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“There is a property common to almost all the moral sciences, and by which they are distinguished

from many of the physical... that it is seldom in our power to make experiments in them”, Mill (1836,

p.124).

“Unfortunately, we can seldom test particular predictions in the social sciences by experiments ex-

plicitly designed to eliminate what are judged to be the most important disturbing influences. Generally,

we must rely on evidence cast up by the ‘experiments’ that happen to occur”, Friedman (1953, p.10).

“Economists cannot make use of controlled experiments to settle their differences: they have to appeal

to historical evidence”, Robinson (1977, p.1319).

“The economic world is extremely complicated. There are millions of people and firms, thousands of

prices and industries. One possible way of figuring out economic laws in such a setting is by controlled

experiments... like those done by chemists, physicists, and biologists... Economists have no such luxury

when testing economic laws. They cannot perform the controlled experiments of chemists or biologists

because they cannot easily control other important factors. Like astronomers or meteorologists, they

generally must be content largely to observe”, Samuelson and Nordhaus (1985, p.8)

Introduction

The give and take between theory and data in the natural sciences is so ingrained in modern

thought that an integral part of the scientific method – that theories must be tested against

experimental evidence – is now second nature. This fact, of course, was not lost on the icons

of economics, many of whom felt compelled to express their anguish by comparing empirical

approaches across the social and natural sciences. The common thread in the epigraph musings

is that if economists desire to do experimentation they should choose another practice, and

if they want to engage in empirical economics, they should start looking for available natu-

rally occurring data. This is presumably because the writers believed that it was impossible

to collect/learn from experimental data in economics. These general feelings were shared ubiq-

uitously throughout the 19th and 20th centuries, as extracting knowledge from historical data

and personal introspection represented the primary source, and indeed in most cases the sole

source, of new empirical knowledge in economics.

The economic landscape is changing. In the past several decades constructing new ap-

proaches to generate data have opened up several avenues for a fresh approach to understand-

ing the economic relationship of theory and data. Whether by lab or by field, the popularity

of experiments in economics has steadily increased, in large part due to the advantages they

offer in identification, control, statistical inference, and interpretability. Properly constructed

experiments take the analyst beyond measurement, into the “whys” of the causal relationship.

It is often within these “whys” where the deep theoretical understandings or the key policy

takeaways reside (see, e.g., List (2004) on using field experiments to understand the nature of

discrimination observed in markets).
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While many would consider using randomization in the lab and the field as an unequivo-

cal success in moving economics to a new scientific level, recently critics in the broader social

sciences have called for the movement to proceed more cautiously. As Maniadis et al. (2017)

point out, an active debate has surfaced that claims there is a “credibility crisis” in several

scientific disciplines, including psychology (Nosek et al., 2012), management (Bettis, 2012), and

several branches of the biological and human sciences (e.g., Jennions and Møller (2003); Ioanni-

dis (2005)). While the crises take many forms, one common widespread concern revolves around

reproducibility, with the nature of ‘false positives’ representing a particular concern.

This literature motivated us to step back from the evidence-based movement and ask a

simple question: if we could gather social scientists in a room and had the goal of enhancing

knowledge discovery, what advice would we give to experimental researchers? We group our list

of 12 recommendations into three bins. We begin with the general decision concerning what

data to acquire. We proceed to focus on how to generate and create useful information via ex-

perimentation. We conclude with how to interpret, build on, and scale the initial experimental

evidence. This thought experiment yields a wish list of 12 things that we hope experimental

economists will do more of in the future. We summarize these dozen items under three broad

questions.

What data should we acquire? The first item in this bin is to use lab and field experiments

as complements to naturally-occurring data. This is important because the three major sources

of empirical evidence that we consider – lab experiments, field experiments, and naturally-

occurring data – each provide different parameters of interest (see Al-Ubaydli and List (2015)).

Naturally what falls out of this discussion is our second item: a call for researchers to more

carefully consider control and generalizability when making the data acquisition choice. The

first bin closes with our third wish: run more field experiments, especially natural field ex-

periments. This is an outcome not only because natural field experiments are relatively new

compared to the other empirical approaches, and therefore much ground is untrodden, but also

because they provide unique elements – randomization and realism – that the other approaches

have difficulty combining by their very nature.

How should we generate data and interpret information from experiments? This second bin

collects thoughts on optimal steps for the researcher who has decided to conduct an experiment

to generate information. This bin includes a description of how to make use of more than p-

values and measured effect sizes when making inference. Complementing that interpretational

question is a discussion of proper replication. Replication was a leg of Fisher (1935) experi-

mental tripod and represents a signature issue within the credibility revolution and we simply

echo that point here. Other issues that we discuss in this second bin are considering statistical

power in the design, using blocking, adjusting for multiple hypothesis testing (a common reason
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for false positives) not only in our data analysis but also in our designs, and creating interven-

tions to address heterogeneity using within-subject variation when necessary and appropriate.

Our second bin includes five necessary design elements that critically determine what, and how

much, we can learn from the data generating process.

How can we most usefully impact policy? Our last bin revolves around the area of how

experimentalists can most usefully impact policymaking. Perhaps surprisingly, this discussion

begins with advocating for a deeper use of theory to motivate designs by going beyond typical

A/B tests. This approach importantly allows the analyst to determine the “whys” behind a

result, leading to more effective policies. In addition, it helps to maintain fidelity of the program

when policymakers scale the intervention. Scaling needs science in and of itself, and that science

should be considered early in the experimental design phase. Complementing this discussion is

a plea for experimentalists to go beyond measurement of short-run substitution effects to focus

also on long run effects–these are behavioral effects that policymakers often find of great import

but are often not provided in the literature.

The remainder of our study proceeds as follows. The next section presents preliminaries

and sets the stage for development of our three bins. We then describe our views on what data

to acquire, how to generate data and create useful information via experimentation, and how

to interpret, build on, and scale the initial experimental evidence. This discussion yields our

dozen ideas that we hope experimental economists will do more of in the future. We conclude

with summary thoughts.

Preliminaries: experiments, estimation and randomization

This section offers an overview of the most relevant concepts to be applied throughout the

paper (readers familiar with the inferential basics of economic experiments may wish to skip

this overview, and start directly at Section 1). We begin by defining our subject of interest.

In principle, we consider an experiment broadly: a study that generates primary, or origi-

nal, data in a controlled environment. This inclusive definition permits the original studies of

early experimentalists to be classified as experiments as well as important studies that exploit

controlled environments but use non-experimental variation as the primary means of identifica-

tion.1 While we view experiments broadly, for the purposes of this study, we take a narrower

definition of experiment by considering only those studies where researchers generate primary

data by using randomization to identify a causal relationship.2 Accordingly, there is a clear

1Examples include studies that, instead of comparing outcomes between a treated and a control group, make
comparisons along pre-existing traits of their subjects, such as their gender, age, religion, occupation, etc. Con-
sider, for instance, Koudstaal et al. (2015) who study differences in risk attitudes among entrepreneurs, managers
and employees.

2Our definition is in the spirit of Shadish et al. (2002), who define an experiment as “a study in which an
intervention is deliberately introduced to observe its effects”, and a randomized experiment, in addition, must
be such that “units are assigned to receive the treatment or an alternative condition by a random process”.
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difference between these type of data and data obtained from so-called natural experiments,

where subjects are randomly allocated to different treatment groups by a process outside of the

researcher’s control (such as the draft lottery in Angrist, 1990); or from quasi-experiments,

in which subjects are not randomly assigned to treatments (Greenstone and Gayer, 2009). The

interested reader can find more on the different types of experiments in Shadish et al. (2002).

In the following, we present a framework intended to guide our discussion of experiments,

formalizing the most important concepts used in the paper. Individual i has covariates xi.

The experiment has characteristics ω, where ω includes the subject population (university stu-

dents, CEOs, etc.), context (artificial vs. natural), time horizon (long vs. short), and other

characteristics. The experiment consists of the following stages:

• Let pi be an indicator variable for the participation decision such that pi = 1 if subject

i chooses to participate in the experiment, and pi = 0 otherwise.

• Let zi denote assignment to treatment. For example, zi = 1 if student i is assigned to

a small class size (zi will be random in the experiments we discuss).

• Let di be the treatment status, which is the treatment individual i actually receives

(e.g. di = 1 if student i actually attends a small class). Note that it is possible that zi

and di are different.3

• Let yi1 be the outcome of interest (e.g. the child’s test scores) when treatment status

is di = 1, and yi0 when treatment status is di = 0.4

We follow the potential outcomes framework, in which an individual i has outcome yi1

in the treated group and yi0 in the control group. Ideally, when conducting an experiment,

researchers would like to measure individual treatment effects for each individual i, yi1 − yi0,

which is the difference in outcomes for individual i being in the treated versus the control group.

In practice, of course, they cannot observe both of these outcomes; instead they can only observe

individual outcomes in one of the treated states, and the counterfactual outcome in the other

state remains unobserved. Instead of individual treatment effects, researchers therefore usually

consider the Average Treatment Effect (ATE), given by τ∗ = E[yi1 − yi0]. The ATE

measures the average difference in the outcomes for the population. The ATE τ∗ is not directly

observable either; instead researchers estimate τ , defined as:

τ = E[yi1|di = 1]− E[yi0|di = 0].

3There are two possible cases: (1) The subject is assigned to a treatment z, such as a voucher to enroll in
training, that is of a different nature than the treatment status, which is whether the subject actually enrolled
in treatment. In that case, Z 6= D. (2) Alternatively, the subject is assigned to a treatment z, which is already
one of the potential treatment statuses. For example, the subject is assigned to a training course z = 1 or not
z = 0. Subjects can still opt in (d = 1) or out (d = 0) of the training course, and in this case Z = D.

4Our framework follows the tradition of Rubin (1974), which can traced back to the work of Jerzy Neyman;
see also Freedman (2006).
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Estimate τ measures the difference between the average effect of the treatment on those

who were treated and the baseline average outcome of those who were not treated. As it will

become clear below, when: 1) d is randomly assigned, 2) subjects do not opt in or out of their

assigned treatments, and 3) potential outcomes of an individual are unrelated to the treatment

status of any other individual, then τ = τ∗.5 Note that the ATE does not allow researchers to

estimate the percentiles of the distribution of treatment effects, or other moments such as the

variance (we discuss estimating heterogeneous treatment effects in Section 9) and, unlike mea-

sures based on percentiles such as the median, the ATE is sensitive to outliers, i.e. observations

whose value greatly differs from the rest (Deaton and Cartwright, 2018). Note also that the

“experiment population” is not necessarily a random sample of the entire population and may

be selected according to observables; in that case, we only learn the effect of the treatment on

the particular sub-population from which the sample is drawn (Duflo et al., 2007), an issue we

discuss in detail in Section 1.

In the absence of randomization, researchers estimate

τ = E[yi1|di = 1]− E[yi0|di = 0] = E[yi1 − yi0|di = 1]︸ ︷︷ ︸
ATE on the treated

+E[yi0|di = 1]− E[yi0|di = 0]︸ ︷︷ ︸
selection bias

A non-zero selection bias term in the previous equation indicates that those who select

into treatment are different in the untreated state from those who do not sort into treatment.

This happens, for example, if smokers who are more motivated to quit are more likely to enroll

in a smoking cessation treatment than those who are unmotivated: in such a case, we end

up with program participants who are inherently different (more motivated) than those who

did not take up the program, leading to a biased (in our case, overoptimistic) estimate of the

program’s effect on quitting. In order to rule out selection bias, it is necessary to make certain

assumptions, such as the Conditional Independence Assumption (Rosenbaum and Rubin, 1983):

{yi0, yi1} ⊥⊥ di|xi,

which claims that the outcome in each state and the assignment to treatment for a given

individual are independent conditional on the observable covariates. Intuitively, the Conditional

Independence Assumption means that conditional on the observables xi, the assignment to

treatment is as good as random, and it implies that E[yi1|xi, di = 1] − E[yi0|xi, di = 0] =

E[yi1 − yi0|xi], and therefore that τ = τ∗.

Crucially, random assignment to treatment automatically implies the Conditional Indepen-

dence Assumption and hence solves the issue of selection bias (Duflo et al., 2007). As such, the

most important reason why researchers (not just economists) use randomization is because it

allows causal inference under potentially weaker assumptions than alternative methods. Ran-

domization serves as a novel instrumental variable (IV), balancing unobservables across control

5The third assumption is the “Stable Unit Treatment Value Assumption” (Angrist et al., 1996; Duflo et al.,
2007), which assumes away any spillover effects.
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and treatment groups (Al-Ubaydli and List, 2013).6

Studies based on randomization also have the advantage of being easily replicable, in con-

trast to methods that rely on baseline covariates to assign treatments without randomization.7

Randomization also accomplishes three other crucial things: first, it prevents the experimenter

from allocating subjects to treatment and control in ways that would bias the results (for exam-

ple, politicians assigning their constituents to a “schooling” treatment, or physicians assigning

patients with higher perceived need to treatment). Second, it provides a credible way to mea-

sure treatment effects, because it is a straightforward calculation where researchers have little

leeway. Third, randomization is crucial in instances when fairness and transparency are a con-

cern, because it ensures that there is no favor/discrimination towards particular groups.8 In

sum, while randomization does not solve all problems of causal inference, when proposing al-

ternatives to randomization in experiments researchers should be very precise about the exact

details of the alternative they propose, or else there is a danger in underestimating the value of

experimentation (Senn, 2013).

Throughout our paper, we follow the taxonomy for experiments developed by Harrison and

List (2004), who identify four general categories, as summarized in Table 1. Laboratory

experiments study university students as subjects in an artificial environment i.e. the lab.

For example, Goeree and Holt (2001) have university students play a series of games, show-

ing how the predictive power of the Nash equilibrium is not robust to (supposedly innocuous)

changes in payoffs in those games. Artefactual Field Experiments (AFE), also known as

lab-in-the-field, share most of the characteristics of lab experiments (such as having an artificial

environment), but use the relevant population of interest as subjects. For example, Levitt et al.

(2009) used chess players at two international open tournaments to gather data on strategic

behavior on some well-known games. Framed Field Experiments (FFE), like AFE, use the

relevant population as subjects, but take place in a natural environment, such as the market,

school, hospital, etc. For example, Gosnell et al. (2017) incentivized airline captains to improve

efficiency and save fuel (via performance information, personal targets, and prosocial incen-

tives), and the pilots were aware that an experiment was taking place. Note that all three types

of experiments described above are overt : subjects are aware of being part of an experiment.

In contrast, Natural Field Experiments (NFE) are covert : they study the relevant pop-

ulation in a natural setting and, crucially, subjects are not aware of being part of an experiment,

setting NFE apart from the other types of experiments, as we discuss further below. For exam-

6For a discussion of some popular non-experimental methods, and their comparison to experiments, see Duflo
et al. (2007). For a comprehensive discussion of the problems of randomization, see Deaton and Cartwright
(2018).

7We return to the topics of replicability in Section 5 and optimization-based methods (e.g. Kasy, 2016) in
Section 8.

8Note that methods other than randomized experiments can achieve this goal too, see Deaton and Cartwright
(2018); Kasy (2016); Banerjee et al. (2017b). We discuss scaling up further in Section 12.
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Lab AFE FFE NFE
Population we study U S S S
Environment A A N N
Type of awareness O O O C
Who do we observe? pi = 1 pi = 1 pi = 1 All

Table 1: Summary of the characteristics of each type of experiment. Population can be
University students or the Special population of interest. The environment can be Artificial or
Natural. The experiment can either be Overt or Covert.

ple, Hallsworth et al. (2015) randomized the letters sent to individuals who had debt obligations

with the government in UK (the treatment group had an extra sentence that informed them

that refusal to pay would be considered as an active choice). In this case, subjects belonged to

the relevant population and were in a natural context; moreover they were not aware of being

part of an experiment.9

In sum, we can define the relevant estimates from lab, AFE, FFE and NFE as:

τ lab = E[τ |i ∈ U, e = A, t = O, p = 1],

τAFE = E[τ |i ∈ S, e = A, t = O, p = 1],

τFFE = E[τ |i ∈ S, e = N, t = O, p = 1],

τNFE = E[τ |i ∈ S, e = N, t = C],

where U and S refer to students vs. a special population, the environment e can be artificial

(A) or natural (N), the type t of experiment can be overt (O) or covert (C), and p indicates

the presence or absence of an active decision to participate in the experiment.

With these preliminaries mind, we turn to the dozen things we hope experimentalists do

more of. While there is no inherent ordering by importance of our 12 ideas, we attempted to

group the topics loosely by what data to generate, how to efficiently generate and interpret the

data, and how to give the most informative advice to evidence-based policymakers.

1 Appropriately consider generalizability and control, across

the lab and the field

When designing an experiment, researchers need to balance two key aspects that determine the

value of their contribution to science and policy. One aspect is correct statistical inference,

including internal validity (the property of being able to identify the parameters of interest in

a given design) and informativeness (how much a result can change the prior of the scientific

community). The second is generalizability (also known as external validity): whether a

causal relationship continues to hold when subjects, context, location, or treatment details are

9Randomized Controlled Trials (RCT) would fall under either the FFE or the NFE classification, depending
mainly on whether subjects are aware of being part of an experiment or not.
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modified (Shadish et al., 2002). This section outlines a framework for discussing threats to gen-

eralizability, building on the basic ingredients introduced in the Preliminaries. In the following

two sections we use this framework to evaluate the different types of experiments (laboratory,

artefactual field, framed field and natural field experiments) as defined in the Preliminaries. In

what follows, we use the term generalizability instead of external validity, following Harrison

and List (2004).

The question of generalizability has long been studied in the social sciences, but has been

often obfuscated, especially in non-experimental research, by the more pressing problem of

internal validity (Al-Ubaydli and List, 2013; Deaton and Cartwright, 2018). While internal va-

lidity is necessary for generalizability, it is not sufficient (Duflo et al., 2007). In economics, the

“Lucas critique” (Lucas, 1976) famously tackled the issue of generalizability, by arguing against

econometric policy evaluations that failed to recognize that agents’ behavior varies systemat-

ically with changes in policy.10 More recently, a new literature on “generalizability theory”

has grown within psychology and economics (Briggs and Wilson, 2007; Higgins and Thompson,

2002; Al-Ubaydli and List, 2013).11 In order to improve generalizability of research findings,

it is useful to differentiate the potential threats to generalizability according to their causes.

We have identified four potential threats to generalizability that we discuss below: interaction

between treatment and other characteristics of the experiment, selective noncompliance, non-

random selection into the experiment, and differences in populations.

Threat I: Characteristics of the experiment. Characteristics inherent to the exper-

iment can inadvertently affect outcomes and incorrect interpretation of results. In all experi-

ments, but especially in overt ones, y will be affected by the elements of ω, such as scrutiny,

stakes, the time horizon in which the intervention takes place, and whether the environment

is artificial or natural (Deaton and Cartwright, 2018). Generalizing our estimates to settings

where those parameters are different threatens the validity of our estimates.12 Overt exper-

iments in which subjects are aware of being part of an experiment such as lab experiments,

artefactual field experiments (AFE), and framed field experiments (FFE) have characteristics

that make them particularly prone to this threat to generalizability. The high level of scrutiny

present in overt experiments potentially induces Hawthorne and John Henry effects13 as well as

10In particular, the Lucas critique censured using estimates from past data to forecast the effects of a new policy,
because the behavior of the agents will change in response to the implementation of the new policy, invalidating
those estimates (Ljungqvist, 2008). The interested reader will also find Goodhart’s Law and Campbell’s Law as
two social science contemporaries.

11See Briesch et al. (2014) for an introductory article to generalizability theory. Vivalt (2017) used techniques
from generalizability theory to perform a meta-analysis of 20 types of intervention in economic development,
collected from 635 papers, and found that results are more heterogeneous than in other fields such as medicine.
Within generalizability theory, there is also an intriguing approach that attempts to generalize by establishing
networks of causality (Bareinboim and Pearl, 2013).

12This can be seen from the fact that definition of the ATE of each type of experiment (τ lab, τATE , τFFE and
τNFE , presented in the Preliminaries) depends on the characteristics in ω.

13The Hawthorne effect is defined by the Oxford English Dictionary as “an improvement in the performance
of workers resulting from a change in their working conditions, and caused either by their response to innovation
or by the feeling that they are being accorded some attention”; for a review and a re-analysis of the data from
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“experimenter demand effects”, such that subjects attempt to behave in the way they believe

the experimenter wants them to (de Quidt et al., 2018).14 Several studies have found that

scrutiny is an important determinant of e.g. pro-social behavior (Bandiera et al., 2005; List,

2006b; Benz and Meier, 2008; Alpizar et al., 2008).15

Threat II: Selective noncompliance. We define as noncompliance instances when sub-

jects end up receiving a different treatment than what they were initially assigned to (that is,

zi 6= di), either by omission or by commission. Noncompliance is especially problematic when

subjects actively change their treatment, e.g. because they derive higher utility from a treatment

other than they were assigned to, causing what is known as a selection problem (Heckman,

2010, see also Footnote 3).16 Let Z be the set of assignments to treatment in the experiment,

and D the set of treatment statuses in the experiment, so that zi ∈ Z and di ∈ D. In the most

general framework, subject i is assigned to treatment zi, and there is a selection function that

determines which treatment status di the subject ends up with. For example, subject i has

di = arg maxd̂i∈D u(xi, ω, d̂i)−C(xi, zi, d̂i), where u(xi, ω, di) is the subject’s utility of being in

treatment status di, and C(xi, zi, di) is her cost of choosing di conditional on being assigned to

zi. In these cases, the researcher assigns zi, and then the subject chooses di to maximize her

utility net of switching costs.17 As a result, we may observe zi 6= di for some individuals. In the

case of imperfect compliance, we have that τ∗ = E[yi1−yi0] 6= E[yi1|di = 1]−E[yi0|di = 0] = τ .

When researchers cannot obtain the ATE due to noncompliance, they can instead estimate

the “Policy Relevant Treatment Effect” (which, in the case when zi is uncorrelated with yi,

coincides with the “Intention to Treat Effect” (ITT), Heckman, 2010). The ITT might be the

relevant estimate in some situations, because it provides researchers with a measure of how

much the intervention is “converting” into outcomes, as it considers the difference in outcomes

between those who were initially assigned to treatment and the control group, irrespectively

of whether they complied with their treatment assignment. Researchers can also estimate the

“Local Average Treatment Effect” (LATE), Angrist and Imbens (1994):

(1) LATEp=1 = E[yi1 − yi0|ωFFE , di(zi = 1) = 1, di(zi = 0) = 0, pi = 1],

where pi refers to the decision of participating in the experiment (see Preliminaries). The

the original Hawthorne experiment, see Levitt and List (2011). The John Henry effect refers to subjects exerting
greater effort because they treat the experiment like a competitive contest (Horton et al., 2011).

14See de Quidt et al. (2018) for a methodological approach to bounding the experimenter demand effects.
15Camerer (2015) argues that scrutiny is not likely to affect subject’s behaviors, based on the fact that subjects

cannot usually guess the purpose of the study (Lambdin and Shaffer, 2009), or that people are usually observed
when making economic decisions (Falk and Heckman, 2009). However, we believe that the scrutiny in overt
experiments is of a much higher degree than what subjects normally experience, and that it is likely to affect
behavior directly, even if subjects cannot correctly guess the purpose of the study.

16We highly recommend the recent paper by Kowalski (2018) who argues that rather than considering it a
nuisance, researchers could treat this type of selection as a useful source of information that can be combined
with assumptions to learn about the external validity of their experiment.

17Note that whether subjects solve this maximization problem ex-ante (so that they sort into treatment groups)
or ex-post (they switch treatment groups) can have consequences for estimation (Heckman, 2010).
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LATE measures the average treatment effect for individuals induced into treatment di = 1 by

a change in zi (Heckman, 2010). Note, however, that the average treatment effect measured by

the LATE is only valid for that particular subpopulation (the compliers), and might differ from

the ATE for the whole population, limiting its generalizability.18

An extreme case of non-compliance would be attrition, in which subjects leave the exper-

iment (and are therefore not observable to the experimenter). While random attrition only

reduces power, attrition that is not random can bias the results (Duflo et al., 2007), for example

when those individuals who are the most motivated leave the experiment if they are not assigned

to a certain treatment. The best approach to solving inference problems related to attrition is

to design the experiment in a way that allows researchers to track subjects even if they leave

the experiment (for more details, see Duflo et al., 2007), or conduct a natural field experiment.

Threat III: Non-random selection into the experiment. Recall that pi refers to the

decision of participating in the experiment. As we have seen above, in lab experiments, AFE,

and FFE, the estimates are only valid for those individuals who select into the experiment

(those with pi = 1). Because of that, the ability of such experiments to identify parameters of

interest depends on assumptions about the individual’s selection into the experiment. There

is a threat in introducing participation bias from the decision to participate in the experi-

ment, which arises when participation into the experiment is non-random, but is the result of

a cost/benefit analysis by the subjects (Al-Ubaydli and List, 2013; Slonim et al., 2013). This

is not just a theoretical concern: Slonim et al. (2013) found that, from a population of roughly

900 university students, those who selected into lab experiments had less income, more leisure

time, more interest in economics and were more pro-social in the dimension of volunteering, all

of which are consistent with participation being the result of a cost/benefit decision.

Recall that the parameter of interest is the ATE for the whole population: τ∗ = E[y1i−y0i].

Overt experiments, however, provide the following estimate: E[y1i − y0i|pi = 1]. Note that this

bias can arise even if one is conducting a standard lab experiment and the effect we are looking

for can reliably be found in university students, in an artificial environment, with low stakes

and with scrutiny (so the first threat to generalizability is not a concern), and even if zi = di

for all individuals (so the second threat to generalizability is not a concern either). The ATE

τ∗ is given by: τ∗ = P[pi = 1] · E[y1i − y0i|pi = 1] + P[pi = 0] · E[y1i − y0i|pi = 0]. Because

P[pi = 0] = 1− P[pi = 1], we can compute the participation bias:

(2) E[y1i − y0i|pi = 1]− E[y1i − y0i]︸ ︷︷ ︸
participation bias

= P[pi = 0]× (E[y1i − y0i|pi = 1]− E[y1i − y0i|pi = 0]︸ ︷︷ ︸
treatment specific selection bias

).

In other words, participation bias is the product of the probability of not being in the

18For a more detailed account of LATE, and the conditions for its use, see Angrist and Imbens (1994) and
Heckman (2010).

11



experiment P[pi = 0] and the Treatment Specific Selection Bias (which is analogous to the

classical selection bias, except that the selection is with respect to participation in the experi-

ment, Al-Ubaydli and List, 2013). Participation bias is important, because organizations who

agree to collaborate with researchers in an experiment are usually exceptional (Banerjee et al.,

2017a). Consider the example of Behaghel et al. (2015), who analyzed an experiment in which

French firms could opt into an experiment that would randomize whether they received re-

sumes from applicants in an anonymized form or not. They found the counterintuitive result

that anonymizing resumes hurt applicants from minorities at the selection stage. They argue

that this is the result of selection into the experiment: those firms who chose to participate

were firms that already treated applicants from minorities better than those firms who opted

out (for example, by viewing with more leniency unemployment periods in minority resumes

due to the adverse conditions those individuals face in the labor market), and the fact that

resumes were anonymized precluded those firms from positively discriminate towards minority

applicants. This a clear case where Treatment Specific Selection Bias is important.

Because in general P[pi = 0] is very large (usually close to 1), then the bias in the estimate

will be determined mainly by the Treatment Specific Selection Bias.19 Participation bias will

not be an issue in overt experiments when E[y1i − y0i|pi = 1] ≈ E[y1i − y0i|pi = 0]. This

will happen when pi is independent of yi (because selection does not depend on xi, or because

selection depends on some subset of xi which are in turn independent of yi). The following

condition for overt experiments guarantees that the Treatment Specific Selection Bias will be

zero:20

{yi0, yi1} ⊥⊥ pi|xi (Generalizability Independence Condition).

When the independence condition does not hold (as in Behaghel et al., 2015), researchers

must explicitly consider selection into the experiment, in order to derive general conclusions.

For example, risk averse individuals might be less likely to enroll in an experiment (Al-Ubaydli

and List, 2013; Heckman, 2010). In that case, NFEs are much more useful, because we can

recover E[y1i − y0i] through them without further assumptions, since there is no selection into

the experiment (Al-Ubaydli and List, 2013). In this sense, contrary to conventional wisdom,

field experiments have the potential for more control, and not less, than lab experiments. We

return to this point in Section 2.21 Note that even when researchers manage to have a pool

of subjects that satisfy the Generalizability Independence Condition (GIC, so that pi is not

correlated with outcomes), they can only generalize to pi = 0 for the subpopulation they draw

subjects from, but not necessarily to other populations (Deaton and Cartwright, 2018). For

example, even if researchers managed to collaborate with an NGO that has access to a large

19A fact anticipated by Slonim et al. (2013).
20This condition is similar in spirit to the Conditional Independence Assumption (Rosenbaum and Rubin,

1983).
21However, researchers might be interested in the Intent-to-Treat (ITT) or the Average treatment effect on

the Treated (ATT) estimates. If this is the case, then participation bias might not be a problem, in the sense
that researchers might only be interested in estimating effects for those who would choose to participate in the
experiment.
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and representative sample of the population in California (so that the GIC would hold), they

might able to generalize to those with pi = 0 in California, but not necessarily to the popula-

tion of Massachusetts or France. We discuss this issue of generalizing to other populations next.

Threat IV: Different populations. There are two types of heterogeneity in the popula-

tion that researchers should consider. The first type is heterogeneity in treatment effects across

subjects in the study (or in the population from which the sample was drawn). We discuss

how to deal with this type of heterogeneity, through blocking (Section 8) and within-subject

design (Section 9). There is a second (and related) type of heterogeneity which is a threat

to generalizability: how a population different from the one in our experiment would react to

the same treatment (Athey and Imbens, 2017). First, note that if the subject population was

a random sample of the “population of interest”,22 then the estimates of the Average Treat-

ment Effect generalize to the entire population. Instead researchers often rely on “convenience

samples” which are easily accessible to the research team, but the estimates they provide do

not necessarily generalize to the entire population (Duflo et al., 2007; Deaton and Cartwright,

2018). This problem has been traditionally exacerbated in lab experiments, where subjects

were almost always from W.E.I.R.D. social groups (Western, Educated, Industrialized, Rich

and Democratic, Henrich et al., 2010a; Henrich and Heine, 2010). Even behavior in a stylized

and simple game such as the Ultimatum Game exhibits substantial heterogeneity across popu-

lations, as seen in a series of AFE conducted in small-scale societies across the world (Henrich

et al., 2001). This problem of the representativeness of the population is pervasive and not

confined to economics: subjects in randomized clinical trials for new drugs are not necessarily

a random sample of the population of interest, but healthier individuals than the population

on which the drugs will be used (for example, Travers et al., 2007, found that less than 10% of

asthma patients surveyed qualified for a clinical trial of an asthma medication).23

One especially important dimension of generalizability across populations is gender: either

across men and women, or from one gender to the entire population. Recent years have es-

tablished a rich and robust literature documenting gender differences in response to a variety

of incentive schemes, most notably along the dimensions of competition and risk (Croson and

Gneezy, 2009), supporting the claim that conclusions drawn from the behavior of members of

one gender are unlikely to generalize to the other.24 The issue of gender becomes even more

complex as we take into account the interaction with other covariates. For example, there is

evidence that women’s preferences over competition change with age such that the gender gap

22The population of interest is the one for which we want to find out the treatment effect; for example the
potential target of a policy.

23For an entertaining and interesting discussion of heterogeneity in clinical trials, we recommend listening to
(or reading the transcript of) the episode “Bad Medicine, Part 2” of the Freakonomics podcast.

24Another very stark example concerns the case of clinical trials in the US. In the late 1950s and early 1960s,
a drug called thalidomide caused birth defects in hundreds of newborns in a number of countries (Lenz, 1988).
Although thalidomide was mostly avoided in the US thanks to Frances Oldham Kelsey at the Food and Drug
Administration (FDA Bren, 2001), more stringent regulations were passed that summarily excluded women from
participation in clinical trials (Food and Drug Administration, 1997, 2017). Partly as a consequence of those
regulations, 8 out of 10 drugs pulled from the market by the FDA in the years 1997-2000 had worse adverse
effects for women (Heinrich, 2001).
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in competition (men tend to be more competitive), while large among young adults, disappears

in older populations (Flory et al., 2018).

In sum, we urge researchers to consider carefully and understand the generalizability of

their results, and to design their experiments in ways that tackle these four threats to the

greatest extent possible. Nevertheless, we also argue that while generalizability is important to

understand and model, a needless self-destructive overreaction to the generalizability problem

should not hinder scientific pursuits. Taken to the extreme, no empirical exercise is perfectly

generalizable so the perfect should not be the enemy of the good (i.e., journals constantly

rejecting excellent empirical work on the basis of external validity concerns soon devolves to a

reductio ad absurdum). With that in mind, in the next section, we present an application of

our framework to a discussion of natural field experiments, and show how they can mitigate or

eliminate many potential threats to generalizability.

2 Do More Field Experiments, Especially Natural Field Exper-

iments

For this second recommendation, we use the framework developed in Section 1 for the analysis

of generalizability to discuss the advantages and disadvantages of running field experiments.

We first argue that natural field experiments, and to a lesser extent framed field experiments,

are often less subject to the threats to generalizability than other types of experiments. We

then discuss two typically raised objections to conducting field experiments: lack of control and

higher cost, and argue that many times such arguments are confused. In doing so, we provide

approaches to tackle these issues.

The first threat to generalizability we identified in Section 1 is the change in subjects’ behav-

ior by virtue of being in an experiment and feeling scrutinized: Hawthorne, John Henry, and

experimenter demand effects are all commonly used terms describing such potential impacts

(see Section 1 for definitions). In case of overt experiments such as lab, artefactual field (AFE)

and framed field experiments (FFE), it is often impossible to rule out these potential nuisances.

Alternatively, the fact that natural field experiments are covert (i.e. subjects are not aware of

being part of an experiment) ensures that the environment is natural and there is no sense of

scrutiny beyond that which is natural in the market of interest, ruling out such effects by design

(Al-Ubaydli and List, 2013). As a result, there are fewer threats to generalization from direct

correlation between yi and ω when using a NFE to obtain our estimates.25 Note, however, that

the manner in which most economic experiments are conducted might impart certain biases on

the part of the researchers because they are typically not double-blinded : even when subjects

are not aware of being treated, the research team (performing the data collection and statistical

25FFE can potentially attenuate these effects by collecting data over a longer time period, which we discuss in
Section 11.
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analysis) knows which subjects are in each group (Deaton and Cartwright, 2018).26

The second threat is selective noncompliance: the case when the probability of ending up in

a treatment group differs depending on the initial assignment to treatment versus control. In

lab experiments, AFEs, and FFEs, noncompliance with one’s treatment assignment is typically

only possible through leaving the experiment entirely (DellaVigna et al., 2012). Similarly, in

NFE subjects are unaware of being assigned to a certain treatment and are thus unlikely to

actively try to change their assignment. Switching to a different condition or opting out is often

impossible by design (think of Lyft consumers who are randomized into a high or low price for

a ride–they receive that price and decide whether to purchase, which is the outcome variable of

interest). By their very nature, selective noncompliance is most likely to present problems in

certain FFEs.27

The third threat to generalizability, that of non-random selection into the experiment, is an

aspect where NFEs gain significant attractiveness. By virtue of bypassing the experimental par-

ticipation decision of subjects altogether, there is no selection into natural field experiments by

design, something which overt experiments cannot easily avoid (Al-Ubaydli and List, 2013).28

In lab experiments, it might still be possible to avoid non-random selection into the experi-

ment. For example, Borghans et al. (2009) sought volunteers (i.e. those with pi = 1) for their

experiment among high-school students, although the experiment was actually compulsory (and

included the volunteers). This process avoids non-random selection and also allows for measure-

ment of participation bias, since the researchers know whether pi is 0 or 1 for all subjects in the

population. However, in practice it is often inconvenient or impossible to make participation in

a lab experiments compulsory.

In sum, NFEs are less prone to biases stemming from non-random selection into the ex-

periment, including randomization bias (when subjects are averse to the act of randomization

itself), as well as systematic differences in the outcomes or compliance of those who select into

the experiment. However, there is an important caveat: even when subjects are unaware of

the experiment, there can be participation bias if the participation decision is made on their

26A subtle point is that randomized controlled trials, including FFE, can potentially do a single-blind study
where subjects might be aware of the experiment but not of the particular treatments: this is the case when
subjects in the control group are given a placebo treatment which they cannot distinguish from the treatment
(Senn, 2013).

27For a mechanism design approach to solving this issue in FFE, see Chassang et al. (2012).
28See List (2008) about the ethical considerations behind informed consent and bypassing that decision in NFE.

He notes that it revolves around benefits and costs, where in some cases the major benefit is that there are certain
questions where the subjects’ awareness of being part of an experiment undermines the validity of the research.
For example, when we are attempting to measure the nature and extent of gender or race based discrimination
(but see Section 3 for how lab and field experiments can be combined). As List (2008) writes: “This does not
suggest that moral principles should be altogether abandoned in the pursuit of science. Quite the opposite: the
researcher must weigh whether the research will inflict harm, gauge the extent to which the research benefits
others, and determine whether experimental subjects chose the experimental environment of their own volition
and are treated justly in the experiment. Local Research Ethics Committees and Institutional Review Boards
in the United States serve an important role in monitoring such activities”. We support this point of view and
would like to emphasize that research can (and should) make participants better off and benefit society, while
preserving anonymity and not posing a risk to subject’s well-being.
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behalf by a process that introduces correlation. For example, if firms selecting to participate

in an experiment are such that their employees share a certain characteristic that correlates

with the outcome of interest (as in Behaghel et al., 2015), this would mean that interpretation

of the results should be only over these types of firms. This is because the Generalizability

Independence Condition (GIC) derived in Section 1 is violated. In cases in which the partic-

ipation decision is made on behalf of the subjects by another agent, the researchers need to

carefully consider whether the GIC holds. If it does not, then statistical intepretation should

be adjusted accordingly. This might be difficult when the researchers need to collaborate with

a number of small self-selected firms, but it can be potentially alleviated when partnering with

administrations or large firms who have access to a representative pool of subjects.

The last threat to generalizability applies when we try to extrapolate the findings of one

study to a different population. Note that, in this regard, all field experiments (AFE, FFE and

NFE) offer an advantage over traditional lab experiments, because they select the population

S of interest by design, which is usually different from traditional “W.E.I.R.D. university stu-

dents” (Henrich et al., 2010b, see also the discussion of Threat IV in Section 1), such as farmers,

traders, entrepreneurs, CEOs, physicians, etc. Absent participant selection, within field exper-

iments, NFEs do not have an inherent advantage over AFEs and FFEs, in the sense that the

population selected S for an NFE can still be very different from the population of interest S′,

as would happen in AFEs and FFEs. However, NFEs offer a potential advantage because, by

collaborating with large entities, researchers can reach a large and often representative sample

of the population or the direct population of interest. As an example, consider Hallsworth et al.

(2017) who collaborated with a public administration to conduct their tax debtor experiment.

Because the population of interest S′ over which results should generalize is often the entire

population (say, of a given country or region), running NFEs through these types of collabo-

rations allows researchers to have a representative sample. As a result, generalization is either

unnecessary (because S = S′), or it is feasible either because the subset of interest is part of the

experimental population (S′ ⊂ S) or because the treatment effect for S′ can be extrapolated

from a subset of S.

Al-Ubaydli and List (2013) propose a simple framework for generalizability, building on the

“all causes model” of Heckman (2000), of which we include the mathematical details in the

Appendix, and describe here the main intuition.29 There are three potential cases of general-

izability: zero, local, and global generalizability. Under zero generalizability, results cannot be

generalized to any setting different from the one in which they were obtained, which is the most

conservative approach. Under local generalizability, results can only be generalized to situa-

tions that are very similar to the ones studied in the experiment. Al-Ubaydli and List (2013)

argue that under the conservative conditions of zero or local generalizability, field experiments

(especially NFEs) can actually offer greater generalizability than lab experiments (and AFEs),

29In our model in the Appendix, we use different definitions as in Al-Ubaydli and List (2013), but the spirit is
the same as in the original framework.
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because their results can be applied in some natural setting (the one in which the experiment

was originally performed), for populations and in contexts which would be similar to those of

the original experiment. This is especially true if the experiment is implementing a program,

and the researchers are evaluating the effects of the program in a particular population. Under

global generalizability, on the other hand, results can be extrapolated to contexts that are not

necessarily similar to those in which the experiment took place. In this case, neither lab experi-

ments nor field experiments are superior to each other in that they each measure the parameter

in the exact situation studied.

One of the most often heard disadvantages of using field experiments is that the lab provides

more control than the field.30 We agree that lab experiments can have better control over the

task subjects agree to participate in, and can used induced values (which NFEs by definition

have more difficultly doing). However, this alleged disadvantage must be qualified, depending

on how we define what is meant by “field” and “control”.

As noted above, we follow Harrison and List (2004), who view the concept “field” as a

continuum, where FFE and NFE are clearly inside the set of field experiments, lab experiments

are clearly outside the set, and AFE are somewhere in between. By control, we mean the ability

of the researcher to exclude alternative explanations of the outcome, other than the cause of

interest. With this definition, the different types of experiments allow for different types of

control.31

NFE could offer more control than lab experiments, not less, along certain important di-

mensions, the main one being selection into the experiment (Al-Ubaydli and List, 2015). As

discussed in Section 1, lab experiments, AFE and FFE estimate treatment effects only for those

who decide to participate in the experiment (pi = 1), and not for the individuals who do not

participate (pi = 0), potentially generating an important bias. Therefore, while the lab provides

researchers with more control in the environment which participants opt into, it provides the

researcher with less control than NFE over the participation decision (Al-Ubaydli and List,

2015). Moreover, while lab experiments are well suited to produce qualitative treatment ef-

fects or comparative statics (Levitt and List, 2007), under participation bias even qualitative

treatment effects are not robust (Slonim et al., 2013).32 Therefore, when considering the entire

experimental situation – from start to finish – NFE could potentially offer more control than

lab experiments, because by bypassing the participation decision, they are not subject to par-

ticipation bias (Al-Ubaydli and List, 2013, 2015, see also Section 1).

30For example, according to Falk and Heckman (2009) “the laboratory allows tight control of decision environ-
ments”, while Camerer (2015) claims that “there is little doubt that the quality of control is potentially very high
in lab experiments”. In a similar vein, Deaton and Cartwright (2018) write: “Exactly what randomization does is
frequently lost in the practical literature, and there is often a confusion between perfect control, on the one hand
– as in a laboratory experiment or perfect matching with no unobservable causes – and control in expectation –
which is what RCTs do”.

31We elaborate on this point further in Section 3, where we discuss the pros and cons of each type of experiment
and the complementarities between them.

32In the sense that the direction of the estimated effect might be opposite to the direction of the true treatment
effect.
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Despite the several benefits of running FFE and NFE discussed in the paragraphs above,

there remains a large obstacle to running more field experiments related to cost consider-

ations. As compared to lab experiments, field experiments can be more expensive both in

monetary terms and also with respect to the planning they require and the time they take to

yield results and, ultimately, publications. However, partnering with administrations, NGOs

or firms can substantially reduce the costs of field experiments, and thus result in a win-win

collaboration (Levitt and List, 2009). Indeed, there are cases when NFE are very low cost,

and entail simply the researcher’s time when the organization is searching for partners to help

generate ideas, implement, and conduct the experiment.33 In the limit, we imagine that NFE

will be a negative cost: organizations will soon realize that the opportunity cost of not knowing

the necessary information is too costly and they will actually employ experimenters to conduct

field experiments that can turn into science.

In summary, field experiments, and especially NFE, offer several advantages over other types

of experiments: being covert, they avoid bias stemming from experimenter demand effects, they

allow for a more complex and natural environment in which the researcher does not need to

know a priori all the variables that affect the outcome, subjects belong to the population of

interest instead of being W.E.I.R.D. (Henrich et al., 2010a) and, in the case of NFE, there

is no participation bias because subjects do not self-select into the experiment. All of these

features enhance the generalizability of field experiments. When a researcher decides which

type of experiment to conduct (lab, AFE, FFE, NFE), there is a tradeoff between the benefits

obtained from conducting the experiment (the private benefits to the experimenter, in terms of

publication and advancement of her career, and the societal benefit from advancing knowledge)

and the cost of running the experiment. In the following section we discuss this tradeoff in more

detail in the context of choosing which type of experiment to run.

3 Use lab and field experiments as complementary approaches

After reviewing various issues related to the generalizability of experimental results in Section

1, and discussing what we view as the advantages of field experiments in Section 2, we now

tackle the broader question of choosing the right type of experiment (lab experiments, AFE,

FFE, or NFE; see the Preliminaries for definitions) for a given research question. Ultimately,

we believe that lab and field experiments serve different purposes, and as such they offer com-

plementarities in the production of knowledge (Harrison and List, 2004; Falk and Heckman,

2009). We identify five main issues researchers should consider when choosing between different

types of experiments.

First, researchers need to consider the properties of the different types of experiments from

the point of view of proper statistical inference (more on this in Section 4). Lab experiments,

33For a practical take on running field experiments, see (List, 2011).
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AFEs, and FFEs can offer more control on the task that subjects perform, once they agree

to be in the experiment, than natural field experiments (Al-Ubaydli and List, 2013, 2015). This

control comes in two forms: i) a more precise environment to establish causation (as an ex-

ample, consider studies using induced values to test whether prices and quantities converge to

neoclassical expectations, as in Smith’s (1962) double oral auction lab experiments or List’s

(2004) multi-lateral bargaining framed field experiments. And ii) more precise estimates (i.e.

lower variance), because one can collect a more homogeneous sample and there can be fewer

unobservables affecting behavior in the lab, so it is easier to run well-powered studies (see Sec-

tion 4).

It is also crucial that researchers consider the properties of replicability. For example, it

has been argued that an advantage of lab experiments is their better replicability (Camerer,

2015). Lab experiments can offer a more portable protocol than field experiments, and experi-

mental conditions might be kept constant with more precision. We direct the reader to Section

5 for an extended discussion on the properties of replication.

Combining different types of experiments allows researchers to tackle the issue of gener-

alizability by exploring how different factors such as context, scrutiny, stakes and population

affect the outcome.34 As a rule of thumb, the lab will be a good place for experiments where the

identity of the population does not matter. Neuroeconomic experiments studying brain areas

that can be extrapolated to the entire population, fit in this category, as well as experiments for

which the outcome of interest has been shown to generalize (Stoop et al., 2012; Cleave et al.,

2013). Gächter (2010) argue that lab experiments using students are excellent as a first step

to test economic theories, precisely because most theories assume generality. AFE, FFE and

NFE offer the possibility of using a population of interest instead of a W.E.I.R.D. population

(Henrich et al., 2010a,b, also Section 1). FFE and NFE offer the additional benefit of having

a natural context, where not only the population but also the environment resemble the object

of interest. As discussed in the previous section, NFE offer the additional advantage (over lab,

AFE and FFE) that they bypass subjects’ decision of participating in the experiment, there-

fore avoiding participation bias and experimenter demand effects. Avoiding participation bias

can be especially important if researchers want to scale up their proposed program (Section 12).

Researchers also need to consider the costs of running each type of experiment, including

all the monetary and logistical costs (recruiting participants and paying them fees, providing

treatments and incentives, etc.) as well as the opportunity cost of doing other types of research.

As we discussed in Section 2, lab experiments are typically (but not always) cheaper than field

experiments. Consequently, researchers can often begin by exploring questions using lower-cost

lab experiments, and later move into the field to replicate their initial results in a more di-

verse environment and population. However, this rule of thumb has exceptions. As discussed

34Falk and Heckman (2009), discussing the generalizability of experiments, argue that the issue is not necessarily
lab vs. field, but “the prevailing conditions such as the details of agent interactions” (see also Section 1).
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in Section 2, FFE and NFE can be cheaper (sometimes virtually costless in monetary terms

for the researchers) when researchers partner up with governmental agencies, firms and NGOs,

creating win-win partnerships (Levitt and List, 2009). Moreover, the unit cost per subject can

be reduced in field experiments due to economies of scale, and this is compounded with the cost

reduction of running experiments in countries with lower costs.

Finally, there are many questions that researchers might simply not be able to tackle in the

field, due to ethical or cost constraints. To illustrate this point, consider the case of discrimina-

tion (Al-Ubaydli and List, 2013), where the two main theories in economics are preference-based

discrimination (Becker, 2010) versus statistical discrimination (Arrow, 1973; Phelps, 1972). Nat-

ural field experiments are clearly effective at differentiating between the two potential sources

of discrimination, as they target the population and context of interest, and avoid participation

bias and experimenter demand effects (for a survey, see List (2006a)). However, the lab can of-

fer a complementary approach to exploring this question: for example, Niederle and Vesterlund

(2007) used lab experiments to investigate whether affirmative action policies affect selection

into a tournament, an intervention that would have been difficult to carry out in a natural

setting.

In conclusion, different types of experiments offer complementarities in the level of control,

replicability and generalizability they allow given their cost, and these trade-offs ultimately

determine, for any particular research question, the type of experiment that offers the most

value.

4 For proper inference, go beyond p-values

Throughout the previous sections, we focused on the generalizability of experimental results,

discussing the extent to which we can extrapolate findings from a given study to other contexts.

We now take a step back, and examine how priors should change in light of empirical findings.

What conclusions can we draw upon observing a statistically significant result? More generally,

what should we consider standards of evidence, and what is the framework of proper inference

given our research data? We suggest a framework where the benefits from running experiments

can be measured by their informativeness, i.e. how much they change the priors of the scientific

community.35

In biomedical and social sciences, including experimental economics, researchers typically

obtain their conclusions regarding the existence of an effect or association in their data by con-

ducting (null hypothesis) significance testing (Fisher, 1925). In particular, they formulate a

statistical model complete with a set of assumptions, among them their null hypothesis (H0,

often postulating the absence of the effect/association in question), calculate a test statistic sum-

35This aspect should be considered even when members of the scientific community have multiple priors (see
the discussion on priors in this section, and also in Section 8).
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marizing their data, then compare this statistic to the distribution expected under the model

they specified (i.e. assuming that all the model’s assumptions, including the null hypothesis,

are true). The outcome of this comparison is summarized in the p-value: the probability under

the specified model that the test statistic would be equal to or more extreme than its observed

value (Wasserstein and Lazar, 2016). A result is then pronounced statistically significant if

the p-value falls below a pre-specified cut-off (often 0.05, but see the plea from Benjamin et al.

(2017) for 0.005 ). This interpretation, however, is a departure from Fisher’s original frame-

work. In his view, significance testing essentially measures the strength of evidence against a

null hypothesis, and he leaves the interpretation of the p-value to the researcher. Instead of a

strict decision rule, he advocates for examining whether or not the observed p-value is “open

to suspicion” - and if so, to run another experiment (Lehmann, 1993).

A conceptually different approach to statistical inference is hypothesis testing, developed

by Neyman and Pearson (1933) with the aim to reduce the subjectivity inherent to Fisher’s

method. This framework simultaneously addresses the probabilities of two different types of

errors of inference: incorrect rejection of a true null (Type I error) and incorrect acceptance

of a false null (Type II error). The method requires researchers to formulate a precise alter-

native hypothesis against which the null hypothesis is tested (in practice, this often means

pre-specifying a particular effect size), and to fix in advance the rates of Type I and Type II

errors (typically denoted by α and β, respectively). Central to this approach is the concept of

statistical power: the pre-study probability that the test will correctly reject a false null as a

function of the alternative hypothesis (calculated as 1− β, i.e. 1 minus the Type II error rate).

Given the a priori specified decision rule (α, β and the alternative hypothesis Ha), the analysis

results in the acceptance or rejection of the null hypothesis. The framework allows for ex ante

sample size calculations, whereby the researchers assess the number of observations required

to detect an effect of the size as stated in the alternative hypothesis, with the pre-specified

Type I and II error rates. It is important to point out that hypothesis testing is a frequentist

approach: it limits the number of mistakes made over several different experiments, but it does

not attach an interpretation to a p-value resulting from a single study (Sterne and Smith, 2001).

In practice, researchers all too often focus exclusively on the statistical significance of the

results when interpreting their findings. Such narrow focus on p-values is dangerous, as it gives

rise to several misconceptions. It is crucial to understand that the p-value indicates the incom-

patibility of the data generated in the experiment with the proposed model, but it does not

measure the probability that the null hypothesis is true: recall, the p-value is calculated under

the assumption that the model is true (Greenland et al., 2016). Thus a p-value of 0.05 from a

single study does not ensure that the finding has a mere 5% chance of being a “false positive”

(more on false discovery rates later). Furthermore, low p-values should be interpreted as provid-

ing evidence against the proposed model as a whole, not necessarily against the null hypothesis

in particular. Data and model could be incompatible if any of the underlying assumptions are
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violated, including those related to the quality of measurement, the conduct of the analysis, the

reporting of results, etc. Thus, a p-value of a comparison cannot be interpreted in isolation,

without considering researcher degrees of freedom and the resulting potential bias (Wasserstein

and Lazar, 2016). Finally, p-values do not convey any information about the size or importance

of the effect in question: tiny effects can produce low p-values if the sample size is large or the

precision of the estimate is high enough, and vice versa (Greenland et al., 2016).

Despite repeated calls for moving beyond p-values and examining the statistical power func-

tion (McCloskey, 1985), most published studies continue to ignore the issue entirely. Ziliak and

McCloskey (2004) report that among empirical papers published in the American Economic

Review in the 1990s, only 8% considered the power of the tests used. More recently, Zhang

and Ortmann (2013) failed to find a single study discussing optimal sample size in relation to

statistical power among all the articles published in Experimental Economics between 2010 and

2012. Given this lack of attention, it is unsurprising that most published studies have very low

statistical power. Despite the convention of defining adequate power as 80%, studies in most

fields fall dramatically short of this level.36 In a survey of more than 6700 studies in empirical

economics, Ioannidis et al. (2017) find that the median statistical power of the reviewed research

areas is a mere 18%, and nearly 90% of results are under-powered in half of the areas assessed.

Coville and Vivalt (2017), focusing on studies in the field of development economics, estimate a

median power to detect an average predicted effect of 59%. Only a third of the studies included

in their analysis have power greater than 80%. Analyzing time trends, Smaldino and McElreath

(2016) find little reason for optimism: according to their survey of review papers published be-

tween 1960 and 2011, mean statistical power was 0.24 in social and behavioral sciences, and

showed no increase over time.37

Inference from low-powered studies is problematic for at least three reasons. First, by defi-

nition, adequate power is required to ensure that studies have a high likelihood of detecting a

genuine effect. Low power implies high rates of false negatives whereby the null hypothesis of

“no effect” is not rejected, despite being false. This aspect is highlighted by De Long and Lang

(1992), who review papers published in the 1980s in major economic journals (American Eco-

nomic Review, Econometrica, Journal of Political Economy, Quarterly Journal of Economics,

and Review of Economics and Statistics) that failed to reject the null hypothesis at the 0.1 level.

