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Abstract: The chronic character of chemogenetics has been put forward as one of the assets of
the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic
studies have focused on acute applications, while repeated, long-term neuromodulation has only
been booming in the past few years. Unfortunately, together with the rising number of studies,
various hurdles have also been uncovered, especially in relation to its chronic application. It becomes
increasingly clear that chronic neuromodulation warrants caution and that the effects of acute
neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying
cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic
toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we
are only scratching the surface of what is possible with chemogenetic research. For example, most
investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular
signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience
and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of
chemogenetic experiments, as well as the unexplored research questions for which chemogenetics
offers the ideal research platform, with a particular focus on its long-term application.

Keywords: chemogenetics; designer receptor activated by designer drugs (DREADD); neuromodulation;
neurostimulation

1. Introduction

Neurobiology research has undoubtedly been revolutionized following the introduc-
tion of opto- and chemogenetics. The breakthrough of targeted neuromodulation started
with the introduction of optogenetics by the Deisseroth lab in 2005 and the proclamation
of this technique as the “Method of the Year” in 2010 by Nature [1]. Optogenetics finds
itself at the intersection of various disciplines, i.e., virology, genetics, biochemistry, and
biology. It combines targeted expression of a light-sensitive modulator, via viral vector
or transgenic approaches, with photo stimulation—typically achieved via an optical fiber
connected to an external laser—to attain targeted control of specific cellular populations
in an in vivo setting. A few years later, chemogenetics has been pushed forward as an
alternative technique to optogenetics, replacing optics (light sensitive modulators and light
stimulation) with pharmacology (drug sensitive modulators and drug stimulation). The use
of chemogenetics was spearheaded after the introduction of DREADDs (Designer Receptors
Exclusively Activated by a Designer Drug) in 2007 by the Roth lab [2]. As the acronym
implies, DREADD is an umbrella term encompassing a group of genetically engineered G
protein-coupled receptors (GPCRs) that have an altered ligand responsiveness. DREADDs
are unresponsive to their native, endogenous ligands, but are instead exclusively switched
on by engineered drugs [3]. For example, the DREADD prototypes hM3Dq (stimulatory)
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and hM4Di (inhibitory) are no longer activated by acetylcholine, yet hijacked to respond to
the drug clozapine-N-oxide (CNO) [3]. Briefly, hM3Dq activation triggers the phospholi-
pase C cascade, causing the release of intracellular calcium and membrane depolarization.
On the other hand, hM4Di inhibits the adenylyl cyclase cascade and activates inward
rectifying potassium channels, leading to membrane hyperpolarization [2,4,5]. Yet, many
other DREADD receptors exist, such as hM3Ds and rM3D; or KORDi, which is activated
by salvinorin B instead of CNO [6,7].

As compared to optogenetics, key differences of chemogenetics include no need for
specialized equipment (e.g., optic fibers and lasers), minimal invasiveness in vivo, higher
spatial resolution (i.e., not confined to the illuminated area) and, last but not least, the
timescale [8]. Optogenetics offers a unique temporal resolution through instant, millisecond
control over neuronal activity, yet is highly transient. Chemogenetics, on the other hand,
instigates gradual neuromodulation though with an extended duration of action. Depend-
ing on the assessed read-out, associated biological effects are reported to endure 6–24 h
after a single drug administration [9–12]. This implicates that 2 drug applications a day are
sufficient to continuously modulate cellular activation, and the chronic character of chemo-
genetics has been put forward as one of the assets of the technique. Especially regarding
long-term experiments or in the search towards a chronic therapy, the preference of chemo-
genetics over optogenetics follows logically. Yet, from the very dawn of chemogenetic
research, important caveats of the DREADD technology that hamper both fundamental
and translational research have drawn attention. Together with the rise of publications
employing long-term DREADD experiments, it becomes clear that most caveats associated
with chemogenetics are even more pressing in chronic applications and call for further
optimization. This lack of fundamental knowledge is not per se negative and also indicates
that the full capacity of what is possible with (chronic) chemogenetics is far from begin
reached. In this review, we discuss the most common hurdles and unexplored research
opportunities of the chronic DREADD research toolbox.

