
The Draft Genome Sequence of European Pear (Pyrus
communis L. ‘Bartlett’)
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Abstract

We present a draft assembly of the genome of European pear (Pyrus communis) ‘Bartlett’. Our assembly was developed
employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads
using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and
covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single
nucleotide polymorphisms (SNPs) were detected using re-sequencing of ‘Louise Bonne de Jersey’ and ‘Old Home’. A total of
2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with
prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are
unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided
an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related
genes that control fruit softening in both European pear and apple (Malus6domestica). The ‘Bartlett’ genome assembly v1.0
(http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic
control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that
will enhance the speed and efficiency of pear cultivar development.
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Introduction

Pear (genus Pyrus) is one of the oldest temperate tree fruit crops,

having been grown since antiquity from both Europe to China.

Homer described the pear in the ‘Odyssey’ as a ‘‘gift of the gods’’.

Pear production was approximately 23.9 MT worldwide in 2012

(http://faostat3.fao.org/), with European pear (Pyrus communis L.;

2n=34) making up about one third of total production. The genus

Pyrus is related to apple (Malus) and quince (Cydonia) within the

tribe Pyreae [1], which all share the pome fruit structure. Pear has

historically been less well researched than other members of the

Rosaceae such as apple, peach and strawberry. Recently, whole-

genome sequences have been developed for a range of econom-

ically important dicotyledonous plants, such as poplar, grape,

papaya, cucumber, cocoa, potato, soybean, cannabis, melon and

tomato [2–15], including the rosaceous crops apple, strawberry,

peach and Chinese pear (P. bretschneideri) [16–19]. Low to medium

density pear genetic maps enriched with apple microsatellite
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markers have enabled the alignment of genetic maps of European

pear and apple and formulation of the hypothesis that apple and

pear have collinear genomes [20–24]. Although this hypothesis

was based on few hundred orthologous markers only, the recent

comparison of several sequenced rosaceous genomes indicates that

even among the more distantly related genomes of apple, peach

and strawberry [25,26], synteny is conserved. It might be

anticipated that the synteny between apple and pear should be

higher than in these cases, as apple and pear are more closely

related phylogenetically than apple is to peach and strawberry [1].

We have taken advantage of the current cost and effectiveness of

genome sequencing technologies to develop the genome assembly

of European pear, with the ultimate goal of developing an

understanding of the traits that differentiate the more distantly

related rosaceous crops, as well as those more closely related

within the Pyreae. European pear has several biological features

that differentiate it from apple and Chinese pear, such as traits

controlling melting fruit flesh versus crisp flesh, and species-specific

susceptibility to pests and pathogens. We wish to compare the

European pear genome with that of apple and Chinese pear, for

the purpose of developing ultimately an understanding of the

evolution of the core traits that differentiate apple and pear, as well

as the control of the very different flesh types and flavours between

European and Chinese pears.

We chose ‘Bartlett’ (also known as ‘William’s Bon Chrétien’ or

‘William’s pear’) for genome sequencing, not only because of its

major role as a cultivar in Europe, but also because it is a founder

of most P. communis breeding programmes worldwide. The draft

genome assembly of European pear was developed using Roche

454 sequencing technology and spans 577.3 Mb, containing

43,419 putative genes. We tested the integrity of the assembly

by examining the expansin gene family, members of which are

involved in fruit ripening of pome fruit, as an example of the type

of insights into functional biology that can be achieved using this

genome sequence.

Methods

Plant material and nucleic acid extraction
DNA was extracted from young leaves of P. communis ‘Bartlett’

grown at the Plant & Food Research (PFR) Motueka research

orchard (New Zealand; 41u8900 South, 173u1900 East) and in Field

11.C of Maso Parti at Edmund Mach Foundation-Istituto Agrario

di San Michele all’Adige (Italy; 46u129 North, 11u89 East) (no

permission was required to collect these samples and they are not

from endangered or protected species), using the QIAGEN

DNeasy Plant Kit (QIAGEN GmbH, Hilden, Germany). DNA

quality was assessed by agarose gel electrophoresis to ensure that

DNA was not degraded. Expression analysis was undertaken on P.

communis ‘Doyenne du Comice’ (‘Comice’) and P. pyrifolia

‘Nijisseiki’ pears grown at PFR, Motueka (New Zealand) harvested

at standard commercial ripeness (‘Comice’: firmness ,5.5 Kg.F,

and partial starch clearance; ‘Nijisseiki’: total starch hydrolysis)

and stored for 8 weeks at 0.5uC. Following cold storage, fruit were

left at 20uC for 7 days, to allow the fruit to soften, before harvest

into liquid N2 and storage prior to RNA extraction as described in

[27] and cleaned with RNeasy cleanup columns (QIAGEN)

following the manufacturer’s instructions.

