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Abstract

Background: Forkhead transcription factors belonging to the FOXO subfamily are

negatively regulated by protein kinase B (PKB) in response to signaling by insulin and insulin-

like growth factor in Caenorhabditis elegans and mammals. In Drosophila, the insulin-signaling

pathway regulates the size of cells, organs, and the entire body in response to nutrient

availability, by controlling both cell size and cell number. In this study, we present a genetic

characterization of dFOXO, the only Drosophila FOXO ortholog.

Results: Ectopic expression of dFOXO and human FOXO3a induced organ-size reduction and

cell death in a manner dependent on phosphoinositide (PI) 3-kinase and nutrient levels.

Surprisingly, flies homozygous for dFOXO null alleles are viable and of normal size. They are,

however, more sensitive to oxidative stress. Furthermore, dFOXO function is required for

growth inhibition associated with reduced insulin signaling. Loss of dFOXO suppresses the

reduction in cell number but not the cell-size reduction elicited by mutations in the insulin-

signaling pathway. By microarray analysis and subsequent genetic validation, we have identified

d4E-BP, which encodes a translation inhibitor, as a relevant dFOXO target gene. 

Conclusion: Our results show that dFOXO is a crucial mediator of insulin signaling in

Drosophila, mediating the reduction in cell number in insulin-signaling mutants. We propose

that in response to cellular stresses, such as nutrient deprivation or increased levels of

reactive oxygen species, dFOXO is activated and inhibits growth through the action of target

genes such as d4E-BP.
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Background
Receptors for insulin and insulin-like growth factors (IGFs)

are central regulators of energy metabolism and organismal

growth in vertebrates and invertebrates. In mammals, the

insulin receptor regulates glucose homeostasis and embry-

onic growth [1], whereas the insulin-like growth factor 1

receptor (IGF1-R) regulates embryonic and postembryonic

growth [2] and longevity [3]. In Caenorhabditis elegans,

DAF-2 - the homolog of the mammalian insulin/IGF receptor

- controls organismal growth in response to poor nutrient

conditions indirectly by controlling formation of the long-

lived, stress-resistant dauer stage during larval develop-

ment, and lifespan in the adult [4]. In Drosophila, the

insulin/IGF receptor homolog DInr controls organismal

growth directly by regulating cell size and cell number [5].

Furthermore, reduced insulin signaling causes female steril-

ity and independently increases lifespan [6,7]. The striking

conservation of insulin receptor function is also reflected in

the conservation of the intracellular signaling cascade.

Binding of insulin-like peptides to their receptor tyrosine

kinases leads to the activation of class IA phosphatidylinos-

itol (PI) 3-kinases and increased intracellular concentra-

tions of the lipid second messenger phosphatidylinositol

(3,4,5)-trisphosphate (PIP3). This results in recruitment to

the membrane, and activation, of the protein kinases phos-

phoinositide-dependent protein kinase 1 (PDK1) and

protein kinase B (PKB/AKT), both of which contain pleck-

strin homology (PH) domains and which in turn modulate

the activity of downstream effector proteins [8]. The lipid

phosphatase PTEN (phosphatase and tensin homolog on

chromosome 10) catalyzes the 3-dephosphorylation of

PIP3, thereby acting as a negative regulator of insulin sig-

naling [9]. The demonstration that the lethality associated

with loss of dPTEN in Drosophila is rescued by a mutant

form of dPKB with impaired affinity for PIP3 indicates that

PKB is a key effector of this pathway [10]. Genetic and bio-

chemical studies have identified two critical targets of PKB,

namely forkhead transcription factors of the FOXO sub-

family and the Tuberous Sclerosis Complex 2 (TSC2)

tumor suppressor protein.

In C. elegans, the only FOXO transcription factor is encoded

by daf-16. Loss-of-function mutations in daf-16 completely

suppress the dauer-constitutive and longevity phenotypes

associated with reduced function of insulin-signaling compo-

nents. On the basis of knowledge about DAF signaling in C.

elegans, forkhead transcription factors belonging to the FOXO

subfamily have been identified as direct targets of insulin/IGF

signaling in mammals [11-13]. The mammalian DAF-16

homologs comprise the proteins FOXO1 (FKHR), FOXO3a

(FKHRL1) and FOXO4 (AFX). Their phosphorylation by the

insulin-activated kinases PKB and serum- and glucocorticoid-

regulated protein kinase (SGK) creates binding sites for

14-3-3 proteins, and this leads to inactivation of FOXO pro-

teins via cytoplasmic sequestration [12,14]. The result of

this process is an insulin-induced transcriptional repression

of FOXO target genes, which are involved in the response to

DNA damage [15] and oxidative stress [16,17], apoptosis

[12,18], cell-cycle control [19-21] and metabolism [22]. In

addition to their transcriptional activation capabilities,

FOXO proteins have recently been shown to induce cell-

cycle arrest by repressing transcription of genes encoding D-

type cyclins [23,24]. FOXO transcription factors mediate

insulin resistance in diabetic mice [25], and have been pro-

posed to be tumor suppressors, as several chromosomal

translocations disrupting FOXO genes are found in cancers

[26,27], and overexpressed FOXO proteins can inhibit

tumor growth [23].