The authors estimate that in their sample “failures to reject nulls are [...] almost always due

to lack of power in the test, and not to the truth of the null hypothesis tested” (De Long and

Lang, 1992, p.1261). More recently, Coville and Vivalt (2017) estimate an average false negative

36To put it differently, the Type II error rate should be no more than four times the usually prescribed Type
I error rate - a convention that is arguably arbitrary and yet routinely followed across different fields of science
(Ioannidis et al., 2017). An alternative approach is to simultaneously determine the optimal pair of Type I and
II errors according to the circumstances and aim of the specific study, as originally suggested by Neyman and
Pearson (1933) and recently reiterated by Ioannidis et al. (2013).

37The problem of insufficient power is by no means specific to economics: Button et al. (2013) estimate that
the median statistical power in neuroscience is 21%.
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reporting probability in development economics of approximately 0.53, calculated as the share

of incorrectly accepted null hypotheses over all accepted null hypotheses. Fiedler et al. (2012)

argues that researchers’ relatively high tolerance for false negatives has potentially irreversible

effects on the development of scientific knowledge: since false negative results are less likely to

be followed up than false positives, self-correction is less likely to occur in these cases.

A second channel through which low power threatens the credibility of research findings is

effect inflation: the phenomenon of obtaining “an exaggerated estimate of the magnitude of

the effect when a true effect is discovered” (Button et al., 2013, p. 366). This problem is also

known as the winner’s curse, the Type M error (Gelman and Carlin, 2014) or the statistical sig-

nificance filter (Loken and Gelman, 2017). Intuitively, effect inflation occurs because in settings

where standard errors are large, only those findings that by chance overestimate the magnitude

of the effect will appear statistically significant and thus pass the threshold for discovery. Ef-

fect inflation is therefore more severe in underpowered studies that are based on small samples

in the presence of high measurement error: studies with power below 50% are likely to yield

exaggerated estimates of magnitudes (Gelman and Carlin, 2014). In line with this prediction,

Ioannidis et al. (2017) estimate that over one-third of the average results of economics research

are exaggerated by a factor of more than four, and the majority of reported research is at least

twice too large.

The third, less appreciated aspect of statistical power is its relation to false discoveries.

The connection becomes clear once we abandon the practice of treating a single finding that has

achieved formal statistical significance as conclusive evidence, and instead consider a Bayesian

framework of statistical inference whereby any individual study contributes to scientific

knowledge insofar as it moves our priors regarding the existence of the effect/association in

question. In this framework, studies may be assessed on the basis of their positive predictive

value: the post-study probability that a research finding that has achieved formal statistical

significance is indeed true (Wacholder et al., 2004; Ioannidis, 2005).38 The basic ingredients

of this metric are the Type I and II error rates (α and β, respectively), together with π, the

fraction of true associations among all associations tested in a given field. We treat this fraction

as our prior: the pre-study odds that the association in question is true (we discuss different

ways to obtain priors later in this section). The post-study probability (PSP) is then defined

as the share of true associations which are declared true ((1 − β)π) divided by the share of

all associations which are declared true ((1− β)π + α(1− π)). As shown in Equation 3 below

(reproduced from Maniadis et al. (2014)), the PSP depends on the power of a study (1− β) in

the following way:

PSP =
(1− β)π

(1− β)π + α(1− π)
(3)

38The positive predictive value can be understood as the complementary probability of the false positive report-
ing probability, defined by Wacholder et al. (2004) as the probability of no true association given a statistically
significant finding.
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In particular, since the derivative of Equation 3 with respect to (1 − β) is positive, the

positive predictive value of a study is increasing in its power. As an example, consider a field

where π is 0.1 (i.e. 1 out of 10 examined associations is true) and α is fixed at 0.05. Using

Equation 3, we find that the post-study probability that a statistically significant finding is

genuinely true is 64% in case the level of power is 80%, but falls to a mere 31% for a study with

20% power. Statistically significant results from low-powered studies thus contribute little to

scientific knowledge as they lead to a low post-study probability of the findings being genuinely

true. Ignoring the above-described framework of inference and treating statistically significant

results from underpowered studies as conclusive evidence for the existence of an effect increases

the rate of false discoveries, leading to low reproducibility of published results and undermin-

ing the credibility of the research field (Munafò et al., 2017; Button et al., 2013). A Bayesian

framework also shows that non-significant results, especially when they are obtained in large

datasets, can be more informative than significant ones. In particular, rejection of a point null

hypothesis is often less likely to substantially change priors over a large range of values than is

a failure to reject the null (Abadie, 2018).

As a side note, we would like to draw attention to the other crucial, yet often overlooked,

ingredient of Equation 3: π, the prior probability (or pre-study odds) that the effect being

tested exists. The post-study probability that a statistically significant finding is actually true

is an increasing function of this prior. Continuing our example above, if the prior we consider

changes from 0.1 to 0.01, the PSP falls from 64% to 14% even if the error rates remain fixed at

levels conventionally deemed adequate (α = 0.05 and β = 0.2). Consequently, a single “surprise

discovery,” i.e., the first study to find a statistically significant association in a question where

the prior probability was quite low, should only have a limited impact on our post-study belief

that the effect actually exists. Given their importance, it is crucial to improve our understanding

of priors, and to consider the range of pre-study odds for the question in consideration before

running an experiment (Ioannidis, 2005). As a general rule, priors are higher in disciplines

where empirical research has sound theoretical foundations than in fields where exploratory

research is the norm (Maniadis et al., 2017).39 Abadie (2018) provides a numerical example

for constructing a prior distribution for experimental economics studies, using estimates from

a replication project we discuss in Section 5 (Camerer et al., 2016; Andrews and Kasy, 2017).

Obtaining prior probabilities for any particular research question is less than straightforward.

One solution is to calculate the PSP using a range of possible values for priors, as demonstrated

in e.g. Maniadis et al. (2014). Alternatively, estimates for the pre-study odds may be obtained

by consulting experts. As examples, consider Groh et al. (2016), who undertake an “audience

expectation elicitation exercise”, collecting treatment effect estimates from members of their

audience prior to presenting their results, Coville and Vivalt (2017), who survey a panel of re-

searchers to collect anticipated effects in various development economics studies, or DellaVigna

and Pope (2018), who compare expert and non-expert forecasts. Finally, Dreber et al. (2015)

39Card et al. (2011) estimate that 68% of economic field experiments are purely descriptive in the sense that
they do not contain even a single line of formal mathematical modeling.
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use prediction markets to obtain estimates for prior probabilities of specific hypotheses being

true.

In the above discussion of the mechanics of statistical inference we have ignored any “re-

searcher degrees of freedom” in the design, analysis and reporting that may lead to iden-

tifying effects even in the absence of a true association. Recent studies indicate that both

specification searching (the practice of trying out several specifications and selectively reporting

outcomes that support the researcher’s intended conclusion, see e.g. Simmons et al. (2011);

Brodeur et al. (2016)) and publication bias (the greater tendency of researchers to submit

and editors to publish studies with significant rather than non-significant findings, see e.g.

Doucouliagos and Stanley (2013); Christensen and Miguel (2016); Andrews and Kasy (2017))

are prevalent in empirical economics. As Ioannidis (2005) points out, such bias also reduces the

post-study probability of a positive finding actually being true.40 Repeated independent testing

by different teams of investigators further lowers the PSP: intuitively, the positive predictive

value in this case reflects the fact that only 1 out of n independent studies found a positive

association (in Section 5 we discuss how the PSP changes when r out of n independent studies

find evidence for the existence of an effect).

In sum, an exclusive reliance on formal statistical significance and inadequate attention to

the other ingredients determining a study’s positive predictive value (priors, bias, competition

and, crucially, statistical power) compromise researchers’ ability to draw correct inferences from

data. Besides the adaptation of a Bayesian framework, proposed solutions to the problem in-

clude greater attention to effect sizes, and a departure from methods that focus on testing

towards those that emphasize estimation, such as confidence, credibility or prediction intervals

(Wasserstein and Lazar, 2016; Munafò et al., 2017) or even “hacking intervals” (Coker et al.,

2018). On the other hand, using a p-value threshold as an established standard for evaluat-

ing research findings might still be helpful for consumers of research. Given that the scientific

community continues to rely on a universally accepted p-value cut-off, a group of scientists

now propose to make this standard more stringent: Benjamin et al. (2017) argue that novel

findings should be labeled as “statistically significant” only if they pass a p-value threshold

of 0.005, and recommend treating evidence with p-values between 0.005 and 0.05 merely as

“suggestive”. Their proposal promises to reduce false positive rates to acceptable levels in

most professions. The proposal sparked an intense debate, with critiques calling for removing

(Amrhein and Greenland, 2018) or abandoning (McShane et al., 2017), rather than redefining,

statistical significance, and suggesting a new approach to reporting results whereby researchers

transparently present and justify their design choices, including their chosen significance level

(Lakens et al., 2018).

40In the presence of such practices, the positive predictive value may be calculated as follows, where u indicates
the extent of bias: PSP = (1−β)π+βπu

(1−β)π+βπu+[α+(1−α)u](1−π) . Maniadis et al. (2017) discuss the determinants of u for
a given discipline.
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This lively debate signals a growing interest among experimental scientists in the issue of

proper inference, a welcome development that we hope will translate into actual changes in

practices and norms in the scientific community. In the following sections we review several

practical recommendations that have the potential to substantially improve the reliability of

scientific results. In Section 5 we begin with what we see as the most pressing issue currently: we

discuss the importance of replications, and present incentive-compatible methods to encourage

them.

5 Replicate early and often

We believe that the best approach to increasing the reliability of results from experimental

economics lies in replication. Recent controversies surrounding topics such as ego depletion in

the psychology literature (Hagger and Chatzisarantis, 2016; Hagger et al., 2010; Carter and

McCullough, 2014) or the impact of de-worming programs in development economics (Croke

et al., 2016) all highlight the importance of replications. In the following we define what we

consider replication, and demonstrate using a Bayesian framework of inference why it is crucial

for the credibility of science. We then discuss what the “natural rate of replication” and the

rate of reproducibility in economics are today. Additionally, we review several proposals to

incentivize replication.41

As Clemens (2015) points out, there is currently no universally accepted standard in eco-

nomics as to what exactly constitutes a replication. Levitt and List (2009) propose definitions

that are well-suited to experimental studies. In the most narrow interpretation, a replication

means taking the original data generated by an experiment and re-analyzing it to confirm the

original findings. In the terminology of Hamermesh (2007)’, this would constitute a pure repli-

cation: examining the same question and model using the underlying original data set. This

approach may help to address issues with the internal validity of a study, for instance through

uncovering coding errors or mistakes in calculations.42 A broader interpretation of replication

in experiments involves running a new experiment closely following the original protocol to

test whether similar results can be generated using a new subject pool. Such a study would

be classified as statistical replication: based on a different sample, but using an identical

model and underlying population (Hamermesh, 2007). This method has the potential to fix

sampling errors or insufficient power. Finally, the third and broadest category entails testing

the hypotheses of the original study using a new research design. This characterization is a

scientific replication according to Hamermesh (2007), as it involves a different sample, a

different population, a different situation, and a perhaps similar but not identical model. These

41Other valuable methods aimed to serve the goal of “research synthesis” are literature surveys and meta-
analyses; for reviews on these methods, refer to e.g. Anderson and Kichkha (2017); Maniadis et al. (2017);
Maniadis and Tufano (2017).

42Even without an explicit mistake on the researchers’ side, empirical results are not necessarily robust; as an
example, consider McCullough and Vinod (2003) who report that nonlinear maximization methods from different
software packages often produce wildly different estimates.
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replications help assess the robustness of the original finding, and may inform discussions on

the generalizability of the original result (see Section 1).43

To illustrate why statistical replications are crucial, let us return to the Bayesian framework

of inference introduced in Section 4. Equation 3 presented the post-study probability (PSP) of a

finding actually being true, conditional on a single study providing statistical evidence in favor

of its existence. Following Moonesinghe et al. (2007), we can adapt this formula to calculate the

PSP when at least r out of n independent studies find a significant result for the association in

question. As before, we obtain the PSP as the fraction of true associations declared true over

all associations declared true:

PSP =
π
∑n

i=r

(
n
i

)
(1− β)iβ(n−i)

π
∑n

i=r

(
n
i

)
(1− β)iβ(n−i) + (1− π)

∑n
i=r

(
n
i

)
αi(1− α)(n−i)(4)

Using Formula 4, Moonesinghe et al. (2007) and Maniadis et al. (2014) demonstrate how a few

successful replications can increase the positive predictive value of a finding. This increase is

particularly dramatic in cases when prior probabilities are low.44 Within the same framework,

Coffman and Niederle (2015) argue that even the most inaccurate beliefs can be corrected within

three to five replications.45

Despite a general consensus among economists regarding the importance of replication, it

remains largely “an ideal to be professed but not practiced” (Mueller-Langer et al., 2017). In-

centives for individual researchers to replicate a project or to have their own work replicated are

low or missing entirely. Replications typically bring little recognition for their authors despite

the substantial work they entail. The process is particularly tedious because data and code

for published articles are often unavailable - even though most leading economics journals have

introduced data sharing requirements and mandatory data archives, such policies are not nec-

essarily enforced (Höffler, 2017). As Duvendack et al. (2017) observe, replications are usually

regarded as unoriginal or “derivative”. Worse, they may ignite animosity among researchers if

authors of the original work treat replication attempts as threats. Moreover, journals may be

reluctant to publish replication studies for fear of not receiving enough citations (Duvendack

et al., 2017). Indeed, according to a survey by Mueller-Langer et al. (2017), from 1974 to 2014

less than 0.1% of publications in the top-50 economics journals were replications. Given the

43Clemens (2015) suggests an alternative classification, differentiating between replication tests (including
verification and reproduction tests) and robustness tests (including reanalysis and extension tests). See also the
discussion in Duvendack et al. (2017).

44Consider the following example, based on Maniadis et al. (2014): n = 15 researchers independently run the
same study with 80% power to detect an association that has a 10% prior probability of being true. When a
single study out of the fifteen attempts finds a statistically significant association (i.e. r = 1), then the post-study
probability that this positive finding is actually true is a mere 17% (remember that the corresponding PSP was
well above 50% in the absence of researcher competition (i.e. n = 1), see Section 4). However, the post-study
probability that the association in question really exists increases to over 90% in case of just two successful
replications.

45For a more nuanced approach that takes into account various forms of researcher bias among the replicators,
see Maniadis et al. (2017).
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difficulties of publishing a ‘mere replication,’ conducting an extension study where the control

treatment replicates a previous finding is often a more attractive alternative. This, however,

makes replications hard to identify: as Coffman et al. (2017) point out, such ‘implicit replica-

tions’ are often reported as part of a paper with a much larger scope, without being labeled as

replications. Other times, successful replications are simply not considered interesting enough

to be published. As a result, it is less than straightforward to assess how often replications

actually occur.

A few recent papers attempt to address this issue and estimate the “natural rate of replica-

tion” in economics. First, Berry et al. (2017) focus on all the empirical papers published in the

centenary volume (2010) of the American Economic Review, and manually code all their pub-

lished citations as either replications, robustness tests, extensions, or none of the above. They

find that less than a third of the 70 papers have been replicated at least once, where a replication

is defined as a project “speaking directly to the veracity of the original paper.” Validating the

assertion that the visibility of replications is low, Berry et al. (2017) find considerable uncer-

tainty among the authors of the original papers over the number of extant replications of their

studies. Second, Sukhtankar (2017) analyzes 1056 empirical papers in development economics

published in the top ten general interest journals between 2000 through 2015, perform a reverse

citation search, then search within the ensuing list for “replication” or alternative cognates. His

results suggest that only 5.4% of the studies in their sample were replicated in a published paper

or a working paper, the rate being higher (12.5%) for studies based on randomized controlled

trials. Third, Hamermesh (2017) collects ten leading papers from labor economics with at least

20 years of citation history, and classifies their citing papers as either i) related to, ii) inspired

by, iii) very similar to but using different data, or iv) a direct replication at least partly using

the same data. He finds that of the more than 3000 citing studies, only 0.6% fall into the last

category. On the other hand, 7 out of the 10 original studies he surveyed were replicated at least

five times, and all of them at least once. Finally, Maniadis et al. (2017) survey experimental

papers published between 1975–2014 in the top 150 journals in economics, and estimate that

the fraction of replication studies among all experimental papers in their sample is 4.2% (taking

into account ‘implicit replications’ as well). Overall, these studies suggest that the natural rate

of replication in empirical economics is low, although heavily cited and influential papers do

tend to get replicated.

The above results concern the rate at which replications are attempted, leaving aside the

question of what share of these replications is positive, i.e. confirm the findings of the origi-

nal study. Measuring rates of reproducibility in economics dates back to the quest of Dewald

et al. (1986) to replicate findings from articles published in the Journal of Money, Credit and

Banking. The authors famously concluded that inadvertent errors were a “commonplace rather

than a rare occurrence.” Another key insight of the Dewald et al. (1986) study was the alarm-

ingly high share of authors who were unwilling or unable to supply their data and code to
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the replicators. According to Chang and Li (2017), this problem is still pervasive: in their

attempt to replicate macroeconomic papers published in 13 well-regarded journals, the greatest

obstacle they faced was authors’ failure to provide their data and code files. As a result, they

were only able to qualitatively reproduce the key results of 29 out of the 59 papers they sampled.

Focusing on experimental economics specifically, Deck et al. (2015) review several replica-

tion attempts, mostly in the context of public goods provision, with varying outcomes. The

first systematic evidence of replicability of laboratory experiments in economics is provided by

Camerer et al. (2016) who replicate 18 studies published in the American Economic Review

and the Quarterly Journal of Economics between 2011 and 2014, according to pre-analysis

plans posted prior to conducting the replication studies. They find a significant effect in the

same direction as in the original study in 11 out of the 18 studies, corresponding to a repro-

ducibility rate of 61%.46 They also discuss alternative replication indicators, e.g. whether the

95% confidence interval of the replication effect size includes the original effect size, or whether

the replicated effect lies in a 95% prediction interval. These measures suggest higher rates of

replicability (66.7% and 83.3%, respectively). The authors also compare the replicated effect

sizes with the original, and find a mean relative effect size of 65.9%. The finding that the

replicated effect sizes tend to be smaller than the original ones reflects the effect size inflation

phenomenon discussed in Section 4. Overall, Camerer et al. (2016) interpret their findings as

suggesting “relatively good replicability of results.”