Libraries and 454 pyrosequencing
Two random shotgun ‘genomic’ libraries were generated via

fragmentation of 500 ng each of pear genomic DNA employing

the GS FLX+ Series XL+ Rapid Library preparation kit, following

the manufacturer’s recommendations (Roche, Indianapolis, IN,

USA). Three 2 kb and two 7 kb paired-end libraries were

constructed from pear genomic DNA using the GS FLX+ Series

XLR70 Paired End Rapid Library preparation kit following the

manufacturer’s recommendations (Roche). Five and 15 mg of

double-stranded genomic DNA was randomly fragmented via

hydrodynamic shearing to an average size of 2,000 and 7,000 bp

using the HydroShear apparatus (DigiLab, Marlborough, MA,

USA). The libraries were quantified by quantitative PCR using the

454 Kapa Library Quantification Kit (Kapa Biosystems, Boston,

MA, USA). Long sequencing reads from shotgun ‘genomic’

libraries and paired-end sequencing reads were produced by the

GS FLX+ Series, using the GS FLX Titanium Sequencing Kit XL+

(Roche), according to the manufacturer’s recommendations.

mRNA-seq analysis
For each sample, ten micrograms of RNA was sequenced to a

depth of ,20M reads using Illumina Hi-Seq contracted through

Macrogen (Seoul, Korea; www.macrogen.com). Frequency counts

were obtained using Bowtie2 [28] to align reads to the predicted

gene models detailed below. Reads Per Kilobase per Million

(RPKM) mapped reads were extracted from the BAM files using

the ‘DEseq’ library in Bioconductor (www.bioconductor.org) in

the statistical software package ‘R’. Quantitative PCR (qPCR) was

performed as described in [29], with Actin as a control, using

primers MdEXPA2F (TTCCAAGACAGGGTGGCAAG) and

MdEXPA2R (TGCCCTCAAATGTTTGTCCG) for apple and

PcEXP2F (GGCAAGCCCTGTCAAGAAAT) and PcEXP2R

(GCCCTCAAATGTTTGTCCG) for pear.

Genome assembly
GS FLX+ reads were assembled with the Roche GS De Novo

Assembler (version 2.7; http://454.com/products/analysis-

software/index.asp), using both the large and heterozygous

genome modes and 8 CPUs. All other assembler configuration

settings were left at their default settings. The completeness of the

assembly was estimated by Core Eukaryotic Genes Mapping

Approach (CEGMA) analysis (version 2.4.010312) [30].

Genome anchoring
Four segregating populations of pear were genotyped using the

apple and pear single nucleotide polymorphism (SNP) array

[31,32]. The families consisted of one P. communis intra-specific

population and three inter-specific Asian6European pear popu-

lations: ‘Old Home’6‘Louise de Bonne Jersey’ (297 F1 individ-

uals), NZSelection_pearT0036‘Moonglow’ (92 F1 individuals),

NZSelection_pearT0426NZSelection_pearT081 (142 F1 individ-

uals) and NZSelection_pearT0526NZSelection_pearT003 (91 F1

individuals) [32]. The Asian parents (of complex Chinese and

Japanese pear origin involving both P. bretschneideri and P. pyrifolia)

and inter-specific hybrid populations were developed and main-

tained at PFR, Motueka. Three segregating populations of apple

(PremA1536NZSelection_appleT031, ‘Fuji’6NZSelection_ap-

pleT051 and ‘Sciros’6NZSelection_appleT051) [33] were used

to construct the apple genetic maps. These were developed for

each parent of the respective populations using Joinmap v3.0

(www.kyazma.nl). Markers were anchored to the ‘Bartlett’ genome

assembly v1.0 (Bartlett v1.0) using BLAST-like alignment tool

(BLAT) analysis [34] by searching for scaffolds with similarity to

the flanking sequence of the pear and apple SNPs. Figure S1

outlines the strategy employed for genome anchoring.

A Draft Genome Sequence of European Pear
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Gene prediction and annotation
De novo assembly of ‘Comice’ transcripts was performed using

trans-ABySS (v1.3.2) [35]. Briefly, 58,026,953 Illumina HiSeq

RNASeq reads were trimmed by 15 bases at their 59 ends, filtered

to remove reads containing ambiguities using an in-house PERL

script. The RNASeq reads were subsequently trimmed to a

minimum quality score of 20 using the program fastq-mcf from the

ea-utils package (http://code.google.com/p/ea-utils). Transcript

contigs resulting from de novo assembly using every second kmer

from 35 to 69 were then merged in to a single transcript set with

the program abyss-rmdups-iterative from the trans-ABySS soft-

ware distribution.

Gene prediction used a hybrid prediction approach, combining

ab initio gene prediction and homology searching. Specifically

Augustus (Augustus 2.7) trained using the ‘Comice’ transcripts was

employed for gene prediction ab initio from European pear

scaffolds. Augustus predictions were performed separately on

unmasked and repeat masked scaffolds. RepeatMasker (version 4-

0-3 [36]) was employed to mask known repeats in the genome

scaffolds using the rosid clade of repeats from RepBase (Update

20120418, RM database version 20120418) and rmblastn version

2.2.27+ (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/rmblast/2.