TSC2, the second target of PKB, forms a complex with TSC1

and acts as a negative regulator of growth in Drosophila, and

as a tumor suppressor in mammals. Overexpressed activated

PKB phosphorylates TSC2 and thereby disrupts the TSC1/2

complex in Drosophila and in mammalian cells [28,29]. In

Drosophila, the TSC1/2 complex functions by negatively reg-

ulating two kinases, dTOR (homolog of the mammalian

target of rapamycin) [30] and dS6K (homolog of the mam-

malian ribosomal protein S6 kinase) [31]. Recent genetic

and biochemical evidence indicates that TSC1/2 regulates

S6K activity by acting as a GTPase-activating protein (GAP)

for the small GTPase Rheb [32-35]. Interestingly, flies

lacking dS6K function are reduced in size because of a

reduction in cell size but not in cell number [36]. The

growth control pathways regulating cell size and cell

number therefore bifurcate either at dPKB or between dPKB

and dS6K.

In this study, we describe the identification of dFOXO, the

single FOXO ortholog in Drosophila. Although dFOXO func-

tion is not essential for development and organismal

growth control under normal culture conditions, it medi-

ates the reduction in cell number associated with reduced

insulin signaling. Our results show that dFOXO regulates

expression of d4E-BP, which mediates part of the cell-

number reduction in dPKB mutants. We propose that

dFOXO upregulates d4E-BP transcription under conditions

of low insulin signaling. Furthermore, our observations

suggest that dFOXO is required for resistance against oxida-

tive stress in adult flies.

Results 
dFOXO is the only Drosophila homolog of FOXO

and DAF-16 

The Drosophila genome contains a single homolog of the

DAF-16/FOXO family of transcription factors. This notion is
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supported by the phylogenetic tree diagram calculated from

the multiple sequence alignment (Figure 1a). The dFOXO

gene is more closely related to the mammalian FOXO sub-

family and daf-16 than any other Drosophila forkhead gene.

The amino-acid sequences of the predicted 613 amino-acid

dFOXO protein and hFOXO3a are 27% identical over the full

protein length, and 82% identical within the forkhead DNA-

binding domain. Furthermore, dFOXO is the only Drosophila

forkhead gene encoding a putative protein containing con-

served PKB phosphorylation sites [37]. The orientation of the

three PKB consensus sites relative to the forkhead domain

(Figure 1b) is conserved among the mammalian FOXO
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Figure 1

dFOXO is the only Drosophila FOXO/DAF-16 homolog. A TBLASTN search of the Drosophila genome for known and predicted genes encoding
forkhead transcription factors retrieved 16 genes. (a) A phylogenetic tree calculated from a multiple sequence alignment of the forkhead domains of
these 16 proteins and of the human FOXO proteins FOXO1 (FKHR), FOXO3a (FKHRL1) and FOXO4 (AFX), the C. elegans DAF-16 and mouse
Foxa3 (HNF-3�; protein names on the figure are from GenBank). The similarity of dFOXO to FOXO proteins is highlighted in blue. (b) dFOXO has
three PKB phosphorylation sites in the same orientation as those of mammalian FOXO proteins. The sites are indicated above the protein; PEST
(destruction), nuclear localization (NLS), nuclear export (NES) and DNA-binding sequences are also shown. (c) A multiple amino-acid sequence
alignment of the dFOXO, human FOXO and DAF-16 forkhead domains illustrates the high degree of sequence conservation especially within the
DNA-binding domain. The secondary structure is indicated above the alignment. Similar and identical amino-acid residues are shaded in gray and black,
respectively. The region encoding helix 3 of the forkhead domain, which is the DNA-recognition helix contacting the major groove of the DNA
double helix, is identical in the five proteins. Given the high structural similarity between the DNA-binding domains of FOXO4 (AFX) and HNF-3�

[86], it is likely that FOXO proteins contact insulin response elements through helix 3. Two EMS-induced point mutations described in this study are
shown in red. (d) The dFOXO gene spans a genomic region of 31 kilobases (kb) and contains 11 exons (blue bars). The EP35-147 transposable element
is inserted in the second intron upstream of the open reading frame, allowing GAL4-induced expression of endogenous dFOXO.
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proteins, DAF-l6 and dFOXO. Figure 1c shows the high

degree of sequence conservation between dFOXO and

FOXO/DAF-16 proteins within the DNA-binding domain.

Taken together, these observations strongly suggest that

dFOXO is the only Drosophila homolog of the mammalian

FOXO transcription factors and C. elegans DAF-l6.
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Figure 2

Targeted hFOXO3a and dFOXO expression in the developing Drosophila eye induces organ-size reduction and cell death, and the phenotypes are
sensitive to insulin signaling and nutrient levels. (a) GMR-Gal4-expressing control fly. (b) No discernible phenotype results from hFOXO3a

expression. (c) Expression of hFOXO3a-TM in the eye disc leads to pupal lethality; escapers at 18°C show a necrotic phenotype and severely
disrupted cell specification. (d) