�100,000; group 13 are all
patients. In all cases, AFP values are
ng/mL. C, AUROC of the Doylestown
algorithm and AFP in the UTSW set only
in patients with AFP between 10 and
100ng/mL.D, AUROCof theDoylestown
algorithm and AFP in the TJU set only in
patients with AFP between 10 and
100 ng/mL. E, AUROCof theDoylestown
algorithm and AFP in the EDRN set only
in patients with AFP between 10 and
100 ng/mL. F, AUROC of the Doylestown
algorithm and AFP in the EDRN set only
in patients with early-stage HCC and
AFP between 10 and 100 ng/mL. Dotted
line, 95% specificity.
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algorithm would be used in the management of patients at risk
of developing HCC.
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