2.27/). Homology searching was performed by comparison with

predicted proteins from other Rosaceae. Predicted proteins were

obtained for apple (http://genomics.research.iasma.it/), Chinese

pear (http://peargenome.njau.edu.cn:8004/), peach (http://www.

rosaceae.org/sites/default/files/peach_genome/Prunus_persica_v1.0

_peptide.fa.gz) and strawberry (http://www.rosaceae.org/sites/

www.rosaceae.org/files/strawberry/genome/v1.0/fvesca_v1.0_

genemark_hybrid.faa.gz). These rosid protein sequences were

compared to repeat-masked European Pear scaffolds using

TBLASTN [37]. Alignment results were filtered using a modified

version of blast92gff3.pl (http://iubio.bio.indiana.edu/gmod/

tandy/perls/blast92gff3.pl), to identity sequences with greater

than 79% identity and to mediate running GeneWise (wise-2.4.1;

[38]) on the retrieved region, as well as 1000 bases upstream and

downstream of the aligned regions. GeneWise predictions were

assessed using evigene (http://marmot.bio.indiana.edu/

EvidentialGene/) and the best models (evigene’s ‘okayset’)

retained. Where a model from more than one approach was

present at any locus, the model representing the cluster was

selected on the basis of homology to proteins from Swissprot and

rosid species, as well as prediction length. Models from predictions

on the unmasked gene for which there was no supporting model

from the GeneWise or masked genome predictions were excluded

from the final gene model set. However, models from masked,

unmasked and hybrid approach predictions were separately

annotated using Plant & Food Research’s in-house BioView

Sequence Analysis and Annotation pipeline [39] and results for

each prediction set have been made available as a track in the

genome browser (http://www.rosaceae.org/species/pyrus/

pyrus_communis/genome_v1.0). BioView annotated the predict-

ed gene models by searching the Swissprot, Uniref90 (http://

www.uniprot.org/downloads) [40], RefSeq (release 54) [41], and

Arabidopsis proteins (TAIR 10) databases using BLASTX (version

2.2.25) [37]. Searching against the NCBI non-redundant (NR)

DNA database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) was per-

formed using BLASTN (version 2.2.25) [37], while Gene Ontology

terms were derived following motif searching based on Inter-

proScan (version 4.8) [42] and Interpro Release 38 (http://www.

ebi.ac.uk/interpro/). Comparison of metrics for European pear

gene models to that for apple, Chinese pear and strawberry was

performed as follows. Published GFF3 files describing gene models

for apple and strawberry were obtained from the Genome

Database for Rosaceae (GDR) (http://www.rosaceae.org/) and

those for Chinese pear from http://peargenome.njau.edu.

cn:8004. An in-house PERL script was used to parse the GFF3

files and extract metrics from each set. The extracted metrics will

be influenced by the different gene model prediction methodol-

ogies used by the different authors and should be considered with

this caveat in mind.

Comparative analysis of proteomes
The predicted European pear protein sequences were compared

with those from apple v1.0 (http://genomics.research.iasma.it/),

Chinese pear v1.0 (http://peargenome.njau.edu.cn:8004/), straw-

berry v1.1 (http://www.rosaceae.org/species/fragaria/fragaria_

vesca/genome_v1.1), grape v1.0 (http://genomics.research.iasma.

it/), kiwifruit (http://bioinfo.bti.cornell.edu/cgi-bin/kiwi/download.

cgi), poplar v3.0 (ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/

v8.0/early_release/Ptrichocarpa_v3.0/), sweet orange v1.0 (http://

www.citrusgenomedb.org/), mandarin v1.0 (http://www.citrus

genomedb.org/), papaya v1.0 (ftp://asgpb.hawaii.edu/papaya/),

tomato v1.0 (ftp://ftp.sgn.cornell.edu/genomes/Solanum_lycoper

sicum/assembly/current_build/), potato v4.03 (http://solanaceae.

plantbiology.msu.edu/pgsc_download.shtml), and Arabidopsis (TAIR

10; http://www.arabidopsis.org/), to identify ortholog gene clusters.

These published datasets were developed using different genome

annotation strategies, utilizing different tools. Although, each plant

genome may hence contain biases of various types, we consider these

data acceptable for application in our comparative study.

Protein sequences shorter than 10 amino acids and those

containing more than 20% stop codons were excluded from the

analysis. The remaining sequences were reciprocally blasted

against each other using BLASTP with cut-off e value 1e-10.

The similarity calculation, in-paralog and co-ortholog analyses

were performed using Orthomcl-2.0.3 [43] together with mcl-09-

149 (http://micans.org/mcl/). A visualized summary of ortholog

clusters between 13 plant species was generated with in-house

PERL and R scripts.

Estimating phylogenetic relationships
Phylogenetic trees were constructed based on protein sequences

of 83 ‘‘euKaryote Orthologous Genes’’ (KOGs). Multiple

sequence alignments were performed using MUSCLE v3.8.31.

Well-aligned regions were extracted with GBLOCKS 0.91b. The

maximum-likelihood phylogenetic calculation was performed

using PhyML with the Blosum62 amino acid substitution model

and 100 rapid bootstrap partitions. The tree was visualized using

Figtree 1.4.0.

Expansin gene family analysis
The expansin gene family was chosen for further analysis, to

support the completeness of the gene predictions for European

pear, as well as to examine the degree of similarity in the gene

space between the apple and European pear genomes. Expansin

protein sequences from apple and Arabidopsis were used to perform

a BLASTP search against the apple predicted peptide models, in

order to identify putative expansins with a BLAST score.50. The

corresponding expansin-like genes from apple were then used in a

BLASTP search against the pear peptide models. Protein

sequences were aligned in Geneious 6.1.6 (Biomatters Ltd,

Auckland, NZ) using Geneious alignment with Blosum45 cost

matrix. From this alignment, genes were further filtered by

selecting those containing conserved expansin domains as classi-

fied by [48] with a conserved region of similarity corresponding to

313 residues and used to create a phylogenetic tree derived using

the maximum likelihood Geneious plug-in, PhyML with the JTT

A Draft Genome Sequence of European Pear
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substitution model and bootstrap analysis of 1000 data sets.