2. DREADDful Hurdles in (Chronic) Chemogenetic Studies
2.1. The DREADD Actuator CNO

A prototypical DREADD experiment (Figure 1a–c) includes the use of the archetypal
DREADD ligand CNO, yet this also represents one of the most frequently stated critiques
on the platform. Evidence suggests that not CNO, but its parent metabolite clozapine,
permeates the blood–brain barrier and is the actual DREADD activator in many laboratory
animals, including rodents [13–16]. Clozapine is a therapeutically approved antipsychotic
drug that, when present at high levels, binds to a variety of endogenous receptors with well-
known effects on animal behavior [10]. Since the majority of reports employ DREADDs in
behavioral studies, such off-target effects can easily confound the study results. Nonethe-
less, low doses of CNO (≤3 mg/kg bodyweight) are reported to result in subthreshold
clozapine concentrations that are unlikely to bind with endogenous receptors, as the affinity
of clozapine for DREADDs is much higher [14,17–19]. Although many studies demon-
strated the absence of behavioral off-target effects induced by CNO or back-metabolized
clozapine in animals without DREADD expression [20–25], other ligands have been devel-
oped to overcome this concern—e.g., olanzapine [26], perlapine [27], compound 21 [27],
deschloroclozapine [28], and JHU37160/152 [29] (Figure 1e). The absence of off-target
effects of these new generation of DREADD actuators also remains to be demonstrated.
Although the number of studies including other DREADD ligands is rising, CNO is still
by far the most used DREADD activator, even in chronic DREADD studies, in spite of all
critiques. Whether this is related to the superiority of CNO as DREADD actuator; to its
commercial availability; or to the inertia of scientific practice, i.e., the risk-averse option
to stick to the most widely used and conventional method, is not clear. This led to the
consensus that, regardless of the chosen DREADD actuator, findings of a DREADD study
are not discounted when employing a well-considered, rigorous experimental design with
proper control experiments and tailored dosing of the DREADD actuator.
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Figure 1. Schematic overview of a prototypical DREADD experiment (a–c) and protocol adaptations
(d–f) introduced over the past years. A prototypical experiment consists of intracranial viral vector
delivery of the DREADD construct (a). The archetypical DREADD ligand clozapine-N-oxide (CNO)
(for hM3Dq, hM4Di, hM3Ds, or rM3D DREADDs), or salvinorin B (for KOR DREADDs), are typically
administered via intraperitoneal (i.p.) or subcutaneous (s.c.) injections (b,c). DREADD delivery has
been updated using transgenic mice and approaches to facilitate blood–brain barrier crossing, e.g.,
engineering of viral vector capsids or acoustically targeted chemogenetics to increase cell specificity
and efficiency, respectively (d). Given the critiques on CNO, the use of clozapine and new generation
DREADD ligands is rising, including compound 21, perlapine, deschloroclozapine, JHU37160/152,
and others (e). Since the application of chronic chemogenetic experiments, i.p. and s.c. injections
were replaced by less invasive drug administration routes, such as delivery via drinking water or
food pellets, eye drops or micropipette-guided oral administration (f). Local administration of the
DREADD ligand is often accomplished via intracranial injections, cannulas, or minipumps.

One remaining question is whether clozapine should be administered as DREADD
actuator instead of CNO. This could avoid variations in CNO-to-clozapine conversion,
thus offering a better control of clozapine dosing [14,16]. However, in applications in
which prolonged DREADD activation is required, CNO metabolism could offer some
advantage as it steers a gradual production of clozapine, possibly extending the time span
of neuronal manipulation [14,16]. Yet, repeated CNO administrations could also cause
clozapine accumulation, reaching clozapine doses that are too high to avoid non-DREADD
related side effects [30]. To draw definite conclusions, this matter should be studied in
more detail.

Although DREADDs form the leading chemogenetic platform, other approaches
were also developed [6,7,31], such as the pharmacologically selective actuator/effector
module (PSAM/PSEM) tool. This platform is not based on GPCR signaling, but instead
hijacks ligand-gated ion channels [6,7,32]. Due to the ionotropic mechanism of action, the
PSAM/PSEM platform leans more towards optogenetics, also in terms of the timescale of
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neuromodulation, i.e., ±30 min of neuronal activation upon stimulation [32,33]. Just as
CNO, the PSEM ligand suffers from a number of flaws, primarily the need of high concen-
trations to achieve adequate in vivo efficiency and its short half-life [31,32,34]. Recently,
so-called ultrapotent PSEM (or uPSEM in short) ligands were developed [34,35]. These
ligands are highly effective at low doses and show great brain penetrance upon systemic
administration in both mice and nonhuman primates, therefore showing great promise for
future clinical applications.

2.2. Cell Specificity

The ability to specifically modulate a single cell population whilst leaving the oth-
ers unaffected offers key benefits to the neuroscience research field and can be accom-
plished by the DREADD platform. The most popular route to administer the DREADD
ligand is via intraperitoneal/subcutaneous injection(s) (Figure 1c); yet, given the need
for repeated ligand administration in chronic experiments, other systemic administra-
tion routes were introduced as well (Figure 1f). Examples include adding the designer
drug to drinking water or food pellets [36–38], micropipette-guided oral administra-
tion [39], use of eye drops [40], or implanted minipumps [23,41]. Although one could
opt for non-systemic, yet more invasive, ligand delivery routes such as the use of in-
tracranial cannulae [42] or magnetoliposomes [43], most chemogenetic studies still apply
a systemic and non-invasive administration, which implies that the DREADD construct
should be specifically targeted to the cell population of interest. The DREADD construct
is typically introduced via vector-mediated delivery with cell-type specific promotors,
usually packed within adeno-associated viral vectors (AAVs) (Figure 1a). Upon diffu-
sion of the vector to connected regions, off-target expression of the chemogenetic mod-
ulators can occur, which can be disadvantageous upon systemic administration of the
DREADD ligand. Vector diffusion can, however, be limited by optimizing the vector’s
serotype, titer, and injection volume [44]. Alternatively, to avoid off-target expression,
recombinase strategies such as Cre-Lox, FLP-FRT, or Tet expression systems can be em-
ployed [9,45–47]. Another option to insert the DREADD modulators into the genome
is via DREADD-expressing transgenic mice, with or without recombinase approaches.
Currently, there are 19 chemogenetic mouse lines commercially available at the Jackson
Laboratory (https://www.jax.org/research-and-faculty/tools/optogenetics-resource, ac-
cessed on 2 December 2021). Of note, the recombinase strategies can suffer from “leaky”
expression, i.e., expression in the absence of the recombinase [48]. This is most certainly
troublesome in transgenic mouse lines, in which the DREADD construct could have been
inserted in the entire central nervous system and even in peripheral tissues, which makes
it fundamentally difficult to exclude the effects of possible leaky expression on the study
results. As such, localized viral vector injections still render an additional layer of specificity
as compared to transgenic approaches [44].

2.3. Lack of Fundamental Knowledge of Chronic DREADD Neuromodulation

Despite the fact that DREADDs were introduced more than a decade ago, their chronic
use was largely unexplored until the past few years. A major advantage of chronic chemo-
genetic experiments is that it empowers long-term and longitudinal studies. Given the
simplicity and availability of the DREADD platform, researchers adopted this plug-and-
play tool in chronic experimental designs without first scrutinizing the underlying cellular
and molecular actions of chronic neuromodulation. Skipping the molecular basis of chronic
neuromodulation and directly probing its effect on behavioral readouts was a long shot.
This is underscored by studies comparing results obtained from acute and chronic DREADD
applications. Although some of those experiments show a similar level of neuronal activity
or behavioral outcomes [22,49], many others report null or antagonistic effects upon contin-
uous DREADD activation [21–23,36–38,41,50–56] (Table 1). Given these discrepancies, it is
clear that there is no straightforward way to extrapolate study results of acute experiments
to chronic experiments and more fundamental knowledge of chronic neuromodulation

https://www.jax.org/research-and-faculty/tools/optogenetics-resource
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is of key importance. Due to the lack of research into the (molecular) basis of chronic
neuromodulation via DREADDs, the exact reasons behind the diverse effects upon chronic
DREADD activation remain unclear. Yet, receptor desensitization, feedback mechanisms, as
well as neural plasticity have been suggested as contributing, mutually reinforcing factors
and are elaborated upon in the sections below.

Table 1. Overview of DREADD studies in which diverse effects of acute versus chronic DREADD
treatments have been observed.

Authors Targeted Area Chemogenetic
Platform

Ligand
Concentration

Ligand
Administration

Chronic
Administration

Scheme

Diverse
Effects on . . .

Zhan et al.,
2013 [53]

Murine
hypothalamus

(arcuate
nucleus)

hM3Dq CNO 1 mg/kg i.p.
injection(s)

every 5 h for
3 consecutive days

Animal
feeding

behavior

Nawreen et al.,
2020 [21]

Murine
prefrontal

cortex
hM4Di CNO 1 mg/kg i.p.

injection(s)
Twice daily for

2 weeks
Stress coping

strategies

Jiang et al.,
2020 [23]

Murine
hypothalamus

(arcuate
nucleus)

hM3Dq CNO
1 mg/kg (i.p.)

2 mg/kg
(pump)

i.p. injection
(acute)

osmotic
micropump

(s.c., chronic)

2 weeks Blood pressure

Torre-
Muruzabal

et al., 2019 [50]

Rat substantia
nigra hM3Dq CNO 1 mg/kg i.p.

injection(s)

3 weeks of daily
injections

(5 days/week)
Motor deficits

Soumier and
Sibille,

2014 [51]

Murine
prefrontal

cortex
hM4Di CNO 0.5 mg/kg i.p.

injection(s)
Twice daily for

2 weeks
Behavioral

emotionality

Binning et al.,
2020 [52]

Murine
microglia hM3Dq CNO 1 mg/kg i.p.

injection(s)
4 days of daily

injections

Pro-
inflammatory

cytokine
expression

Poyraz et al.,
2016 [36]

Murine
striatum hM4Di CNO 0.25 mg/kg drinking

water 2 weeks Motivation

Goossens et al.,
2016 [41]

Rat
hippocampus hM4Di Clozapine,

olanzapine
0.4

mg/kg/day
Osmotic

minipump (s.c.) 1 week Seizure
suppression

Nation et al.
[37]

Murine
subfornical

organ
hM3Dq CNO 3 mg/kg/day drinking

water 3 days Salt appetite

Cheng et al.,
2019 [22]

Murine
nucleus

accumbens
rM3D CNO 1 mg/kg i.p.

injection(s)
2 weeks of daily

injections
Social

avoidance

Yun et al.,
2018 [54]

Murine
entorhinal

cortex circuitry
hM3Dq CNO 2 mg/kg i.p.

injection(s)
4 weeks of daily

injections

Antidepressive-
like

effects
Jaiswal et al.,

2018 [55]
Murine spinal

cord hM3Dq CNO 1 mg/kg i.p.
injection(s)

2 weeks of injections
(5 days/week)

Axonal
regeneration

Urban et al.,
2016 [38]

Murine dorsal
raphe nucleus hM3Dq CNO

2 (acute) or 5
(chronic)
mg/kg

i.p. injection
(acute)

drinking water
(chronic)

3 weeks
Antidepressive-

like
effects

Bązyk et al.,
2020 [56]

Murine spinal
cord

rM3D or
PSAM

CNO or
PSEM308 5 mg/kg s.c.

injection(s)
1 week of daily

injections
Synaptic

impairment

2.3.1. Receptor Desensitization

DREADDs are hijacked GPCRs. Endogenous GPCR signaling sets off a secondary
messenger chain reaction that amplifies intracellular signals and alters various physiologi-
cal processes, including the membrane potential and thus neuronal (in)activation [57]. In
contrast to a sole and direct altering of membrane potentials via ion channels, as achieved
by the PSAM/PSEM platform, DREADD activation thus indirectly affects neuronal activa-
tion [44]. It remains unclear how chronically playing with one of the most vital signaling
mechanisms of eukaryotic cells will affect the cellular and molecular physiology. On the
other hand, it is well-known that overstimulation or constitutively active GPCR signaling
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can be destructive to the cell [58,59]. Some toxins, such as the cholera toxin, are even recog-
nized to hijack GPCR signaling, causing deleterious permanent G protein activation [60,61].
To keep GPCR signaling within bounds, endogenous GPCRs possess a memory of previous
activation. They show a strong tendency to diminish their sensitivity for receptor re-
activation after prolonged activation, a phenomenon called receptor desensitization [62–65].
Furthermore, upon cumulative exposure to stimuli, GPCRs might be downregulated—i.e.,
internalized and degraded—thereby resulting in a reduced number of receptors on the cell
membrane [59,64,65]. Apart from the activation by designer drugs, DREADDs are highly
identical to endogenous GPCRs and thus likely to be subjected to receptor desensitization
in chronic set-ups [66]. Evidence for receptor desensitization upon repeated DREADD
activation can indeed be found in literature. For example, Goossens et al. [41] studied the ef-
fects of chronic chemogenetic inhibition of hippocampal neurons in a rat model of temporal
lobe epilepsy. Seizure suppression was achieved for the first 4–5 days of treatment, yet not
thereafter. The authors proposed receptor desensitization as a possible mechanism behind
this tolerance effect. The occurrence of receptor desensitization was also proposed by
Poyraz and colleagues [36], who tried to demonstrate this concept by looking at the effect
of an additional acute CNO injection at the end of a 2-week CNO application. Indeed, the
additional CNO injection did not affect the behavioral readout; yet, after a 2-day washout
period, behavioral effects were reinstated upon acute CNO application. This may suggest
that receptor desensitization had occurred, and receptor levels were restored after 48 h of
drug abstinence.