Another noteworthy replication initiative is the Social Sciences Replication Project, whose

collaborators aimed to replicate 21 experimental studies in the social sciences published in the

prestigious journals Nature and Science between 2010 and 2015. They find a significant effect

in the same direction as the original study for 13 (62%) studies, and the effect size of the repli-

cations is on average about 50% of the original effect size (Camerer et al., 2018). Finally, while

both of the above-mentioned projects focus on results published in top journals, Maniadis et al.

(2017) analyze replication attempts from 150 economic journals, and find a “success rate” of

42.3% among the 85 experimental replication studies in their sample.

The recent surge of interest in reproducibility also ignited an intense discussion about the

most effective ways to incentivize replications. We conclude this section by reviewing a few

suggestions that we find particularly promising. The first set of ideas addresses the current

difficulty of publishing replication studies, suggesting the creation of a specific outlet in the

form of a new journal dedicated to replications (Coffman and Niederle, 2015), or including

46While lower than desirable, this share is considerably higher than the replicability rates uncovered in the Re-
producibility Project: Psychology (RPP) (Open Science Collaboration, 2015), a project that involved replicating
100 studies published in three psychology journals. Their results paint a rather grim picture of the reliability of
psychological research: while 97% of the original studies found significant results, only 36% of the replications
were able to reproduce these significant findings. In the Many Labs 2 project, 15 of the 28 attempted replications
provided evidence in the same direction as the original finding and statistically significant at the 5% level (Klein
et al., 2018).
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one-page “replication reports” in top journals (Coffman et al., 2017). These suggestions could

be especially effective coupled with a new norm that requires citing replication work alongside

the original, increasing the returns both to the publishing journals and to the authors of the

replications. The recent launch of the Journal of the Economic Science Association, with a

special section devoted to replications, is a promising step in this direction. Second, Maniadis

et al. (2015) emphasize the need to change authors’ incentives to collaborate with replicators.47

In their view, journals should always allow original authors to give their commentaries after a

replication attempt; they also suggest considering the number of replication attempts as a met-

ric for one’s research quality. Third, Butera and List (2017) design a new, incentive-compatible

mechanism whereby the original investigators of a study commit to only publishing their results

as a working paper, and offer co-authorship of a second paper (submitted to a peer-reviewed

journal) to other researchers who are willing to independently replicate their experimental pro-

tocol in their own research facilities. This mechanism allows the original authors to signal the

ownership of the research idea, while ensuring the credibility of their results (in case they indeed

replicate). At the same time, scholars on the team of replicators, in return for bearing the cost

of replications, would benefit from coauthoring a novel study. Finally, Dreber et al. (2015)

suggest using prediction markets with experts as quick and low cost ways to obtain information

about reproducibility.48

Combined, these approaches have the potential to make replication more prevalent by in-

creasing its attractiveness to researchers. Such a culture could also have positive consequences

on how research is conducted in the first place: as Duvendack et al. (2017) point out, replication

may have a deterrent effect on questionable or fraudulent research practices by increasing the

likelihood that such practices will be discovered. In sum, replication serves to prevent, expose

and correct wrong inferences, and is thus inevitable for producing empirical results that can

reliably form the basis of both economic theory and policy. However, replication does not elimi-

nate the need for well-powered studies: replication projects with low statistical power contribute

little to the evidence in favor of or against a hypothesis. In the next section, we follow this line

of reasoning by urging researchers to perform ex ante power calculations and to design their

experiments in ways that maximize statistical power.

6 Consider statistical power in the design phase

As discussed in Section 4, insufficient statistical power in experiments poses a major challenge

to proper inference. The most straightforward remedy, of course, is to avoid conducting low-

47See also Maniadis et al. (2017) for a systematic review on the problem of information revelation in science.
48Dreber et al. (2015) set up prediction markets in conjunction with the Reproducibility Project: Psychology

(described in footnote 46) where participants could bet on the success of the attempted replications. Predic-
tion markets were found to predict the outcomes of the replications well, performing better than a survey of
participants’ individual forecasts. While Camerer et al. (2016) confirm the result that beliefs elicited though
a prediction markets are positively correlated with a successful replications, they do not find that this method
works better than belief elicitation through a survey.
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powered studies in the first place. In case of experiments, this requires taking the question of

statistical power seriously in the design phase. In the following, we describe the basic princi-

ples of optimal sample size calculations, and then review sample arrangement practices that

maximize power given the available budget. The section is intended as a overview of the most

important considerations; the interested reader can find more details in List et al. (2011), Duflo

et al. (2007) and Cox and Reid (2000).

Power calculations (i.e. the assessment of the precision of inferences expected to be achieved

with a given sample size), or optimal sample size calculations (i.e. the estimation of the sample

size required to attain a certain precision), are crucial steps prior to conducting an experiment

(Gelman and Hill, 2007).49 Power calculations are most often advocated as tools for preventing

high rates of false negatives. They also increase efficiency by ensuring that scarce resources are

not wasted on studies that are larger than necessary. Moreover, pre-determining sample sizes

can curb bias by reducing experimenters’ temptation to collect more data when initial results

are insignificant but “go in the right direction” – a practice that could lead to high rates of false

positives (Zhang and Ortmann, 2013). Despite these arguments, in practice researchers often

forgo ex ante sample size calculations and rely on shortcuts with little theoretical justification

when designing their experiments.50

As discussed in Section 4, sample size calculations are rooted in the framework of hypothesis

testing. As such, they require researchers to specify (1) a null hypothesis and an alternative

hypothesis, (2) the desired significance level and power of the test and (3) the statistical test to

be used in the subsequent analysis (List et al., 2011). These considerations allow the researcher

to simultaneously control the likelihood of committing either a Type I or a Type II error. In

particular, by considering the hypothetical distributions of the test statistic under the null and

the alternative hypothesis, the researcher obtains critical values for the test statistic correspond-

ing to the pre-specified error rates. The null hypothesis for a test is typically specified as no

effect/association, while the alternative hypothesis typically postulates that the effect size is at

least as large as a specific value. Alternatively, for a given budget and thus fixed sample size,

one can calculate the minimum detectable effect size given the pre-specified acceptable error

rates.

While the researcher has discretion over these three building blocks of power calculations

(hypotheses; acceptable error rates; the test used for comparison), translating critical values to

optimal sample size requires knowledge of the variance of the outcome – a parameter unknown

49Gelman and Carlin (2014) go a step further and suggest performing what they call a “design analysis,”
complementing power calculations with an assessment of the sign error rates (the probability that the replicated
estimate has the incorrect sign, if it is statistically significantly different from zero) and the exaggeration ratio (the
expectation of the absolute value of the estimate divided by the effect size, if statistically significantly different
from zero).

50List et al. (2011) mention the practice of assigning 30 subjects to each treatment arm as an example for a
widely used yet theoretically unfounded rule-of-thumb.
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prior to conducting the experiment. This feature makes ex ante power calculations inherently

hypothetical, as they are based on the researcher’s expectations about the underlying data

generating process (Gelman and Carlin, 2014). However, one should not use the hypothetical

nature of power calculations as an excuse for skipping this step in the design phase. Researchers

can use data from previous experiments or pilot studies to form beliefs about the variance of

outcomes. It is also instructive to calculate the statistical power for a range of different hy-

pothesized values of the variance. When deciding what effect size to target, researchers should

consider what difference is actually practically or economically relevant – an aspect that is still

largely overlooked both at the design and the inference stage.51 A useful practice is to express

minimum detectable effect sizes in terms of standard deviation changes to facilitate comparison

with existing studies in the field (e.g., the researcher may desire to have her experiment detect

a 0.1 standard deviation treatment effect).

We demonstrate the framework of power calculations through a simple example adapted

from Section 3.1 of List et al. (2011). Suppose we are interested in estimating the average

treatment effect from an experiment where participants are randomly assigned to either the

treatment or the control group. For now, assume that we only test a single hypothesis in

our study (more on multiple comparisons later). For simplicity, we assume that our data is

generated by the following model:

Yi = β + τDi + εi,

where Yi is a continuous outcome variable, Di is a binary treatment indicator, the estimated

treatment effect is homogeneous, and εi is an idiosyncratic error term with variance σ2
ε . Through-

out this example, we assume that the unobserved components of outcomes are independently

distributed among our subjects, and relegate the discussion of inference with grouped errors to

later in the section. Errors may be heteroscedastic: we allow the variances of the error term

in the control (σ2
C) and the treatment conditions (σ2

T ) to vary. Assuming normality, we use a

two-sided t-test for comparing the means of the outcome variable between the groups. These

assumptions allow us to derive simple and intuitive closed-form solutions for the optimal sample

size or the minimum detectable effect size.

There are nC and nT subjects in the control and the treatment groups. Due to random

assignment, the estimated average treatment effect is obtained simply as the difference in

means between the treatment and the control group: τ̂ = ȲT − ȲC , with variance: V̂ =

Var(ȲT ) + Var(ȲC) − 2Cov(Var(ȲT ),Var(ȲC)) = σ2
T /nT + σ2

C/nC .52 Our goal in this exercise

51Ziliak and McCloskey (2004) review papers published in the American Economic Review and find that the
share of papers discussing effect sizes rather than merely the significance (and maybe the sign of the estimated
coefficients) is still low.

52Note that the true variances in the treatment and control groups are typically unknown a priori and are them-
selves estimated from the data, often by means of the Neyman variance estimator, a conservative randomization-
based approach (Samii and Aronow, 2012).
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is to determine the smallest true effect size we can detect given our sample size and required

statistical significance and power.

0

δ

tα/2 tβ

β = P(Type II Error)

α = P(Type I Error)

Accept H0Reject H0 RejectH0

Figure 1: Hypothetical distributions of the estimated treatment effect under H0 and Ha

To begin, let us assume that the null hypothesis is true: the true average treatment effect is

zero. The hypothetical distribution of the estimated treatment effects is then centered around

zero, as shown in the top panel of Figure 1. As aforementioned, in order to control the Type I

error at a rate of α, we reject the null hypothesis only if we observe a t-statistic that is equal to

or more extreme than our critical value. Equation 5 summarizes this condition: the left hand

side of the equation is the t statistic estimated from a test comparing the means of the outcome

variable in the control and the treatment group assuming that the true average treatment effect

is zero, while tα/2 is the critical value corresponding to a false positive rate of α in a two-sided

test.

ȲT − ȲC√
σ2
C
nC

+
σ2
T
nT

≥ tα/2(5)

Now consider the distribution of the treatment effect under the alternative hypothesis, as-
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suming a true effect size of δ. The hypothetical distribution of the estimated treatment effects

under this alternative hypothesis is shown in the bottom panel of Figure 1. The power of our

test to identify a true effect size of δ can be thought of as the fraction of the area under this

distribution that falls to the right of the critical value tα/2: this is the region where we correctly

reject the null hypothesis. Limiting the Type II error rate to β (resulting in a statistical power

of 1−β for our test), we can calculate the minimum detectable effect size of our experiment:

the smallest value for which we can (correctly) reject the null hypothesis of no treatment effect

with probability 1 − β at a significance level of α. This minimum detectable effect size δmin

can be expressed as a function of the sample sizes and variances in the control and treatment

groups as:

δmin = (tα/2 + tβ)

√
σ2
C

nC
+
σ2
T

nT
= (tα/2 + tβ)

√
V̂(6)

Equation 6 shows that the lower the variance of the treatment effect estimator, the smaller

the effect size we can detect. This estimated variance, in turn, depends on the sample sizes

and the variances of the error terms in the two groups.53 Equation 6 can be re-arranged to

determine the sample sizes in the treatment and the control group that are required to detect a

treatment effect of the size of δ given the variance of the estimator and the pre-specified Type

I and II error rates.

Analytical power calculations such as the example presented above are useful for simple

comparisons. For non-parametric tests and more complex or more specific design choices,

simulation-based power calculations provide more flexibility. These approaches require the

researcher to specify the underlying model complete with the experimental design and sam-

ple sizes, the values of the covariates, the parameter values expressing the distribution of the

outcome variable under the alternative hypothesis, and the variances (Feiveson, 2002). Based

on this model, the researchers generate their synthetic data and run their estimation on these

data a large number of times, obtaining a p-value in each round of the simulations. Power is

then calculated as the proportion of p-values that are lower than the pre-specified cutoff value

α. Several recent papers provide more details along with software packages that implement

simulation-based power calculations (Feiveson, 2002; Luedicke, 2013; Bellemare et al., 2016;

Burlig et al., 2017).

While often not flexible enough for practical purposes, Equation 6 can still provide valu-

able insights for the derivation of basic heuristics intended to maximize the precision of a

study through design. A straightforward way to increase power is to increase the number of

observations – this, however, is often impossible due to budget constraints or other practical

53As a numerical example, consider an experiment where a total of 2000 participants are equally divided
between a treatment and a control group (nC = nT = 1000), and we assume equal variances in the two groups
(σC = σT = σ). Assuming α = 0.05 and β = 0.2, using a two-sided t-test we can then detect a minimum effect

size of 0.125 standard deviation: δmin = (t0.025 + t0.2)
√

σ2

1000
+ σ2

1000
= (1.96 + 0.84)

√
1/500σ ≈ 0.125σ
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considerations. We thus focus on sample arrangement techniques for a given experimental bud-

get that aim to reduce the variance of the estimate through other channels.

The first such rule concerns the assignment of subject to treatment or control groups. While

it is common to assign equal number of subjects to all conditions, studying Equation 6 we find

that this practice is only optimal in case we expect the variances to be the same across groups.

Otherwise, the ideal ratio of the sample sizes assigned to treatment and control is equal to the

ratio of the standard deviation of outcomes in the two groups. For the special case of a binary

outcome variable, the same logic implies that sample sizes in the treatment and control groups

should only be equal in case the null hypothesis predicts equal means – and thus equal variances

– between the two groups.

The optimal design also takes potential heterogeneity in data collection costs into account

to maximize power for a given experimental budget. The unit cost of obtaining an extra subject

might differ between treatment and control groups. Intuitively, providing a treatment is often a

lot more costly than simply surveying someone or relying on administrative data in the control

condition (Duflo et al., 2007). It can be shown that the optimal share of subjects assigned to

treatment versus control is inversely proportional to the square root of the respective sampling

unit costs (List et al., 2011).

So far we have focused on experiments with a binary treatment indicator. In studies where

the experimenter can choose different levels of treatment intensity, precision may be increased

through design that maximizes the variance of the treatment variable. In particular, the num-

ber of subjects allocated to the different levels of treatment should reflect our priors of the

functional form of the treatment effect. Identification requires the number of treatment cells

used to be equal to the highest polynomial order plus one (List et al., 2011). For instance,

assuming a quadratic treatment effect, we should allocate subjects to three treatment cells at

the two extremes and at the midpoint of the feasible range, assigning one-fourth of subjects to

each extreme and half to the midpoint for maximum variation in the treatment variable.

Power calculations also need to account for the randomization technique used to assign sub-

jects to specific treatments. Cluster-randomized designs, where the unit of randomization does

not coincide with the unit of analysis, are commonly used in field experiments. For instance,

even if student-level data is available, institutional constraints or fear of spillovers might induce

researchers to randomize at the classroom or school level. In such cases, our assumption of i.i.d.

error terms is often not justified. Clustered designs therefore necessitate power analysis that

accounts for group-level shocks (see Duflo et al. (2007) who derive the expression for the vari-

ance of the estimated treatment effect in cluster-randomized designs, and Abadie et al. (2017)

on when to adjust standard errors for clustering). Optimal design in such experiments balances

two opposing forces: for a given number of experimental subjects, increasing the number of
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clusters we sample from leads to greater gains in power than sampling additional individuals

from already included clusters. However, adding a participant from a new cluster tends to be

more expensive than someone from existing clusters. Additionally, Chandar et al. (2018) argue

that in case of heterogeneous treatment effects at the cluster level, the researcher may want to

include more treated clusters than control clusters.54 We return to the question of treatment

assignment in Sections 8 and 9 where we discuss in detail the practice of blocked randomization

and within subject designs.

Finally, we would like to draw attention to an implicit assumption we made throughout this

section: we assumed that participants comply with their treatment assignment. However, as

we have discussed in Section 1, compliance is often imperfect. In overt field experiments that

randomize access to a particular program or service (common in development economics), take-

up of the offered treatment is often low, jeopardizing researchers’ ability to detect the impact

of the program. McKenzie (2011) points out that the sample size required to detect a given

change resulting from a treatment is inversely proportional to the difference in the proportion

of the treatment group that takes up a given intervention relative to the control group.

We end this section by re-iterating an important qualification to the above-described frame-

work: it discusses power calculations in cases of a single comparison, whereas most studies test

multiple hypotheses. In the following section, we discuss different manifestations of the multiple

comparisons problem, and show how the experimental design and the statistical analysis should

be modified to account for multiple hypothesis testing.

7 Adjust for multiple hypothesis testing, in power tests and in

data analysis

In the previous section we derived our results based on the assumption that researchers evaluate

a single hypothesis. In practice, however, most research in applied economics entails more than

one comparison performed within the same study. Multiple hypothesis testing (MHT), or

the multiple comparisons problem, refers to the practice of simultaneously considering multi-

ple statistical inferences (Miller, 1981). Failure to account and correct for multiple hypothesis

testing increases the likelihood of false positives and contributes to the replicability crisis of

the social sciences (List et al., 2016). As an example, consider a study where a researcher

jointly tests N mutually independent hypotheses, all of which are true and therefore should be

accepted. Fixing the Type I error rate for a single comparison at a level α, the probability of

at least one false rejection among all comparisons in this case is 1− (1−α)N . Setting α = 0.05,

the probability of observing at least one false positive is over 14% in case of just three hypothe-

ses, and it exceeds 50% when testing 14 or more hypotheses. In the following, we provide an

overview of the prevalence of the problem, and discuss possible solutions.

54The intuition is that if the researcher’s intervention leads to different effects across different clusters, having
more treated clusters can help average over those differences and recover the mean effect (Chandar et al., 2018).
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The practice of ignoring multiple hypothesis testing corrections is pervasive in experimental

social sciences. List et al. (2016) differentiate between three main cases of multiple hypothe-

sis testing. The most common occurrence involves analyzing the impact of an intervention on

multiple outcomes. According to an overview by Anderson (2008), 81% of surveyed papers

published from 2004 to 2006 report results on at least five outcomes, and a striking 61% con-

sider ten or more outcomes (the number of unreported comparisons is likely to be even higher).