DdEXP2 from the amoeba Dictyostelium discoideum was used as an

outgroup [44].

De Novo repeat annotation
The genomic scaffolds of the ‘Bartlett’ v1.0 and the primary

assembly of ‘Golden Delicious’ were analysed using RepeatScout

[45] to provide de novo a list of repetitive elements independent of

repeats identified by repeat masking using RepeatMasker and

RepBase. The list was further analysed for redundancy and

classified into repeat classes using TEclass [46].

SNP detection
The pipeline used for SNP discovery in European pear was

similar to that described for apple [31]. Genomic DNA was

extracted from P. communis cultivars ‘Louise Bonne de Jersey’ (LBJ)

and ‘Old Home’ (OH) grown at PFR, Motueka (no permission was

required to collect these samples and they are not from

endangered or protected species) using the QIAGEN DNeasy

Plant Kit (QIAGEN) and sequenced using one lane of IlluminaH

GA II with 75 cycles per read [32]. Reads were aligned to Bartlett

v1.0 scaffolds using Soap2.2.1 [47]. SNPs were detected using

SoapSNP (http://soap.genomics.org.cn/soapsnp.html) essentially

as described in [48]. Genome partitioning of SNPs was based on

the location of predicted gene models.

Results

Genome sequencing and assembly of Bartlett v1.0
In total, 23,058,965 paired-end (43.7%) and non paired-end

(56.3%) sequence reads yielded 8.2 Gigabases (Gb) of sequences

(Table S1) that were used to develop the P. communis ‘Bartlett’

genome assembly v1.0 (Bartlett v1.0) (Table 1). The estimated

genome size based on flow cytometry [49] is approximately

600 Mb of haploid genome, and our data enable estimation of a

11.46 average coverage. The assembly gave 182,196 contigs of a

cumulative length of 507.6 Mb. These contigs were assembled into

scaffolds using a combination of Roche 454 2 kb and 7 kb insert

library paired-end reads to obtain 142,083 Bartlett v1.0 scaffolds,

covering a total of 577.3 Mb, and representing most of the haploid

P. communis genome. The longest scaffold was 1.2 Mb long and

50% of the assembled genome was contained in 1,442 scaffolds

(L50), with the smallest L50 scaffold comprising 88,114 bp (N50).

Only 12.1% of the scaffold sequences were unknown bases. The

completeness of the draft genome assembly was tested by

searching for 248 Core Eukaryotic Genes (CEGs; [30]). In total,

232 of 248 (93.5%) CEGs were completely present and 244 of 248

CEGs were completely or partially present (98.4%) (Table S2).

Genome anchoring to pear and apple genetic maps
The scaffolds of Bartlett v1.0 were anchored to high density

genetic maps constructed for Pyrus [32] and Malus segregating

populations [33] using SNP markers from the International

RosBREED SNP Consortium (IRSC) apple and pear array

[31,32]. The IRSC array contains 7,692 Malus SNPs, as well as

1,096 SNPs developed from P. communis. In total, 2,279 genetically

mapped loci (1,391 and 888 apple and pear SNPs, respectively)

yielded a significant BLAT hit to 868 unique scaffolds (Table 2),

enabling the anchoring of a total of 171.3 Mb of the assembled

genome to the 17 Pyreae LGs (Table S3). The largest LG was LG15

(17.6 Mb) and the median number of markers per scaffold was 2.0.

Gene prediction
Gene prediction using a combined ab initio prediction and

homology searching approach yielded 43,419 putative gene

models (Table 3). The number of predicted genes is higher than

for most plant species and ,30% greater than in the strawberry

genome (34,809 gene models), as might be expected due to the

Pyreae whole genome duplication [17]. The average predicted

coding region length (1,209 bp) was similar to that in Chinese

pear, strawberry and apple (Table 3), as was the average predicted

exon length between the predicted protein sets from these four

rosaceous species. These similarities are observed in spite of the

different gene model prediction methodologies utilized, and which

should be taken into account when considering these observations.

The number of single exon genes was similar between European

and Chinese pears as well as apple, at about twice that of

strawberry. The gene density in European pear was estimated to

be 7.5 genes per 100 kb which is similar to that for Chinese pear,

apple (Table 3), poplar (9.4 [10]), grape (6.6 [12]) and melon (7.3

[3]), but not as dense as observed for strawberry (14.5 [16]),

notwithstanding the methodological difference in gene prediction

employed for each species.

Table 1. Basic statistics on the Pyrus communis ‘Bartlett’
genome sequence.