More evidence for the existence of receptor desensitization can be found in the employ-
ment of either stimulatory or inhibitory DREADDs. The required dose of DREADD actuator
is influenced by a number of factors, including the DREADD type [19,67]. Stimulatory
DREADDs have a higher efficacy in eliciting neuromodulation as compared to inhibitory
DREADDs; as such, the latter require a higher dose of DREADD actuator and are thus
more prone to desensitization [9,19,67]. Indeed, all studies reporting desensitization-like
effects used inhibitory DREADDs, except for the recent study of Libbrecht et al. [68], who
linked receptor desensitization for the first time with stimulatory DREADDs, albeit using a
relatively high concentration of CNO (5 mg/kg). Nevertheless, there is ample evidence
in literature that chronic chemogenetic experiments with both stimulatory and inhibitory
DREADDs do not necessarily lead to desensitization [22,24,49,69,70]. This could potentially
be the result of DREADD overexpression, which is in some cases even orders of magni-
tude higher than endogenous GPCR expression. DREADD overexpression often occurs
upon vector-mediated transgene delivery and could instigate receptor reserve, thereby
avoiding receptor desensitization [3]. On the other hand, DREADD overexpression is also
linked with constitutive activity of the receptor [71,72]. One study reported that DREADD
overexpression perturbed endogenous GPCR signaling and alterations in both ion channel
activity and intracellular signaling in the absence of the DREADD ligand [71]. Various other
studies examining this concept did not report constitutive DREADD activity, yet when
moving to clinical applications, we should invest in studying the consequences of lifelong
DREADD overexpression [72]. In summary, the occurrence of receptor desensitization
again advocates for thought-out dosing and administration schemes of DREADD ligands in
chronic paradigms, as well as more fundamental research into the phenomenon of receptor
desensitization and overexpression.

2.3.2. Neuroadaptive Changes

Plasticity is highly regulated in the adult mammalian central nervous system, for
example by the excitatory–inhibitory balance upon enduring network alterations [73]. An
interesting detail is that endogenous GPCRs are known to play a key role in synaptic and
structural plasticity, as well as in activity-related plastic phenomena such as long-term
potentiation or depression [74–77]. As such, it is not surprising that continuous neuronal
stimulation/inhibition via DREADDs could be accompanied by plastic events and lead to
compensatory responses, which could explain the paradoxical outcomes in acute versus
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chronic DREADD experiments [73]. The involvement of plasticity in DREADD activation is
supported by studies that report long-lasting behavioral and physiological effects that per-
sist over time (up to 1 month) after discontinuation of chronic CNO treatment [24,78,79]. For
example, Pozhidayeva et al. [24] studied binge-like drinking behavior in mice upon chronic
administration of CNO in combination with both stimulatory or inhibitory DREADDs in
the nucleus accumbens. Chronic CNO application reduced alcohol consumption and this
effect lasted up to 1 week after discontinuation of chronic treatment. The authors reported
changes in neuronal morphology potentially induced by plastic events, as well as changes
in the expression profile of plasticity-related genes. Furthermore, Salesse et al. [78] chroni-
cally inhibited dopaminergic circuits in postnatal mice using DREADDs and noted that the
observed increase in locomotor activity and stereotypic behavior was still present 1 month
after cessation of CNO injections. Moreover, Xie et al. [79] revealed that cardiovascular
dysfunction was still present 2 to 3 days after the last CNO injection in a study in which
they chronically activated glial cells in the murine sympathetic ganglia via DREADDs.
Interestingly, rebound effects after cessation of chronic DREADD treatments are observed
as well, again hinting towards network alterations or compensations due to prolonged
treatment. For example, Desloovere et al. [10] showed a suppression of epileptic seizures
in a mouse model for temporal lobe epilepsy upon chronic use of inhibitory DREADDs
for 3 days. Yet, 1 day after withdrawal of clozapine injections, the fraction of time spent
in seizures was significantly higher and even exceeded baseline levels. A last example of
adaptive changes upon chronic chemogenetic modulation is the study of Binning et al. [52].
The authors show that repetitive stimulation of microglia for 4 consecutive days instigated
microglial memory formation, thereby priming these cells for future neuroinflammatory
events. Indeed, after chronic microglial activation, a decreased inflammatory response was
observed upon lipopolysaccharide-induced inflammation. Hence, a deeper understanding
of neuroadaptive changes in chronic DREADD applications is required.

3. DREADDful Opportunities

Chronic chemogenetic applications are still in their infancy and it is thus not surprising
that there are still some barriers that need to be overcome, especially given the lack of
fundamental knowledge underlying chronic neuromodulation. Yet, this also implies that
there are still various exciting, yet underexplored research opportunities, some of which
are summed up in the sections below.