Yet only 7% of these papers account for multiple hypothesis testing in their inference. The

second widespread form of MHT entails comparisons across multiple subgroups of the study

population. Analyzing heterogeneous response to treatment by gender, ethnicity, age, etc. falls

into this category. Finally, analyzing experiments with multiple treatments (either estimat-

ing the effect of each treatment condition versus a control, or performing all possible pairwise

comparisons across multiple treatments and a control) also constitutes a case of MHT, as noted

in Section 6.

There are two main approaches to dealing with the multiple hypothesis problem: reduce

the number of comparisons carried out, and/or adjust the inference to take into account the

family of hypotheses considered in the analysis. The first approach involves choosing a specific

set of outcomes based on a priori notions of importance, and using summary index tests

that pool multiple outcomes into a single measure (Anderson, 2008). The second method (the

focus of this section) accounts for the multitude of tests carried out by adjusting the inference

from the analysis. Multiple testing procedures often control the family-wise error rate: the

probability of rejecting at least one true null hypothesis among a set of hypotheses we jointly

test (Heckman et al., 2010). Alternatively, when the number of hypotheses tested is very large,

researchers often choose instead to control the m-familywise error rate (i.e. the probability of

m or more false rejections), the tail probability of the false discovery proportion (the fraction of

false rejections), or the false discovery rate (the expected value of the false discovery proportion)

- for more details on these approaches, see List et al. (2016).

Different techniques have been developed to adjust the standards of inference for multiple

hypothesis testing. Single-step procedures simultaneously compare all the individual test

statistics from the different comparisons to their critical values. Often (though not always) the

same critical value is used for all comparisons. As an example, consider the most well known

multiple testing procedure developed by Bonferroni (1935), applied to the calculation of con-

fidence intervals by Dunn (1961). This technique consists of computing an individual p-value

for each hypothesis tested, and rejecting a hypothesis only if its p-value does not exceed α/S,

where S is the total number of comparisons performed. Under the assumption that the null

distribution of each p-value is uniform, this method asymptotically controls the family-wise

error rate at level α (Romano and Wolf, 2005).
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Stepwise methods of multiple testing procedures also start with a single-step method.

However, instead of stopping after the first set of comparisons, these methods allow the re-

searchers to reject further hypotheses in subsequent steps by decreasing the critical values for

the remaining hypotheses, taking into account the hypotheses already rejected in previous steps.

The methods continue until no further hypotheses are rejected (Romano and Wolf, 2010). Step-

wise procedures can be further classified into stepdown and stepup methods. Stepdown methods

begin by considering the most significant hypotheses, and then continue to evaluate hypotheses

with smaller test statistics. Romano and Wolf (2010) show that the classical method of Holm

(1979) can be formulated as a stepdown procedure where the criterion for rejection for the most

significant hypothesis is the same as in the Bonferroni-method, but the criteria get less strict

for larger p-values.55

The appeal of the traditional methods of Bonferroni (1935) and Holm (1979) lie in their

simplicity – however, they are often overly conservative. Procedures with more power to reject

false null hypotheses have been designed by taking into account the joint dependence structure

of the individual p-values (e.g. Romano and Wolf, 2005; Heckman et al., 2010).56 Based on

Romano and Wolf (2010), List et al. (2016) developed a bootstrap multiple hypothesis testing

procedure that asymptotically controls the family-wise error rate under fairly weak assumptions

and provides an improvement over classical methods in terms of power through incorporating

information on the dependence structure (and can lead to further gains by exploiting transi-

tivity). Their procedure was designed to simultaneously handle all three scenarios of MHT

in experimental economics discussed above. The method is asymptotically balanced (loosely

speaking, this implies that all tests contribute equally to error control, see Romano and Wolf

(2010)).57

Accounting for multiple hypothesis testing often leads to different conclusions than infer-

ence that ignores the multitude of tests carried out at once. For instance, Lee and Shaikh

(2014) demonstrate how the significance of PROGRESA’s estimated effects on school enroll-

ment across sub-populations change once we account for multiple inferences. While developing

their approach to correcting for MHT, List et al. (2016) also show a large reduction in the

number of null hypotheses rejected in Karlan and List (2007) once multiple testing is taken into

account. These examples serve to encourage researchers to identify and properly correct for all

the different comparisons within a study to avoid the false positives that mechanically result

from multiple testing.

Besides ex post corrections, researchers should pre-emptively take into account the problem

of multiple hypothesis testing in the design phase. Intuitively, to control the false positive rate

55For an example for a stepup procedure, refer to e.g. Benjamini and Hochberg (1995).
56For a discussion on the meaning of power in a multiple hypothesis testing context, refer to Romano and Wolf

(2005).
57List et al. (2016) made their MATLAB and Stata code available to other researchers for easy implementation

of the procedure at https://github.com/seidelj/mht; see Seidel and Xu (2016) for documentation.
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across all comparisons, stricter significance level requirements should be applied for each indi-

vidual test ex ante. In practice, this means specifying lower levels of α in the power calculation

for each comparison (see Section 6 for details on power calculations for single comparisons).

Acknowledging this imperative already in the design phase reveals a “hidden cost” of adding

another outcome, treatment arm, or subsample analysis to an experiment: every additional

comparison the researcher plans to perform increases in all existing comparisons the num-

ber of participants (or the precision of measurement) that is required to maintain control over

the study-level false positive rate. As a simple example, consider a researcher trying to deter-

mine the optimal sample size for an experiment that compares a treatment and a control group

along two different outcomes. In order to ensure a study-level false positive rate of 5%, the

researcher can use the above-described method by Bonferroni (1935) and set the significance

level cut-off to 0.05/2 = 0.025 for each individual comparison, and calculate the optimal sample

sizes accordingly.58

Ensuring sufficient statistical power in a study while accounting for multiple comparisons

may substantially increase the number of participants required and thus the cost of an ex-

periment. As discussed in Section 6, appropriate design choices can be helpful in increasing

statistical power without expanding the experimental budget. In the following two sections,

we review in detail two such techniques that have the potential to reduce the variance of the

estimated treatment effect: blocked randomization and within subject experimental designs.

8 Use blocked randomization to increase power and credibility

In Section 6, we have shown that the statistical power of a study is decreasing in the variance

of the estimated treatment effect. We also highlighted approaches to reduce this variance by

optimally choosing the ratio of subjects assigned to the treatment vs. the control group. This

section considers more broadly the process of assigning treatment status to any given partici-

pant. In the following, we review the merits of blocked randomization compared to complete

randomization in terms of statistical power. We then approach the topic from a different angle

and show that blocking may reduce bias by serving as a commitment device against specification

searching. Finally, we discuss the choice between randomization and optimization.

In the section on Preliminaries, we outlined the logic for randomly assigning subjects to

treatments: randomization balances the treatment and control groups both in terms of observ-

ables and unobservables, allowing an unbiased identification of the treatment effect. However,

in a completely randomized design, the variance of outcomes is potentially very large, and the

sample sizes of treatment and control are randomly generated (List et al., 2011; Deaton and

58Of course, this heuristic represents an overly conservative approach compared to our preferred MHT correction
method byList et al. (2016) that has more power than traditional approaches to correct for MHT.
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Cartwright, 2018). As Duflo et al. (2007) point out, pure randomization only achieves balance

in expectation: in practice, especially in the case of smaller samples, randomization may yield

experimental groups that differ from each other along important observable dimensions. A

popular way to address this issue is to include covariates in the estimation ex post. However,

when data on subjects’ relevant observable characteristics are available prior to conducting the

experiment, it is preferable to use this information in the design phase and improve the overall

precision of the study through blocked randomization.59

Blocking (also knows as stratification) refers to the practice of dividing experimental subjects

into blocks (strata) by observable characteristics, such that randomization is performed within,

but not between, these blocks (List et al., 2011). More formally, blocking involves partitioning

the covariate space into a finite set and carrying out a completely randomized experiment within

each of these subsets (Athey and Imbens, 2017). Using Neyman’s repeated sampling approach,

we can estimate the average treatment effect within each block as the difference between the

average outcomes for treated and control subjects, then estimate the overall average effect of the

treatment by averaging the within-block estimates weighted by the share of subjects assigned

to the block. In case the share of treated subjects is the same in each block, this simplifies to

the difference in means between treated and control subjects – the same estimator we use for

completely randomized designs (Athey and Imbens, 2017). Blocked randomization is beneficial

because it increases precision: the estimated variance of the treatment effect is smaller once

we take into account the gains from stratification. Compared to ex post regression adjustment,

blocking in the design phase is preferred because it can ensure that the share of treated subjects

is the same in each stratum, minimizing the variance of the estimate overall.60

Despite popular beliefs to the contrary, blocking does not lower precision ex ante even when

the correlation between the outcome variable and the covariates on which we block is weak.61

Note that the same is not true for ex post adjustments: adding covariates that do not explain

the outcome variable in a regression increases standard errors by reducing the degrees of free-

dom (Duflo et al., 2007). Consequently, one should stratify on a rich set of covariates whenever

59 An alternative approach to dealing with covariate imbalance is re-randomization (Morgan and Rubin, 2012;
Bruhn and McKenzie, 2009; Banerjee et al., 2017b). Two commonly used forms of re-randomization are the “big
stick” method that requires a new random draw if the imbalance between treatment and control groups in the
resulting allocation exceeds a pre-specified threshold, and the “minimum maximum t-stat” method that suggests
performing multiple (1,000 or 10,000) draws, checking for balance each time, then choosing the draw with the
minimum maximum t-stat. Bruhn and McKenzie (2009) show that for very persistent outcome variables, and in
smaller samples, blocked randomization performs better than re-randomization.

60Following Athey and Imbens (2017), we obtain the estimated variance of the treatment effect with blocked
randomization as follows (where g indexes blocks):

V̂ blocked =

G∑
g=1

V̂ (τ̂g)

(
Ng
N

)2

where τ̂g = ȲT,g − ȲC,g and V̂ (τ̂g) =
σ2
C,g

nC,g
+
σ2
T,g

nT,g
.(7)

Comparing the expression in (7) with the variance estimate for completely randomized experiments presented in
Section 6, σ2

T /nT + σ2
C/nC , in general we find that the latter is more conservative.

61See Athey and Imbens (2017) for an explanation and two important qualifications to this result.
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possible, including continuous variables (Moore, 2012).62 The limit of stratified randomization

is a paired design where each block contains only two observations: a treated and a control

subject. While this approach has advantages in terms of precision, it complicates the subse-

quent estimation of variance (Athey and Imbens, 2017). Such a perfect matched pairs design

also comes at high attrition costs for the matched units, and should thus be applied with caution.

Stratification is also desirable when the researcher expects heterogeneity in response to the

treatment and wants to analyze subsamples separately. In this case, ex ante blocking maximizes

power for estimating the treatment effect for each subsample. Equally importantly, stratifying

on variables that the researcher ex ante deems as relevant increases the credibility of the study:

it demonstrates to the reader that the subsample analysis presented in the research paper was

actually planned in advance and is not merely the result of “data mining” or a “fishing expedi-

tion.” In this sense, blocking on variables to be used in subsequent heterogeneity analysis helps

address the problem of researcher bias discussed in Section 4, by limiting analytical flexibility

(Munafò et al., 2017). If a researcher uses blocking primarily for credibility reasons rather than

to increase precision, she should limit herself to blocking only on a few key variables. While hy-

pothesis registries and pre-analysis plans (Christensen and Miguel, 2016; Coffman and Niederle,

2015) provide stronger remedies against specification searching, blocking has the advantage of

also increasing the power of the resulting subsample analyses. Note, however, that blocking

alone does not address all the issues that arise from subgroup analysis: even if the experimenter

“ties herself to the mast” by stratifying on the relevant dimensions, standard errors still need

to be adjusted ex post for multiple hypothesis testing (see Section 7 for more details).

Utilizing baseline information to an even greater degree than in the stratification case,

some researchers have recently suggested relying on optimization instead of randomization

for assigning treatment status to subjects. Bertsimas et al. (2015) propose a method based

on discrete linear optimization, such that assignment is chosen to minimize the discrepancy

between treatment groups in terms of means and variances of covariates. Kasy (2016) considers

the experiment as a statistical decision problem where the goal is to find the unique treatment

assignment that minimizes a Bayesian or minimax risk function (based on the mean squared

error of a point estimator). While these approaches have the potential to increase power, gains

in precision are substantial only when baseline variables strongly predict future outcomes (see

Bruhn and McKenzie (2009) for an illustration of this point), and come at the cost of more com-

plicated inference (a bootstrap method is required to obtain the p-values of the estimates).63

Banerjee et al. (2017b) model the experimenter’s problem in a Bayesian decision theoretical

framework. They argue that for a given prior over treatment effects, there exists a determin-

istic treatment assignment that maximizes the experimenter’s expected utility, leading to the

62A fascinating recent paper explores blocking on the predicted treatment effects and on subjects’ willingness-
to-pay for the treatments in order to design an “ethical experiment” that takes subjects’ predicted welfare into
consideration (Narita, 2018).

63For more details, see David McKenzie’s excellent blog post on the topic: https://blogs.worldbank.org/

impactevaluations/optimization-just-re-randomization-redux-thoughts-recent-don-t-randomize-optimize-papers.
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proposition “Bayesians do not Randomize.” Once multiple decision makers (or a single decision

maker with different priors) are considered, however, they identify randomization as the only

method to yield results whose interpretation cannot be challenged.

Overall, we are of the opinion that optimization on the basis of baseline covariates may be

a useful method for assigning subjects to treatments in pilot studies. Sample sizes in pilots are

typically small, so an increase in power is crucial. Furthermore, it is easily justifiable to design

pilots so that they are most informative for a specific prior (that of the experimenter) rather

than for a wider audience with arbitrary priors. For most experiments, randomization with

“improvements” such as stratification or re-randomization remains more suitable.64

9 Use within subject designs when appropriate

In our overview so far we have focused on experiments consisting of a single period where each

subject is assigned to either the control or the treatment condition. These cases fall into the cat-

egory of between subject (BS) designs, because the estimated treatment effect is obtained

through a comparison of means between the two groups. This represents the current state of

art when economists generate data. Of course, researchers have the choice to collect data in

multiple periods, allowing for the use of a within subject (WS) design, such that the same

individual experiences different treatment conditions in subsequent periods. In the following,

we discuss the benefits and threats associated with using within subject designs along the di-

mensions of statistical power, confoundedness, and heterogeneity in response to treatments.

Within subject designs have been advocated for their potential to yield more powerful

tests for the same cost than between subject experiments (Charness et al., 2012). In particu-

lar, they allow for estimations controlling for individual-specific effects, reducing the variance

of the treatment effect estimator to the extent that within-subject correlations explain the out-

come (Frison and Pocock, 1992; McKenzie, 2012). Bellemare et al. (2016) suggest an approach

based on Monte Carlo simulations to compare the power achieved in BS vs. WS designs. They

provide a numeric example in the context of field experiments on gift exchange, and find that

a BS design requires 4-8 times more subjects than a WS design to reach an acceptable level of

statistical power (as discussed in Section 4, the conventionally required level of power is 80%).

They also emphasize that adding more experimental periods can substantially increase the sta-

tistical power of a WS design, but has very little effect in the BS design.65

64See footnote 59 for details on re-randomization. As another possible design improvement, consider Wilhelm
et al. (2017)’s procedure based on an orthogonal greedy algorithm that uses pre-experimental data to inform,
rather than treatment assignment, the choice of both the sample size and the covariates to be collected.

65While a within-subject design typically leads to lower variances for the estimated treatment effect, this is
not necessarily the case. See Keren and Lewis (1993) for more details on precision in WS versus BS designs in
the presence of treatment effects that are correlated with the individual-specific error term. For panel data with
a non-i.i.d. error structures, we recommend Burlig et al. (2017)’s power calculation method that accounts for
serial correlation in errors.
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Note that in the above comparison we ignored cost considerations, assuming that collecting

data from n subjects twice (WS design) is as costly as collecting data from 2n subjects (BS

design). In practice, however, this is often not the case; in laboratory experiments, adding addi-

tional periods to an experiment often comes at no additional monetary cost for the researchers

(think of the typical practice of determining subjects’ earnings based on their behavior in one

period randomly selected at the end of the experiment). Field experiments, on the other hand,

often have large per-period fixed costs (e.g. hiring and training surveyors) that make additional

rounds of data collection more expensive on the margin.

Despite the fact that within subject designs have the potential to achieve better precision,

in practice researchers do not seem to take the choice of design into account when setting the

number of experimental subjects: surveying two recent volumes of the journal Experimental

Economics, Bellemare et al. (2014) find that the median number of participants per treatment

was relatively similar (43.5 and 50, respectively) for studies using BS and WS designs. They

also find that the majority of studies in their survey (41 out of 58) are based on BS experi-

mental designs. The relative unpopularity of within subject designs may be due to the strong

assumption they require for inference. When the same subject is exposed to different treatment

conditions, within-subject comparisons only provide a causal estimate if there is independence

of these multiple exposures (Charness et al., 2012). There are different reasons why this

assumption may not hold, such as learning, history and demand effects, and sensitization to

perceived dependencies between treatments (List et al., 2011; Keren and Lewis, 1993).

As a result, findings from WS designs may be confounded and hard to interpret. Crossover

designs (where subjects are exposed to treatments in random order) may ameliorate, but not

eliminate, these fears. The extent to which confoundedness is a threat depends very much on

the particular research question. In some cases, one design is clearly better suited to test a par-

ticular theory (consider, for instance, predictions about individual preference reversals). When

treatments are suspected of having persistent psychological effects or when experimenter de-

mand effect is a concern, researchers should be cautious when using WS designs.66 On the other

hand, skill-based experiments, such as the study of Smith et al. (1989) on eyewitness accuracy

and confidence, are less likely to yield a biased result under a WS design (Charness et al., 2012).