Sequencing data

Number of bases used for assembly 8,204,442,728

Sequenced reads used for assembly 23,058,965

Non paired end 12,979,485

Paired end 10,079,480

Estimated average coverage* 11.46

Contigs

Number of contigs 182,196

Total size of contigs (bp) 507,689,959

N50 contig length (bp) 6,569

Longest contig (bp) 127,414

Mean contig size (bp) 2,787

Median contig size (bp) 1,188

Number of contigs in scaffolds 47,404

Number of contigs not in scaffolds 134,792

Scaffolds

Number of scaffolds 142,083

Total size of scaffolds (bp) 577,335,413

N50 scaffold length (bp) 88,114

Longest scaffold (bp) 1,291,680

Shortest scaffold (bp) 501

Number of scaffolds .1K bp 69,460

Number of scaffolds .10K bp 4,916

Number of scaffolds .100K bp 1,262

Number of scaffolds .1M bp 4

Number of scaffolds .10M bp 0

Mean scaffold size (bp) 4,063

Median scaffold size (bp) 983

Scaffold %N 12.06%

Figures are given in bp.
*: the assumed genome size of pear is 600 Mb.
doi:10.1371/journal.pone.0092644.t001
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A phylogenetic tree constructed with 83 euKaryote Orthologous

Genes (KOGs) in six rosids, four malvids, and three asteroids

(Figure 1) confirmed that European pear is a close relative of

Chinese pear and apple and is more distantly related to

strawberry.

Comparative analysis of proteomes
A total of 5,350 protein clusters was observed as conserved

across all 13 species proteomes, with 14,348 predicted European

pear proteins (33% of the 43,419 total predicted protein set;

Figure 2). Only 82 protein clusters were not found in European

pear compared with all other 12 species, a value less than the

number of protein clusters absent from Chinese pear (298), apple

(236), strawberry (192), Arabidopsis (246), potato (437), papaya

(424), grape (502) and kiwifruit (558), however similar to that of

sweet orange (85), clementine (34), tomato (53) and poplar (45)

(Table S4). The proteome analysis demonstrates close genome

relatedness between Chinese pear, European pear and apple;

tomato and potato; sweet orange and Clementine, respectively.

More protein clusters were shared between European and Chinese

Table 2. Anchoring of the Pyrus communis ‘Bartlett’ assembly v1.0 genome sequence.

LG Length anchored (bp)

Number of anchored scaffolds

(unique) Number of anchoring markers

Median number of markers per

scaffold

1 8,550,412 46 115 2.0

2 11,234,491 58 194 3.0

3 12,642,036 69 163 2.0

4 8,044,179 40 105 2.0

5 10,949,710 57 159 2.0

6 8,104,341 45 117 1.0

7 8,833,777 53 102 1.0

8 8,189,737 36 92 2.0

9 10,984,512 53 145 2.0

10 9,331,439 54 113 2.0

11 10,224,161 53 134 2.0

12 8,857,939 44 122 2.0

13 10,282,711 38 127 2.5

14 10,094,382 51 117 2.0

15 17,650,274 75 222 2.0

16 8,177,493 44 124 2.0

17 9,204,799 52 128 2.0

Total 171,356,393 868 2,279 2.0

doi:10.1371/journal.pone.0092644.t002

Table 3. Gene prediction summary for Pyrus communis and comparison with P. bretschneideri, Fragaria vesca and
Malus6domestica.

Pyrus communis Pyrus bretschneideri Fragaria vesca Malus6domestica

Predicted genes 43,419 42,812 34,809 54,921

Average gene length (including
introns)(nt)

3,320 2,776 2,792 2,802

Average CDS length (nt) 1,209 1,172 1,160 1,155

Exons 221,804 202,169 174,376 273,226

Average exon length 237 248 232 273

Single exon genes 10,909 12,310 5,915 10,378

Introns 178,385 159,357 139,567 218,353

Introns per gene (multi-exon genes
only)

5.49 5.22 4.83 4.90

Average intron length 398 386 409 491

Genes per 100 Kb 7.5 8.4 14.5 7.3

Gene predictions were performed using Augustus for European pear and GeneMark-ES for strawberry. The apple gene models were estimated as the total number of
gene predictions minus an estimation of duplications generated by contig overlaps. The redundancy was filtered out using similarity among predictions and positional
considerations.
doi:10.1371/journal.pone.0092644.t003
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pear (1,771), than those between Chinese pear and apple (764) and

between European pear and apple (1,018). There are 1,433 groups

of orthologous protein clusters present in all the three species of the

Pyreae. These share the highest number of unique ortholog groups

in our analysis (5,552 in total), followed by Solanaceae with 3,044

clusters of 6,293 genes in potato and 4,035 genes in tomato,

respectively, and by citrus (2,941 sweet orange genes and 2,991

clementine genes in 2,414 clusters). Finally, 556 clusters were

unique to European pear and these corresponded to 1,219

proteins (2.8% of the 43,419 total predicted protein set; Table S5).

Repeat analysis
A total of 199.4 Mb of repeated elements was identified in the

unmasked Bartlett v1.0 genome scaffolds employing de novo

detection followed by a classification made using RepeatMasker

(Table 4). The most common repeated elements were long

terminal repeat (LTR)/Gypsy (84.6 Mb; 14.1% of the assembled

genome) and LTR/Copia (42.8 Mb; 7.1% of the assembled

genome), and the most common DNA transposable elements

(TEs) were PIF-Harbinger (10.2 Mb; 1.7% of the assembled

genome) and hAT-Ac (4.7 Mb; 0.8% of the assembled genome).

These results are in agreement with the analysis of the P.

bretschneideri genome [18]. The classification of repeated elements

using an homology-based search using the Rosaceae clade from

RepBase (Table 5) confirms the results obtained by de novo

detection, as LTR/Gypsy and LTR/Copia were the most abundant

classes of retroelements. In total, 194.8 Mb (32.5%) of the

assembled Bartlett v1.0 genome comprised interspersed repeated

elements according to the homology-based analysis.