3.1. Cellular and Molecular Fingerprints of Neuroscience

Until now, the DREADD field has predominantly focused on yes–no questions in
preclinical research (e.g., does chronic neuromodulation alleviate disease progression?) and
behavioral readouts are used to answer these questions. Yet, our understanding of the cellu-
lar and molecular changes underlying these behavioral effects is still limited. We are losing
out on molecular keys, not only to come up with new treatment strategies, but also in terms
of fundamental neuroscience. Both opto- and chemogenetics provide exciting opportunities
to unravel the cellular and molecular footprint of naive and deregulated (injured/diseased)
neural circuits. For example, opto- and chemogenetics have been used to decipher the
pathogenesis of Alzheimer’s disease, as reviewed by Ying and Wang [80]. Strikingly, none
of those enlisted studies zoomed in on the precise molecular mechanisms that coordinate
the observed functional deficits. A literature review reveals that only a handful of studies
(unbiasedly) unveiled the transcriptomic/proteomic profile upon chemogenetic activation,
as summarized in Table 2. These studies focused on CNO-induced DREADD modulation
of neurons [24,81–85] or astrocytes [86–88], and reported corresponding molecular effects
on the neurons [24,81,82,84] or astrocytes [86,87,89] themselves, and/or on neighboring
endothelial cells [85] or microglia [87]. Briefly, studies depicting neuronal alterations ex-
clusively related to DREADD activation, reported an activity-dependent upregulation of
several genes in the BDNF-TrkB signaling pathway [81,82] or an upregulation of multiple
immediately early genes, JUNB interaction partners and a possible involvement of PKA
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signaling pathway [84]. Similarly, studies focusing on the astrocytic alterations described
altered signaling pathways associated with neuroinflammatory responses [89], GPCR sig-
naling [87], and calcium ion homeostasis [87] or biological functions related to immune
responses, regulation of transcription, and translation and cell proliferation/growth [89].
Moreover, astrocytic activation also led to an upregulation of Thbs1, which is involved in
synapse formation and function [86,89]. To conclude, chemogenetics perfectly lends itself
to dissect the molecular footprint of chronically altered neural circuits, something that is
currently underexplored.

Table 2. Overview of DREADD studies digging into the molecular signature of chemogenetic experiments.
PubMed searches with keywords “chemogenetics + sequencing”, “chemogenetics + transcriptomics”,
“chemogenetics + proteomics” and “chemogenetics + array”, assessed on 2 December 2021.

Authors Targeted
Area Chemogenetic Platform Goal Molecular

Signature

Pozhidayeva et al.,
2020 [24]

Murine
nucleus accumbens hM3Dq, hM4Di

Chronic, daily CNO
injections: 1 mg/kg

for 4 weeks

Study binge-like
drinking behavior

Transcriptome
of neurons

Hallock et al.,
2020 [81]

Murine medial
prefrontal cortex hM3Dq Single injection of

5 mg/kg CNO

Study the link of the
hippocampal-prelimbic
circuitry on context-fear

memory retrieval

Transcriptome
of neurons

Sun et al., 2021 [82] Murine dorsal
dentate gyrus hM3Dq Single injection of

2 mg/kg CNO

Study the suppression of
antianxiety-like behavior

and neurogenesis

Transcriptome
of neurons

Nagai et al.,
2019 [86]. Murine striatum hM4Di Single injection of

1 mg/kg CNO

Study the roles of
neuron-astrocyte

interactions in the striatum

Transcriptome
of astrocytes

Philtjens et al.,
2021 [87]

Murine hippocampus
and cortex hM3Dq

Chronic CNO
administration via

drinking water:
5 mg/kg/day for

8 weeks

Study the effect of chronic
activation of astrocytes and

the microglial crosstalk

Single-cell
transcriptome of

astrocytes
and microglia

Wang et al., 2021 [83] Rat superior
cervical ganglion hM4Di

Chronic, daily CNO
injections: 3.3 mg/kg

for 30 days

Study circadian disruption
and remodeling after
myocardial infarction

Transcriptome
of neurons

Yu et al., 2020 [89] Murine striatum rM3Ds, hM3Dq,
hM4Di

Single injection or
1 injection every
other day for 5–6

weeks of 1 mg/kg
CNO

Study the astrocytic
response in the striatum to

different experimental
perturbations and their role

in Huntington’s Disease

Transcriptome
of astrocytes

Dumrongprechachan
et al., 2021 [84] Murine striatum hM3Dq Single injection of

3 mg/kg CNO
Study the proteomic

landscape of the striatum
Proteome
of neurons

Pulido et al.,
2020 [85]