This trade-off between power and bias has been a central theme of the within versus between

subject debate. We would like to conclude this section by emphasizing another aspect of the

design choice that often receives less attention: between and within subject designs differ in

the extent to which they are informative of individual differences in response to treatment. As

we mentioned in the Preliminaries, a between subject comparison with random assignment to

treatment only produces an unbiased estimate of the average treatment effect, but does not iden-

tify other moments of the distribution. While the average treatment effect conveys important

66See Bohnet et al. (2016) for a discussion on preference reversals between separate and joint evaluations and
Hsee (1996) for an overview of the literature on evaluability.
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information regarding the existence of an association or effect, it may mask crucial differences

between participants in their reaction to treatment. For instance, assessing the share of the

population that was helped or harmed by the treatment requires knowledge of the distribution

of the difference between the outcomes of each individual in the presence and absence of the

program. In experiments using between-subject treatment assignment, each participant is only

observed in one of the states, thus welfare analysis requires additional, often strong, assump-

tions.67 Within person designs facilitate welfare calculations by measuring baseline outcomes

together with changes in response to the treatments for the different baseline values, provid-

ing the entire joint distribution rather than marginals. Allcott and Taubinsky (2015) use a

within-subject design in their information nudge experiment to estimate the average change in

valuation induced by their nudge for each level of initial valuation. This strategy allows them

to calculate the market demand curve and the average marginal bias, statistics they show are

sufficient for computing the welfare effects of a policy.

Further, WS designs can help researchers uncover heterogeneous treatment effects. Data

from WS experiments can be used to plot a histogram of the realized “individual linear dif-

ferences,” calculated for each subject as the difference between their outcome in the treated

vs. the control state. Such histograms may be informative about important dimensions of het-

erogeneity, and could suggest subgroups that benefit most/least from the treatment.68 As an

example, consider the study of Hoel (2015) on the role of asymmetric information in dictator

games. While she finds that subjects on average give more in games when the choice is public

than when it is secret, a within subject comparison reveals that almost half of the participants

give the same amount in both conditions. Her design allows her to classify participants into

types based on their individual response to the treatment, such that types identified in the

laboratory also behave differently in the field. Finally, WS designs can help distinguish between

behavioral theories by showing heterogeneity in preferences within individuals. Gibson et al.

(2013), for instance, refute the type-based model of lying aversion by documenting differences

within individuals (across situations) in the estimated cost of lying.

In sum, we encourage researchers to carefully weigh the pros and cons of between and within

subject designs along the dimensions discussed above (power, cost, bias, learning about hetero-

geneity) and pick the one better suited to answering their particular research question. Just as

in the case of the choice between lab or field experiments discussed in Section 3, there is no uni-

versally preferred method: the choice to vary treatment conditions within or between subjects

should depend on the characteristics of the experiment and the nature of what information is

sought and the trade-offs the researcher is willing to make. In a nutshell, it depends on the

theory to be tested, the topic we discuss next.

67Quantile regressions, for example, are only informative of the distribution of individual changes in outcomes
if a rank invariance condition is satisfied. Bedoya Arguelles et al. (2018) provide an excellent summary of different
methods aimed at identifying the distribution of individual specific treatment effects in RCTs.

68It is important to emphasize that WS designs on their own still do not allow identification of the distribution
of treatment effects. Readers interested in identifying the probability distribution of individual effects in panel
data should consult e.g. Arellano and Bonhomme (2012).
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10 Go beyond A/B testing by using theoretically-guided de-

signs

In Section 6 and the discussion of optimal experimental design that followed, we explicitly fo-

cused on experiments that aim to estimate average treatment effects (ATE), that is, to measure

whether one treatment yields a different mean outcome than another treatment. An example for

such studies is A/B testing, a method common both in research and in business, that consists of

showing subjects one of two versions of the same product or service at random, and comparing

responses. Yet, the experimental method will never reach its true potential unless we go beyond

simply documenting an effect. More specifically, what separates the experimental method from

the other empirical approaches is that experiments can generate data to explore the underlying

mechanisms at work, or the whys behind the data patterns observed. In this manner, we need

to design experiments tightly linked to economic theory to reap the true benefits of the experi-

mental method.

Accordingly, we advocate for experimental economists to use economic theory to inform

their experimental design whenever possible (Banerjee, 2005; Heckman, 2010; List, 2011), and

to incorporate results from experiments into existing economic theory (Deaton and Cartwright,

2018), thereby creating a feedback process that guides the development of theory and the de-

sign of future experiments (Duflo et al., 2007). Combining economic theory with experiments

allows researchers to estimate a wider array of parameters (Attanasio and Meghir, 2012), to

perform counterfactual analysis, to test theories directly (Browning and Chiappori, 1998), and

to account for general equilibrium and welfare effects.

Despite its advantages, using theory is still not a commonplace occurrence: out of all the

experiments published in the Top Five journals in Economics (American Economic Review,

Econometrica, Journal of Political Economy, the Quarterly Journal of Economics, Review of

Economic Studies) between 1975 and 2010, 68% were “descriptive”, meaning that they lacked

an economic model; of the remaining articles, only 14% allowed for more than a single model,

either by directly comparing competing models or by estimating one or more structural pa-

rameters (Card et al., 2011). In the following, we review in detail the benefits from designing

experiments in connection with economic theory.

First, we can use theory to explicitly model selection into the experiment. When running

lab experiments, AFE, and FFE, researchers should make explicit their assumptions about se-

lection by using theory and, in doing so, address some of the concerns about generalizability

discussed in Section 1. For example, a variant of the Roy model can be used to model selection

into the experiment (Heckman, 2010).

Using economic theory jointly with an experiment allows the researcher to perform struc-

tural estimation to estimate the parameters of a theoretical model from data collected in an
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experiment. This enables researchers to perform counterfactual policy analysis: to predict the

effects of policies or programs that have not yet been implemented and over which no data

are available (Heckman, 2010).69 Therefore, economic theory allows researchers to extrapolate

the results of existing experiments to other populations and settings (Banerjee, 2005; Falk and

Heckman, 2009, see Section 12 for a discussion of scalability). The theory-free nature of RCTs

is a serious disadvantage in attempting to generalize (Deaton and Cartwright, 2018). By com-

bining experiments with theory we can reap the best of both worlds: preserving causal inference

(due to the exogenous variation created by the experiment) and improving the generalizability

of predictions through theory and structural estimation (for a recent example see Della Vigna

et al., 2012).

Economic theory is also useful in considering spillover effects where subjects impose ex-

ternalities on others (for example, those in treatment can inform their friends in the control),70

and general equilibrium (GE) effects, by which agents react to the intervention in a way

that changes the environment itself (Duflo et al., 2007; Maniadis et al., 2015).71 GE effects

are of great importance in diverse contexts, such as economic development (Banerjee, 2005;

Acemoglu, 2010), the value of a life (Jena et al., 2008), and the effects of Medicare on health

care spending (Finkelstein, 2007). However, most experiments are conducted assuming par-

tial equilibrium, i.e. assuming away spillover and GE effects.72 This is partly due to the fact

that measuring GE effects requires an experimental design that explicitly accounts for them.73

Disregarding the GE effects of experiments might be justified for small interventions that only

affect a few participants or that have a small impact, such as in lab experiments and artefactual

field experiments (AFE). However, field experiments (FFE and NFE) can induce changes in the

local economy that could translate into general equilibrium effects. Neglecting these GE effects

biases the results and leads to misleading conclusions about the true effect of the intervention.

This is especially true for large-scale interventions claiming to have a large impact. Such ex-

periments should attempt to include measuring the general equilibrium effects as part of their

experimental design whenever possible.

Economic theory also allows for an analysis of the welfare effects of experiments: in ad-

dition to measuring the traditional outcomes of the experiment, researchers can use theory

to infer the change in the well-being of subjects as a consequence of treatment. The impor-

tance of measuring a program’s welfare effects has been widely acknowledged (Heckman, 2010).

69For a discussion of structural estimation and reduced-form estimation, see Nevo and Whinston (2010).
70Note that spillover effects violate the “Stable Unit Treatment Value Assumption” (Angrist et al., 1996; Duflo

et al., 2007) that we discussed in the Preliminaries.
71For the rest of the section, we will use the term “general equilibrium effects” to also include spillovers.
72An important exception is Burke et al. (2014), who show (in a microcredit context) how taking GE effects

into account changes the size of the effect of the intervention, what has relevant policy implications.
73For example, Crépon et al. (2013) included two levels of randomization in their experiment, one of them being

the proportion of individuals assigned to treatment, allowing them to capture the GE effects of their intervention.
Another example is Cunha et al. (2017), who estimate the GE effects of cash versus in-kind transfers in Mexican
villages.
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Recently, welfare analysis has made its way into behavioral economics, allowing a fruitful col-

laboration between theory and field experiments. An early example of a study that measured

the welfare effects of a natural field experiment using structural estimation is DellaVigna et al.

(2012), who determined that a door-to-door campaign of charity donation decreased the welfare

of the average household due to the social pressure associated with not donating.74 However,

welfare calculations may be sensitive to certain details. First, the particular theory researchers

base their calculations on has important consequences for the conclusions on welfare (Jimenez-

Gomez, 2018). This aspect is even more salient in areas where individuals are known to be

subject to behavioral biases.75 Second, GE effects should be included in welfare calculations.

As an illustration, consider Handel (2013)’s study of health insurance markets where substantial

inertia had been observed. He structurally estimated a choice model, in order to compute the

welfare effects of a counterfactual “nudge reminder”, and concluded that although the nudge

would increase the rate at which people selected into plans that better matched their needs

(reducing inertia), the GE effects would exacerbate adverse selection, leading to a price increase

and a loss in average welfare. Finally, researchers should pay attention to potential heterogeneity

(see Sections 1 and 12). Heterogeneity is crucial when computing welfare effects, because differ-

ent individuals may benefit (or suffer) to varying degrees from a given program, and therefore

the distribution of welfare can be very different for some subpopulations (Jimenez-Gomez, 2017).

Using economic theory is not without caveats. It is always possible that the particular

economic theory we consider is wrong, and this concern has been particularly exacerbated with

the rise in importance of behavioral economics (Banerjee, 2005). Moreover, structural estimates

are sensitive to assumptions about functional forms and distribution of unobservables (Heckman,

2010). The correct design of the experiment can never be undermined due to confidence in the

theory.76 To conclude, we would like to emphasize what we are not advocating. We do not call

for every experiment to be derived from economic theory or to be structurally estimated. There

are occasions when a descriptive study is perfectly appropriate, for example when attempting

to differentiate between several competing theories whose predictions go in opposite directions

(Acemoglu, 2010). We also do not advocate for journals to demand that authors include ad-hoc

economic models after the experiment has been conducted and the data analyzed. Such models

add little value in our opinion and can confuse readers as to the true intent and nature of

the studies. We do believe that there is value in descriptive experiments, but the limitations

74Related studies test specific aspects of behavioral theory and their welfare consequences through field ex-
periments (Zhe Jin et al., 2010; Bernheim et al., 2011; Allcott and Taubinsky, 2015; Allcott and Kessler, 2019;
DellaVigna et al., 2017, 2016), and develop theories that explicitly consider how behavioral economics affects wel-
fare measurement (Spiegler, 2014; Gabaix and Farhi, 2017; Jimenez-Gomez, 2017). Finkelstein and Notowidigdo
(2018) use a randomized natural field experiment to test two competing explanations – based on neoclassical
and behavioral theory, respectively – for the low take-up of SNAP benefits, and estimate the welfare impact of
different interventions aimed at increasing take-up.

75When individuals face behavioral biases, welfare calculations using only the demand curve (and therefore
ignoring those biases) can be potentially mistaken by orders of magnitude, and even have the wrong sign (Baicker
et al., 2015).

76Card et al. (2011) claim this was the case in the negative income tax experiments done in the late 1960s and
early 1970s.
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of these types of studies should be explicitly acknowledged. We also believe that in order to

make generalizable predictions, using economic theory to design experiments and to guide the

analysis is often the correct choice (Heckman, 2010; Acemoglu, 2010). Theory is portable.

Thus, understanding underlying mechanisms is the key to unlocking the true gains from the

experimental science in economics.

11 Focus on the long run, not just on the short run

In economics, experiments often tend to focus on short-term substitution effects. This is prob-

ably due to the fact that designing an experiment that follows up subjects for months or years

is substantially more costly: the logistics required become complex, and there is a need to

incentivize subjects to come back for follow-ups to avoid attrition.77 In addition, there is al-

ways an implicit opportunity cost in having a longer experiment, because it will take longer to

complete such a project than a similar study focusing only on the short-term effects, delaying

publication.78 However, understanding the long-term effects of interventions is critical. For

example, demand elasticities can be very different in the short-run vs. the long-run (Huang

et al., 2017). Long-term effects are especially relevant when the interventions are programs

that governments or other organizations intend to roll out in large scale (we discuss scalability

in Section 12). As we emphasized in Section 10, it is fundamental to take into account the

general equilibrium (GE) effects of the implemented policies and programs. However, those GE

effects often need time to manifest, so measuring the long-term effect of interventions is even

more important. Moreover, Hawthorne, John Henry, and experimenter demand effects can in

principle be identified by collecting long-run data (Duflo et al., 2007).

In addition, the return on investment (ROI) per dollar will be much larger if the effects per-

sist in the long-term. For example, consider Levitt et al. (2016), who provided incentives to high

school freshmen for improvements in academic performance: it is crucial to understand whether

the effects of the incentives are long-lived. Students were provided incentives conditional on

meeting an achievement standard (with an expected value of $50 per month) for 8 months, and

were followed up for five years. The incentives had a significant positive effect on academic

achievement during the first year, but not during the second year and onwards. Studies like

this show the importance of following subjects for a period of time after the intervention, and

reporting the long-term effects, even if they are not significantly different from zero. Despite

the widespread focus on the short-run in experimental economics, there are several notable pa-

pers which analyze the medium- and long-run effects of experimental interventions.79 Rogers

77For example, (Charness and Gneezy, 2009) paid 50 US dollars to subjects for each of two follow-ups.
78Note, however, that researchers could in principle continue collecting data after the first results have been

published (Banerjee, 2005). Moreover, it is sometimes possible to track subjects over time, without the need to
incur additional costs; for example when the subjects’ data is already being collected for some other reason, such
as administrative purposes, or when partnering with a firm.

79In the areas of: exercise (Charness and Gneezy, 2009; Milkman et al., 2013; Royer et al., 2015; Acland and
Levy, 2015), smoking cessation (Volpp et al., 2006, 2009; Giné et al., 2010), weight loss (Volpp et al., 2008;
Burke et al., 2012; John et al., 2011; Anderson et al., 2009), charitable giving (Meier, 2007; Shang and Croson,
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and Frey (2016) offer a review of the behavioral science on how interventions work over time.

The evidence on whether interventions work in the long-run is mixed even when restricted to a

single subfield. As an example, consider Brandon et al. (2017) who find that out of ten studies

included in their review (out of the fields of charitable giving, education, exercise, smoking ces-

sation and weight loss), four are consistent with habit formation, whereas the other six are not

(see Figure 2, plotting the proportion of the intervention’s effect that persists after incentives

are removed). Moreover, even when the effects persist, they decay rapidly: only two of the

aforementioned studies found more than 25 percent of the initial effect after a month, and only

one found any persistence after six months.

Figure 1: Persistence in Habit Formation Literature
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Figure 2: Persistence of effects across domains

There are two potential and non-excluding reasons why researchers may find small effects

of interventions in the long run, with very different implications for the actual existence of a

treatment effect. The first, and most obvious one, is that the effect of the interventions is truly

2009; Landry et al., 2010), water conservation (Ferraro et al., 2011; Ferraro and Price, 2013), energy conservation
(Allcott and Rogers, 2014; Brandon et al., 2017), voting, (Gerber et al., 2003) labor effort (Gneezy and List,
2006) and education (Jackson, 2010; Jensen, 2010; Walton and Cohen, 2011; Rodriguez-Planas, 2012; Levitt et al.,
2016). Note that some of these papers would be better classified as belonging to the literatures on psychology,
medicine and behavior change, but are included here for completeness.
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zero in the long run. This could happen if the intervention is not successful in changing behavior

in the first place, either because subjects do not enroll in the relevant treatment, because the

incentives or nudges are “too weak,” or because the treatment changes behavior in a way differ-

ent than expected. Even if the treatment is successful in changing behavior in the short-term,

subjects could revert to baseline behavior over time even in the presence of the intervention: as

the novelty of the incentives tapers off, or if the intervention crowds out intrinsic motivation,

subjects revert to old habits.

Yet, there is a second explanation for the zero effect observed in the long-run in most experi-

ments, which can be described as “attenuation bias over time.” Consider a field experiment

where subjects are assigned to a treatment zi ∈ Z. The researchers would like to measure the

Average Treatment Effect at time t, τ∗t = E[(yi1t − yi1t0) − (yi0t − yi0t0)].80 Note, however,

that they can only measure τ = E[yit − yit0 |zi0 = 1] − E[yit − yit0 |zi0 = 0].81 Importantly, zi0

refers to the original assignment at time t0, but subjects could have changed their behavior over

time (effectively changing their treatment, which is a form of non-compliance, see Section 1).

Subjects self-select into other treatments over time: we can think of this change as probabilistic,

happening with a higher probability when the gains in changing treatments are high and the

cost of changing is low. In the Appendix we formally show that as time goes by, attenuation

bias increases and that, in the limit (as time goes to infinity), τt → 0. 82 If selection into the

experiment (pi = 1) is correlated with the utility (positively) or the cost of changing treatments

(negatively), then attenuation bias will be exacerbated in overt experiments compared to natural

field experiments. When researchers find an ATE close to zero due to attenuation bias over time

in a an overt experiment, it does not mean that the treatment did not work in the first place, but

that subjects who selected into the experiment (pi = 1) found a way to improve their outcomes

over time, even when they were initially assigned to control.83 A solution to attenuation bias

over time is to measure the effect of the intervention with respect to a control group that did

not self-select into the experiment (p = 0): τ ′ = E[yit − yit0 |p = 1, z0 = 1] − E[yit − yt0 |p = 0],

where yit = yiditt is the outcome for individual i at time t. Note that τ ′ controls for changes

that happen in the treated group, with respect to a group that is not part of the experiment.84

This also allows researchers to realize when the treatment works and has spillover effects, which

80Where yidt is the outcome of individual i in treatment d at time t, and t0 is the time at which the intervention
starts.

81Where yit = yiditt is the outcome of individual i at time t, given the fact that individual i is in treatment
dit.

82Formally, we assume that opportunities for changing treatment happen following a Poisson distribution, and
that the change of treatment follows a Markov process.

83This could be either due the fact that those who selected into the experiment were more motivated, and hence
more likely to find ways to select into programs (outside of the experiment) that would help them, or because
the experiment had spillover effects (see Section 10) and those initially assigned to the control group were more
likely to be affected by the treatment because of the fact that the experiment was being run (for example, their
friends in the treatment group informed them about the ways to get enrolled in similar programs, etc).