Figure 1. Phylogenetic tree of six rosids, four malvids, and three asterids constructed with 83 euKaryote Orthologous Genes
(KOGs). Bootstrap values are listed on each branch. Nodes represent speciation events and branch length represents the degree of evolutional
changes over time. The unit for the scale bar at the bottom is nucleotide substitutions per site. The high bootstrap values strongly support that the
species in Rosaceae cluster together to the exclusion of any other, and that the European pear and Chinese pear separation event happened after
apple speciation.
doi:10.1371/journal.pone.0092644.g001
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SNP detection
Sequencing of LBJ and OH yielded 25,167,853 and 35,687,533

paired end reads, representing approximately 6.66 and 9.26

coverage per genotype, respectively. A total of 3,893,643 putative

SNPs was identified following mapping of LBJ and OH low

coverage sequencing data to the Bartlett v1.0 assembly scaffolds.

Of these 829,823 (21.3%) passed the filtering condition for stage 1

detection defined in [31]. The average SNP frequency of SNPs

passing the filtering conditions was one per 674 bp with 146,585

(17.7%) predicted to be located within exons in the predicted gene

models. A further 60,820 (7.53%) and 51,425 (6.37%) SNPs were

located within 1,000 bases upstream or downstream of a predicted

gene model, respectively.

Insight into the European pear annotated genome:
example of the expansin gene family
In total, 49 and 41 apple and pear expansin-like genes were

identified respectively in predicted gene sets, and were accepted or

rejected for inclusion in the phylogenetic analysis based on

previously published expansin classification criteria [48] (Figure 3).

Nine apple gene models did not have orthologous gene models in

European pear and one additional pear gene model was identified

with no apple ortholog (PCP008400). The predicted expansin and

expansin-like genes from pear and apple grouped into four major

clades, corresponding to the a- and b-expansins (EXPA and

EXPB, respectively) and the two expansin-like families, EXPAN-

SIN-LIKE A (EXLA) and EXPANSIN-LIKE B (EXLB) [50]

(Figure 3A; Table S6). Homeologous genes derived from the Pyreae

whole genome duplication were identified for both apple and

European pear. Expansin genes within sub-clades showed more

similarity between apple and pear orthologs, than between

homeologues of the same species, confirming that speciation

happened after the genome duplication event (Figure 3B).

For the rapidly softening European pear ‘Comice’ and crisp

textured ‘Nijisseki’ (Japanese pear) 18.8M and 19.7M mRNA

reads were obtained, respectively. Expression levels of the

expansin class of genes determined in cold-stored ‘Comice’ and

‘Nijisseiki’ pears that were undergoing rapid softening were

aligned to the phylogenetic clusters. These were compared to

previously published mRNA-seq data mapped to the apple gene

models [17] from mature, ripening ‘Royal Gala’ apples [51]

(Figure 3A). It was observed that in most cases orthologous genes

were expressed in both apple and pear during fruit ripening;

however, the melting texture European ‘Comice’ pears exhibited a

considerably higher level of expression than the crisp textured

apples and ‘Nijisseiki’ Japanese pears, with some genes (such as

EXP2) showing over 20-fold higher expression in ‘Comice’

compared with apple and ‘Nijisseiki’. qPCR of EXP2 verified the

mRNA-seq data and showed that at harvest and during storage,

‘Royal Gala’ exhibited consistently lower levels of EXP2 expres-

sion than the pear varieties (Figure 3A).

Figure 2. Protein-protein comparison between European pear and 12 other species: Chinese pear, apple, grape, strawberry,
papaya, sweet orange, clementine, kiwifruit, tomato, potato, poplar and Arabidopsis. The figure shows every possible combination of
species included in this proteome ortholog analysis, using concentric circles. Each ring represents a single plant species and is depicted in a unique
colour. For the 13 species shown, there are hence a total of 213–1 combination cases, from 556 ortholog groups found in European pear only, 682
clades in Chinese pear only, to 5393 clusters present in all thirteen species. For each combination, the number of ortholog groups discovered is
labelled outside the outermost ring and the number of proteins for a species inside a coloured, circular cell that represents the particular species. As
the angular width of the cells for each case is drawn proportional to its number of groups, there is no labelling where the angular width is too small.
A complete list of all combination cases with detected ortholog genes is provided in Table S4.
doi:10.1371/journal.pone.0092644.g002
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Discussion

The draft genome assembly of Pyrus communis and its
applications
We have used Roche 454 shotgun sequencing to develop the

first draft genome assembly of European pear. European pear (P.

communis) is the newest addition to the palette of whole genome

sequences of Rosaceae fruit species, following apple (Malus6do-

mestica; [17]), strawberry (Fragaria vesca; [16]), peach (Prunus persica;

[19]) and Chinese pear (P. bretschneideri [18]). The Bartlett v1.0

draft genome spans most of the P. communis genome and 171 Mb is

anchored to high density genetic maps. A total of 829,823 SNPs

passed filtering criteria, which corresponds to one SNP every

674 bp. This SNP frequency in P. communis is lower than in apple

(one SNP every 249 bp [46]), however, this may reflect the smaller

set of cultivars used for SNP detection in European pear compared

with apple. The development of a whole-genome sequence is a key

milestone for research in any organism and the Bartlett v1.0 draft

genome assembly will provide a springboard to explore the genetic

control of key horticultural characters such as fruit quality, pest

and disease resistance, and tree architecture. The genome

assembly also enables the development of genetic markers for

early selection of seedlings carrying alleles conferring these traits,

from breeding germplasm. This genomic resource is now available

to fruit researchers at the Genome Database for Rosaceae (http://

www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0).