Murine
cortex/hippocampus

hM3Dq,
hM4Di

Single injection of
0.5 mg/kg (hM3Dq)

or
1 mg/kg

(hM4Di) CNO

Study how neuronal
activity regulations
endothelial cells in

the brain

Transcriptome of
endothelial cells

3.2. Untangling Network Activation

Not only our understanding of the molecular changes underlying chronic neuromod-
ulation is lacking, but also the circuit interactions and the crosstalk between different cell
types participating herein remain unknown. Opto- and chemogenetics offer clear advan-
tages in dissecting these cellular interactions as these tools enable a selective manipulation
of one cell population. It is highly interesting to map the effect of (continuously) activat-
ing/silencing of a particular cell population on the transcriptome of nearby cells. This
activation/inhibition will trigger the entire network in the targeted area or even neighbor-
ing circuitries, and different cell types will co-operate to achieve a certain result [90–95].
For example, Park et al. [96] showed that optogenetic stimulation of a subset of dorsal root
ganglion cells also provoked neurite outgrowth in neighboring, non-stimulated neurons in
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an in vitro set-up. Umpierre et al. [97] elegantly described altered calcium signaling in mi-
croglia upon chemogenetic modulation of neuronal activity. Moreover, Philtjens et al. [87]
used DREADDs in astrocytes and did not only observe changes in the astrocytes, but also
in neighboring microglia. Unfortunately, they could not report on the effect on nearby
neurons, as glial cells were enriched and neurons depleted in their dissociation proto-
col. Yet, many other examples of transcriptomic changes in neurons upon applications of
chemogenetics in astrocytes have been observed, all summarized by Salmina et al. [98]. One
other case study by Chandrasekar et al. [99] showed that acute chemogenetic inactivation
of parvalbumin interneurons in a mouse model of traumatic brain injury led to increased
activity and survival of neighboring principal neurons, together with reduced astrogliosis.
Geeraerts et al. [100] reported a neuroprotective effect of activation of post-synaptic neurons
via optogenetics on non-stimulated pre-synaptic cells in the visual system of a mouse glau-
coma model. Similarly, and also in the adult murine visual system, Varadarajan et al. [101]
showed stimulation of the regenerative capacity of non-stimulated pre-synaptic retinal
ganglion cells upon activation of their target cells via DREADDs after a distal axon injury.
Hence, these studies clearly reveal that modulation of one cell population, clearly affects
others in their proximity. It is indeed generally accepted that neuronal activation will
influence glial cells and vice versa, as they are highly entwined [102–104].

When observing an effect after neuronal activation/inhibition, one of the questions
that could pop up is: “which cell type mostly affects the observed study results, the stimu-
lated/inhibited neurons or the concomitant glial response?” DREADDs offer a powerful
tool to unravel the reciprocal communication within the neuron–glial unit. Although
DREADD research started with neuronal modulation and is still largely neuron-centric,
researchers are extending this toolbox towards glial cells. As such, (single-cell) RNA se-
quencing upon (acute/chronic) DREADD modulation in different cell types could advance
the field significantly.

3.3. Exploring the Road towards Clinical Translation

Various preclinical chemogenetic studies reveal encouraging results in which the chronic
use of DREADDs was proven as or more beneficial than acute treatment [22,38,54–56]
(Table 2). For example, Cheng et al. [22] showed that chronic—but not acute—activation
of DREADDs in cholinergic interneurons of the nucleus accumbens reversed social avoid-
ance in a mouse model of depression. Likewise, chronic—but not acute—chemogenetic
stimulation of neurons in the entorhinal cortex circuitry led to antidepressive-like effects
in stressed mice [54]. Jaiswal et al. [55] reported that chronic activation of sensory/motor
neurons resulted in enhanced axonal regeneration upon peripheral nerve injury in mice, as
compared to acute CNO treatment. Another example is the study by Urban et al. [38], who
studied the effect of acute and chronic activation of serotonergic neurons in the murine
dorsal raphe nucleus. They observed antidepressant-like effects in both CNO regimes, yet a
reduction in anxiety-like behavior was solely observed upon chronic activation of the sero-
tonergic system. Similarly, Bązyk et al. [56] showed that acute as well as chronic DREADD
stimulation in an amyotrophic lateral sclerosis mouse model restored synaptic impairment,
though chronic DREADD stimulation resulted in more robust effects as compared to acute
treatment. These results reveal that chronic chemogenetic neuromodulation might hold
potential for clinical applications.