84This can be seen because τ ′ gives us the correct measurement in the extreme cases when either the treatment
has no effect but selection into the experiment has an effect (in which case τ ′ = 0), or when selection into the
experiment has no effect but the treatment has an effect (in which case τ ′ = τ∗).
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could be otherwise mistakenly seen as the treatment having no effect.85

In summary, measuring the long-run effects of interventions is crucial for several reasons,

including general equilibrium (GE) and welfare effects. In general, studying long-run effects

should be a routine practice of experimental economics whenever doing so enhances our scientific

understanding of the theory, mechanisms, or facts around the question.

12 Understand the science of scaling ex ante and ex post

In the previous sections, we have discussed problems related to statistical inference, generaliza-

tion and reproducibility. These issues become especially salient when researchers attempt to

scale up their interventions, i.e. to extend them to a population which is larger (and usually

more diverse) than the original one. Unfortunately, out of the enormous amount of program

evaluations performed today, it is a common occurrence that such programs are never scaled

and, when they are, the effect size diminishes substantially (a phenomenon called “voltage drop”

Al-Ubaydli et al., 2017a). There are many reasons why the voltage effect might occur, but the

science of using science is at such an early stage there is little known definitively. It is crucial

to understand the reasons why scaled-up programs often do not work as intended. Yet, similar

to Al-Ubaydli et al. (2017c), we believe currently the problem is too narrowly defined in two

important dimensions. First, when a program is scaled, understanding its relative benefits and

costs are both invaluable, not just an accounting of benefits, as described in the implementation

science literature discussing voltage effects. Second, whereas that literature tends to focus on

program fidelity as a major reason for lack of scaling, we see three main areas that organiza-

tions face in scaling up, in terms of the potential changes to their costs and benefits. Al-Ubaydli

et al. (2017c) provide a formal model of how these three factors arise in the market for scientific

knowledge. We simply sketch them here to make our points of what experimenters should be

aware when completing their design, analysis, and interpretation.

Statistical inference. In Section 4, we introduced the concept of the post-study probabil-

ity (PSP, Maniadis et al., 2014): the probability that a declaration of a research finding made

upon statistical significance would actually be true. We discussed how insufficient statistical

power combined with bias resulting from specification searching may lead to low post-study

probabilities. We further explained that as more researchers investigate the same relationship

independently of each other, the probability that a statistically significant effect or association

truly exists becomes smaller. Moreover, studies with “surprising” results (i.e. low prior proba-

bilities of being true) tend to be published in journals more often, in turn resulting in low PSP.

For all these reasons, a program that is selected on the basis of just one successful initial trial

may fail to produce effects when scaled. Furthermore, the phenomenon of effect inflation, i.e.

obtaining an exaggerated estimate of the magnitude of a true effect (discussed in Section 4),

85See Section 1 for a discussion of selection into experiments and its impact on generalizability, and Section 10
on spillover effects.

51



implies that a program that is scaled after a single study is likely to yield a much smaller effect

than the original study.

To curb these problems, Al-Ubaydli et al. (2017a) advocate to advance results to the policy-

making stage only once the PSP passes 95%. Crucially, the PSP can be raised substantially if

the initial positive finding is followed by at least two successful replications (Section 5). More-

over, successful replications in different contexts are valuable in ensuring generalizability (Duflo,

2004; Muralidharan and Niehaus, 2017, see Section 1). Replication may also be used to measure

average within- and across-study variation in outcomes: when these are close, the concern about

across-context generalizability is reduced (Vivalt, 2017).86

Representativeness of the population. Heterogeneity in populations is a problem for

scalability, as discussed in the context of generalizability in Section 1. During scaling, the pop-

ulation that selects into the experiment can often be different than the original population,

raising the concern whether the original results generalize. A reason why scaling might not be

effective is that the estimate of the treatment effect is different in the new population (usually

smaller). Another related source of “scaling bias” is adverse heterogeneity, in which experimen-

tal participants’ attributes are correlated with higher outcomes (Al-Ubaydli et al., 2017c), for

example if there is participation bias (those who select into the experiment are different than

the rest of the population, Al-Ubaydli and List, 2013). Moreover, because of publication bias

(Section 5), researchers have incentives to find participants who yield large treatment effects

(Al-Ubaydli et al., 2017c). These effects make the benefits of scaling up smaller than those of

the original intervention. Finally, another concern for scalability related to the population is

attrition, an issue we discussed in Section 1.

Representativeness of the situation. The first and most obvious change when scaling-

up is infrastructure: scaled-up programs often need a larger and more complex infrastructure to

support them, what can increase their cost. Moreover, programs are often run by particularly

high-quality officials or NGOs in a way that is hardly possible to scale up: as the program is

expanded, its quality may deteriorate (Duflo et al., 2007). When scaling, researchers need to be

aware that more workers must be hired, and they might be of lower quality or have less interest

in the program, simply due to the diseconomies of scale associated with requiring more labor

in a labor market with inelastically-supplied human capital (Al-Ubaydli et al., 2017c; Davis

et al., 2017; Banerjee et al., 2017a). This has the effect to reduce the benefits of the program

(through lower-quality program workers) and/or increase its costs (associated with trying to

keep the quality of workers high). In addition, there can be a change in the cost of recruiting

more subjects, and this cost can either increase or decrease, depending on the particular imple-

mentation of the program (for example, a program that automatically enrolls citizens can have

lower marginal costs, once the setup for recruitment is ready).

86Other issues related to generalizability are experimenter demand effects (Duflo, 2004) and noncompliance;
we discuss these issues at length in Section 1.
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General equilibrium (GE) effects are crucial when considering scaling up interventions

(Banerjee et al., 2017b; Al-Ubaydli et al., 2017b, also Section 10 for the importance of GE

effects). GE effects can cause researchers to underestimate the effect of their interventions in

at least two ways: if there are spillovers from the treated groups to the control groups, in such

a way that the ATE was biased downwards in the original intervention because the control

group was benefiting from treatment; and if there are complementarities between those treated,

for example in an educational intervention in which students benefit not only from their own

treatment, but also from having treated peers.

Dramatic evidence of the first type of effect is contained in List et al. (2018), who examine

a randomized field experiment among 3-5 year olds in Chicago described in Fryer et al. (2015,

2017). They find that each additional treated child residing within a three kilometer radius

of a control child’s home increases that child’s cognitive score by 0.0033 to 0.0042 standard

deviations. Given that an average child in their sample has 178 treated neighbors residing

within a three-kilometer radius of her home, on average, a child gains between 0.6 to 0.7 in

cognitive test scores and about 1.2 in non-cognitive test scores in spillover effects from her

treated neighbors. These are large spillovers, which serve to highlight that the program at scale

would have much larger effects than the Fryer et al. (2015, 2017) summaries of the research

program predicted, ceteris paribus.

On the other hand, researchers can overestimate the effect of the intervention if they do not

take into account its crowding out effect (Crépon et al., 2013).87 Moreover, the interventions

that work when scaling up might be more complex than those employed while piloting the

program.88 For example, in the case of long-term, chronic medical conditions, the most effec-

tive interventions are usually complex combinations of basic interventions (Al-Ubaydli et al.,

2017a).89 Therefore, the benefit of a scaled-up program can be higher or lower than that of the

original intervention, depending on the direction of the GE effects.

In light of the scaling problem, there are several factors researchers should consider when

designing their interventions – issues that are often not taken into account when designing

the original experiment or program.90 Fortunately, researchers can include these caveats in

their initial cost effectiveness calculations, before rolling out the experiment. Our main recom-

mendation is that researchers “backward induct”, having the issue of scaling already in mind

when designing their experiments and programs. First, as we argued in Section 10, researchers

87A related issue is that of construal, i.e. the subjects’ subjective understanding of the intervention. Paluck and
Shafir (2017) argue that scaling up mandatory arrest of abusive domestic partners (as a result of an experiment)
backfired due to the construal of (what it meant) calling the police in that situation.

88Some people might suffer from psychological switching costs (Klemperer, 1987; Carroll et al., 2000), or
hyperbolic discounting, which would tend to inhibit the creation of new habits (see also Section 11). Moreover,
people have limited cognitive resources to make complex decisions (Simon, 1972; Shah et al., 2012).

89For example, combining educational sessions, counseling, and a selection of reminder methods.
90Interestingly, these issues could be exacerbated “when rolling out revolutionary ideas, as these often challenge

the power and established practices of incumbent organizations” (Al-Ubaydli et al., 2017c). Because of that,
programs with greater community coalition functions, communication to stakeholders, and sustainability are
more likely to still be in place over two or more years beyond their original funding (Cooper et al., 2015).
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should go beyond A/B testing to the whys of the phenomena they want to study, using existing

evidence to build theories that can help explain the experimental results. This feature provides

a theoretical basis for fidelity in the Al-Ubaydli et al (2017c) model. Researchers should also

consider whether their program is likely to generalize, being especially sensitive to heterogeneity

across populations and contexts (Section 1), and choose the optimal experiment type in light

of their scaling goals (an issue we discussed in Section 3).

An approach that is likely to result in better generalization is to first consider the (large)

population of interest, take a representative (smaller) sample of observations, and then ran-

domize those to treatment or control (Muralidharan and Niehaus, 2017).91 Compliance to the

program must be taken seriously into account, and lessons derived from earlier interventions

can help in this endeavor: Al-Ubaydli et al. (2017a) argue that there is much to be learned from

medical researchers who have been rigorously studying a similar problem for years.92 Because of

that, economists could structurally estimate behavioral models (DellaVigna et al., 2012; Allcott

and Taubinsky, 2015) as they seek to scale results, as we argued in Section 10. Moreover, the

issue of diseconomies of scaling in hiring workers to scale-up an intervention can be tackled by

randomizing the hiring process itself, in such a way that researchers can actually estimate the

loss in worker quality as they move along the supply curve, as part of their experiment (Davis

et al., 2017).

In addition, GE effects can be estimated by using large units of randomization whenever

possible (for example, randomizing at the school level instead of at the student level, Muralid-

haran and Niehaus, 2017).93 It is important to evaluate the implementation, and document all

steps of the process (Duflo et al., 2007; Banerjee et al., 2017a), including having a pre-analysis

plan, and to ensure that the programs that are evaluated in the first place are modular, in the

sense that what is implemented is described by a simple protocol (Banerjee, 2005). Both clinical

researchers and economists can greatly benefit from following experimental best practices, and

think ahead of time to the issue of scaling-up, including ensuring appropriate sample sizes and

sufficient power (Section 6), sound inference (Sections 4 and 7) and replication (Section 5).

Conclusion

When new areas of inquiry arise in the sciences they are oftentimes greeted with much skep-

ticism, yet if they prove fruitful they grow quickly but many times non-optimally. Such an

oft-observed pattern effectively results in a missed moment to advance knowledge, and back-

91For example, Muralidharan and Sundararaman (2015) first sample a “representative universe” of villages with
a private school, and then randomly assign each of them to treatment or control in a school choice experiment.

92In particular, non-adherence to medication can lead to financial and personal costs – incentives that nonethe-
less seem too weak to motivate individuals.

93A prominent example is that of Miguel and Kremer (2004), who realized that there were spillover effects
of deworming programs, by randomizing the programs at the school (rather than the student) level. However,
Banerjee et al. (2017a) warn that sometimes it is difficult to know ex-ante what randomization unit will be large
enough to capture all GE effects.
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tracking on ill-advised research journeys often is difficult. We now find ourselves in a phase of

rapid growth of the experimental method in economics, especially as applied in the field. To

help ensure that we seize this opportunity to maximize the scientific knowledge created using

experiments, we take this occasion to step back and attempt to set up some guard rails by

crafting a 12 item wish list that we hope scholars can do more of in their own research. By

creating such a list we are not implying that these 12 items are entirely ignored in the extant

literature; indeed, quite the contrary in some lines of work certain items are prominent.

While picking a dozen items for such an exercise is akin to picking one’s favorite research

project or one’s favorite child, we nevertheless attempt in this tome to do just that. Rather

than regurgitate how our twelve items span three bins that are usefully summarized by three

questions, we wish to close with a few items that we find important but just missed our wish list.

Our first addition is a call to define the research questions and analysis plan before observing

the outcomes of an experiment – a process known as preregistration (Nosek et al., 2018). This

approach has proven very effective in a plethora of other fields, most notably medical trials, in

limiting specification searching and bounding Type I errors, and we fully anticipate considerable

scientific gains in economics thanks to this movement (Christensen and Miguel, 2016; Coffman

and Niederle, 2015). The reason we did not include it on our list, though it did permeate cer-

tain aspects of our discussion (see Section 8), is that this push has taken place and is relatively

far along already: the Open Science Framework’s database has received 18,000 preregistrations

since its launch in 2012, with the number roughly doubling every year, and more than 120

journals in various fields now offer registered reports. As such, while we strongly recommend

pre-registering experiments, we feel that its inclusion in our wish list would add less value than

other, less-discussed items.

Our second addition emphasizes the need to work on issues of first order import, and dis-

seminate results from economic experiments more broadly. Academic researchers, responding

to career incentives that are almost exclusively tied to publications in peer-reviewed economics

journals, typically spend little time and effort communicating their findings to a wider audience.

While the profession has made progress towards experiments that produce relevant, generaliz-

able and scalable results, researchers are typically not rewarded for getting involved with the

actual larger-scale implementation of their results. As a result, even the most important new

scientific findings with direct practical relevance often take long to reach policymakers or prac-

titioners, and when they do, they are often misrepresented. To change this practice, we urge

researchers to make their results more available by creating informative press briefings, posting

summaries and non-gated versions of their published papers online, exploiting the opportuni-

ties offered by social media, and by establishing contact with policymakers and practitioners

interested in applying their findings in practice. Furthermore, we see great potential gains in

engaging with the scientific community more broadly, both by working more closely with re-
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searchers from other social science disciplines, and by following the methodological discussions

in other experimental sciences such as biostatistics or neuroscience.

We end our wish list with a call to the experimental economics community to continue

engaging in the discussion to improve our field. While Samuelson’s famous quip that doing

methodological research is akin to doing calisthenics remains true today, we hope that our work

provides a useful starting point for those new to this discussion. We encourage researchers who

have been actively shaping this debate to create their own wish lists, or to share with us items

that we have missed in ours since choosing one’s favorite methodological points is often fraught

with err and oversight, and we trust that our list contains both.
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Appendix

Generalizability Threat III: noncompliance case

We consider here the more general case of Threat III to generalizability (see Section 1), for

the case of noncompliance. The issue of selective noncompliance can be exacerbated by non-

random selection into the experiments, in which case pi is correlated with (zi, di).
94 In that

case, there is a problem of generalizability when rolling the program to the entire population.95

If the researchers are interested in the effect of the program λ∗ = E[yi1 − yi0|ωFFE , d(zi = 1) =

1, d(zi = 0) = 0], we have that

λ∗ = P[pi = 1] · LATEp=1 + P[pi = 0] · LATEp=0,

where LATEp=1 is defined as in Equation 1, and LATEp=0 is defined analogously for those

with pi = 0.96 We can calculate the bias as we did in Equation 2 for the case of non-compliance,

which is given by P[pi = 0] · (LATEp=1−LATEp=0).97 If the value of LATEp=0 is very different

from LATEp=1, then the estimate from the FFE is not generalizable because, for most FFE,

P[pi = 0] is much larger than P[pi = 1]. However, the estimate from FFE will be generalizable

when LATEp=1 ≈ LATEp=0, and this can happen if p is independent of (zi, di):

pi ⊥⊥ (zi, di)|xi (Compliance Independence Condition).

Generalizability framework from Al-Ubaydli and List (2013)

We present a very similar version of the framework in Al-Ubaydli and List (2013), which was

based on Heckman (2000)].

We say D has local generalizability if

∀(x, x′, z) ∈ D,∃ε > 0 : Bε(x, x
′, z) ⊂ D ∪∆(R).

Note that if D is an open set, then D has local generalizability, even if D has zero gener-

alizability.98 We say that D has global generalizability (of size M) if DM ⊂ D ∪ ∆(R),

where

Dε = {(x, x′, z) : ∃(x̄, x̄′, z̄) ∈ D with (x, x′, z) ∈ Bε(x̄, x̄′, z̄)}.
94For example, if the stakes involved may affect both the selection decision into the experiment pi, and then

the subsequent behavior in response to the treatment di, or if those who select into the experiment are more
likely to comply with their assigned treatment, or the opposite, those who select into the experiment are more
likely to choose a particular d no matter what zi is.

95See also Section 12 for issues on scalability.
96That is, LATEp=0 = E[yi1 − yi0|ωFFE , di(zi = 1) = 1, di(zi = 0) = 0, pi = 0].
97Because LATEp=1 − λ∗ = (1− P[pi = 1]) · LATEp=1 − P[pi = 0] · LATEp=0.
98This is because if D is open, then around each point (x, x′, z) ∈ D we can always find a small enough open

ball around (x, x′, z) that is contained in D.
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Note that global generalizability of size M > 0 implies local generalizability. Moreover, if

D is finite, local generalizability implies global generalizability for some M > 0.99

Attenuation bias over time

Let τt = E[yit − yit0 |zi0 = 1] − E[yit − yit0 |zi0 = 0]. Since zi0 is random, then we have that

E[yit0 |zi0 = 1] = E[yit0 |zi0 = 0], and hence

τt = E[yit|zi0 = 1]− E[yit|zi0 = 0].

We assume that each individual changes treatments with a constant probability that is

positive if the new treatment has a higher outcome, and zero otherwise. For each individual,

this generates a Markov Chain, and the stationary distribution πi is such that there is a mass 1

of probability at the treatment with the highest outcome (it is an absorbing state) for individual

i. Therefore, as t → ∞, each individual converges to the treatment with the highest outcome.

Again, because zi0 is random, that means that distribution of stationary distributions πi is

equal on expectation for zi0 = 1 and zi0 = 0, and therefore:

lim
t→∞

τt = lim
t→∞

E[yit|zi0 = 1]− E[yit|zi0 = 0] = E[y · πi|zi0 = 1]− E[y · πi|zi0 = 0] = 0.

99In particular, for M = min{ε : Bε(x, x
′, z) ⊂ D ∪∆(R)∀(x, x′, z) ∈ D}.
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R., Petrovic, B., Pilati, R., Pinter, B., Podesta, L., Pollmann, M., Rosa, A. D., Rutchick,
A. M., M., P. S., Sacco, A., Saeri, A. K., Salomon, E., Schmidt, K., Schönbrodt, F., Sekerdej,
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