The number of predicted gene models (43,419), the high

Table 4. Comparison of de novo predicted repeated elements between the European pear, Chinese pear and apple genomes. na:
not available from [18].

European Pear Chinese pear Apple

Class Count Size(bp) Size (bp) Count Size(bp)

DNA 87,258 16,034,061 19,622,007 62,032 12,036,031

DNA/CMC-EnSpm 5,245 2,498,065 1,994,298 3,238 1,651,963

DNA/MULE-MuDR 11,081 1,654,134 2,812,256 8,411 1,299,397

DNA/PIF-Harbinger 33,920 10,195,913 13,681,892 22,675 6,976,753

DNA/hAT-Ac 18,863 4,763,497 10,510,482 15,194 5,286,418

DNA/hAT-Tag1 8,271 1,973,418 2,689,092 10,877 3,050,698

DNA/hAT-Tip1 9,603 2,394,869 3,298,090 7,398 2,034,152

LINE/L1 8,410 4,077,094 10,075,654 5,716 3,269,671

LINE/RTE-BovB 7,697 2,200,632 4,408,634 12,750 10,996,014

SINE 425 124,106 208,975 2,191 359,108

SINE/tRNA 20,796 2,863,949 na 13,153 1,805,785

LTR 37,405 9,249,657 38,166,045 20,479 6,282,994

LTR/Caulimovirus 2,796 2,550,963 2,625,049 1,227 1,544,695

LTR/Copia 73,727 42,805,711 86,429,855 46,798 35,591,207

LTR/Copia-like 110 20,863 na 97 26,513

LTR/Gypsy 145,766 84,633,023 130,449,009 94,218 68,540,726

Low_complexity 121,061 5,222,319 na 84,700 3,780,221

RC/Helitron 6,851 2,104,677 na 5,036 1,448,948

Satellite 207 30,594 350,647 178 40,455

Simple_repeat 63,595 2,428,632 1,131,844 47,558 1,891,325

Unknown 6,610 1,545,468 4,296,548 4,650 1,079,420

rRNA 351 100,288 na 158 31,199

TOTAL 199,471,933 332,750,377 169,023,693

doi:10.1371/journal.pone.0092644.t004

Table 5. Classification of repeated elements in European pear
based on the ‘Rosaceae’ clade from RepBase.

Copies Assembled (Mb) Assembly %

Retroelements 241,316 149.345 25.87

SINEs 20,442 2.865 0.50

LINE/RTE 6,669 1.724 0.30

LINE/L1 7,851 4.300 0.74

LTR/Ty1/Copia 56,724 44.240 7.66

LTR/Gypsy 114,127 85.382 14.79

DNA transposons 173,387 42.058 7.28

hobo-Activator 36,417 10.007 1.73

Tc1-IS630-Pogo 107 0.015 0

En-Spm 296 0.278 0

Tourist/Harbinger 30,859 9.770 1.69

Unclassified 11,995 3.427 0.59

Total interspersed repeats 194.830 33.75

Small RNA 20,415 2.873 0.50

Satellites 186 2.873 0.01

Simple repeats 2,497 0.021 0.04

Low complexity 226 0.000 0.00

TOTAL 197.724 34.14

doi:10.1371/journal.pone.0092644.t005
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proportion of CEG retrieved (98.4%), and the comparison of

apple and pear gene models of the expansin-like gene family

demonstrate the quality and the completeness of the Bartlett v1.0

draft genome. A further valuable objective of developing a

genome, beyond mining genes for sequence variants for linkage

analysis, is to identify gene features such as open reading frames,

introns and promoters for functional analysis. Although the

Bartlett v1.0 draft genome sequence is fragmented, we have

shown that it is sufficiently complete to enable functional

characterisation of pear genes. Furthermore, our analysis of the

Bartlett v1.0 draft genome indicated that European and Chinese

pear have similar genome composition in terms of repeated

elements, for example the LTR gypsy and copia elements are the

most highly represented classes in both species. One striking

feature of the pear genome is that it is smaller than that of apple,

based on flow cytometry (600 Mb versus 750 Mb; [49]). The

analysis of the Chinese pear genome [18] indicated that there may

be significantly more repeated elements in the apple genome than

in Chinese pear and our results in European pear validate this

hypothesis.

Comparative genomics between European pear and
other plant species
A comparison of the predicted proteins in European pear was

performed against the predicted proteins from 12 other plant

species, including two Rosaceae pome fruit species: Chinese pear

and apple. A caveat to interpretation of these results is that their

precision depends both on that of the published proteomes and

that of the predicted proteome of P. communis, wherein a potential

bias could be introduced into the comparative analysis as a result

of the 13 plant genomes being assembled and annotated by

differing methodologies, as reported by the respective authors.