Therapeutic application of the chemogenetic platform in patients requires gene ther-
apy to introduce the chemogenetic modulators. Over the past few decades, numerous gene
therapy applications were evaluated in clinical trials, as reviewed by Ginn et al. [105]. Some
of those, mostly AAV-based, are currently approved and marketed [106]. However, there
are still some concerns regarding long-term safety and efficacy of viral vectors in humans,
especially with regard to their immunogenicity and oncogenic capacity [107,108]. Neverthe-
less, the field is advancing with cautious optimism and options for safer gene delivery are
under investigation. For example, promising non-viral vector approaches for gene delivery
are developed, as enumerated by Sainz-Ramos et al. [108]. Especially lipid-based nanocar-
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riers hold great potential, which is best exemplified by the mRNA lipid vaccines against
COVID-19 [108]. On the other hand, steps are also undertaken to introduce the chemo-
genetic modulators non-invasively via oral or intraperitoneal administration—e.g., via
AAV-PHPs [109] or acoustically targeted chemogenetics [110]—and to (longitudinally)
monitor the location and function of the chemogenetic modulators in vivo using positron
emission tomography imaging techniques [111]. On top of gene therapy, clinical translation
of the chemogenetic platform poses some additional obstacles. Not only patient-tailored
dosing, but also the selection of the chemogenetic ligand—as discussed in Section 2.1—will
be important considerations. New ligands are, however, being introduced at a fast pace,
with each ligand alleviating the flaws of the previous one. For example, the improved
uPSEMs for the PSAM/PSEM platform are synthesized from the clinically approved drug
varenicline, offering positive prospects for clinical utility given its well-known pharmacol-
ogy [34]. Hence, we predict that the biggest hurdle to overcome when moving forward
to the translational use of chemogenetics will not be gene therapy, nor the chemogenetic
ligand, but rather the consequences of DREADD overexpression and chronic neuromod-
ulation of brain circuitries, and our limited understanding herein. Nevertheless, clinical
translation of the chemogenetic platform is an exciting and possibly attainable avenue,
although a long road lies ahead before the benefit–risk ratio of the chemogenetic tool is
maximized and the toolbox can be moved from bench to bedside.

3.4. Neurotrophic Factors as an Interesting Example for a Future Therapeutic Direction

Various studies have shown a link between neuronal activation and survival/regeneration,
which has been illustrated with naturally induced activity (e.g., exercise [112–116] or visual
stimuli [117]) versus artificially induced activity (e.g., electrical [118–121] or optogenet-
ically stimulated [96,122–125]). Similarly, increased axonal regeneration was shown in
a retinal axoninjury model in the visual system of adult mice upon chemogenetic neu-
romodulation [101,126,127]. One possible mode-of-action behind these therapeutically
beneficial effects of neuronal activation is through neurotrophic factor signaling [128–131].
An interesting molecule to focus on is brain-derived neurotrophic factor (BDNF), which
is shown to be regulated in an activity-dependent manner and is associated with neu-
roprotection, neuroregeneration, and neuroplasticity [132,133]. Notably, although the
molecular signature behind chemogenetic neuromodulation remains yet to be fully un-
raveled, two out of three studies that did assigned an important role to BDNF signaling
(see Section 3.1) [81,82]. Moreover, a few studies also performed a targeted, biased search
for the involvement of BDNF signaling. Xia et al. [134] reported that BDNF protein lev-
els decreased upon silencing of dopaminergic neurons and, vice versa, that stimulating
dopaminergic activity increased BDNF levels. Similarly, Blázquez et al. [128] confirmed
increased Bdnf mRNA levels upon activation of dorsolateral striatal neurons in mice. Lastly,
Xiu et al. [135] showed beneficial effects of BDNF supplementation in mouse models of
obesity and diabetes, effects that could be mimicked with chronic neuronal activation of
the dorsal raphe nucleus. As reduced concentrations of BDNF have been observed in many
psychiatric and neurodegenerative diseases in both animal models and human patients, as
reviewed extensively in [136–140], chronically enhancing BDNF signaling via DREADDs
might offer some interesting prospects towards possible therapeutic applications of the
chemogenetic platform.

4. Outlook

Despite the reported hurdles regarding the (chronic) chemogenetic toolbox, chemoge-
netics offers a unique research platform to advance neuroscience in countless ways. For
many years, chemogenetic research was highly focused on behavioral assays, yet this tool
uniquely offers a way to dissect the molecular footprint behind these functional changes.
On top of that, chemogenetics could open avenues to decipher the chronic effects of manip-
ulating entire neuron–glia networks, in terms of plasticity as well as isolating the roles of
each cell type upon neuronal/glial modulation. By exploiting the use of (chronic) chemo-
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genetics in fundamental research, DREADDs could play an even bigger role in the study
of brain disorders and associated therapeutic options. As most diseases of the central ner-
vous system are chronic diseases, they will probably require chronic network modulation,
for which chemogenetics lends itself perfectly. To augment DREADDs to clinical utility,
more research into receptor overexpression, desensitization, and neuroadaptive changes
is warranted. To conclude, to fully exploit the myriad of possibilities of the chemogenetic
toolbox, more in-depth fundamental research is essential and a thorough consideration
of experimental parameters (e.g., DREADD expression, choice of ligand, and its dose and
administration scheme) tailored to each research question, remains indispensable. We
predict that many exciting chemogenetic studies will emerge in the following years, which
will greatly enhance our understanding of the molecular footprint of our brain, including
neuron–glial interactions, brain plasticity, and pathology.
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