In European pear, we identified a subset of 556 clusters

containing 1,219 proteins that did not have orthologs detected in

the other 12 species used in the analysis. Further analysis of these

proteins using a wider array of species for comparison would be

required to determine whether these proteins encode for traits

specific to European pear. Furthermore, the set of 1,433 protein

clusters present in both pear species (1,684 and 1,905 proteins in

European and Chinese pear, respectively) and apple (1,963

proteins) but not detected in the remainder of the species may

include products of genes determining the pome fruit character.

Further investigation, including RNA-seq analysis of developing

fruit should be performed, to elucidate the genetic control of

development of this unique fruit type.

A tool for functional characterisation of fruit quality in
pome fruit
The variation in fruit texture in pears is considerable, ranging

from crisp in Chinese (P. bretschneideri) and Japanese (P. pyrifolia)
pears, to melting in European pears. This melting texture does not

occur in other pome fruit, such as apple and quince, which makes

the study of comparative genomics of cell wall-related genes within

the Pyreae very important. The role of expansins in fruit ripening

was first demonstrated in tomato, where suppression and over-

expression of ripening-specific LeEXP1 was shown to result in

increased fruit firmness and enhanced fruit softening, respectively

[52]. In apple and pear, the involvement of expansins in the

determination of fruit texture has also been inferred from

expression analysis of ripening-related members that correlate

with changes in fruit firmness [53,54]. Our analysis of the

expansin-like gene family indicated that the European pear and

apple expansin gene families are of similar size (41 and 49 genes,

respectively), which suggests that clade expansion has not occurred

within either species. Only a few a-expansins (EXPA clade) appear

to be associated with fruit softening, with one clade containing

PcEXP1,2 and 3 exhibiting high expression (Figure 3A) The

expression analysis presented here confirms previous studies where

PcEXP1 to PcEXP6, but not PcEXP7, were highly expressed in

cold-stored, ripening European pear [53,55], and where MdEXP3

was found to be the predominant, ripening-related expansin gene

in apple [54,56,57]. Surprisingly, quantitative trait locus analysis

linked MdEXP7 to fruit softening in apple and pear [58], although

MdEXP7 expression was subsequently found to be undetectably

low in a range of ripening apple genotypes [57]. Similarly in

European pear, both in the current study and in [53], PcEXP7 was

one of the members of the family with very low expression

(Figure 2A). Further examination of differences among the

cultivars chosen for these different studies is required to further

elucidate the role of expansins in fruit ripening in the Pyreae.

The draft genome assembly of ‘Bartlett’ will contribute to
faster delivery of new Pyrus cultivars
In the immediate future, the Bartlett v1.0 draft genome can be

used as a reference for re-sequencing in Pyrus germplasm, as has

been performed for apple [31] and peach [59]. Such germplasm

re-sequencing will enable the development of high-throughput

genetic marker screening tools for pear breeders, including SNP

arrays and will also allow implementation of emerging technol-

ogies, such as genotyping by sequencing [60]. Such technologies

will in turn enable the implementation of association studies for

determination of marker-trait associations, as well as genomic

selection (GS). Recent evaluation of genomic selection for fruit

quality traits in apple indicates that genetic gains achievable using

GS for a combination of traits, will be faster and more efficient

than achieved by classical breeding [33,61]. We predict that the

availability of the ‘Bartlett’ draft genome sequence will enable the

implementation of GS in pear cultivar breeding programmes

internationally in the very near future.

Figure 3. Phylogenetic and gene expression analysis of the expansin-like genes from apple and European pear. A) Phylogenetic tree
of predicted expansin-like genes from apple and European pear. Predicted expansin-like protein models from apple (MDP prefix) and European pear
(PCP prefix) were aligned, and a conserved region of alignment of 313 residues was used to construct the phylogenetic tree Geneious 6.1.6
(Biomatters Ltd, Auckland, NZ). The linkage group (LG) of each model is shown where possible; some models are not anchored (LG-NA) to the
genome. Models that represent the best hit for published expansins are labelled additionally as such. DdEXP2 from Dictyostelium discoideum was used
as an out-group. Bootstrap proportions for 100 trees were calculated and bootstrap values $50 are shown. Scale indicates 0.4 substitutions per site.
EXPA, a-expansins; EXPB, b-expansins; EXLA, alpha-like expansins; EXLB, beta-like expansins [50]. mRNA-seq expression levels in ‘Comice’ melting pear
(CM), ‘Nijisseki’ (NJ) crisp pear and ‘Royal Gala’ (RG) crisp apple, undergoing fruit ripening in storage show that one clade is strongly associated with
fruit ripening (coloured green). The inserted graph shows the expression analysis by qPCR of EXP2 in fruit at harvest and during storage, which
corresponds to the mRNA-seq data. Yellow bars: RG, red bars CM, orange bars NJ). RPKM: Reads Per Kilobase per Million mapped reads. Single arrow
shows the apple expansin (MdEXPA7) mapped to a quantitative trait locus for fruit texture. B) Alignment of the first 170 bp of apple and pear
homologues, demonstrating genome duplication preceded speciation.
doi:10.1371/journal.pone.0092644.g003
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genomic selection in apple (Malus6domestica Borkh.) breeding programmes:
Prospects, challenges and strategies. Tree Genetics & Genomes 8: 1–14.

A Draft Genome Sequence of European Pear

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e92644

http://www.repeatmasker.org
http://www.repeatmasker.org

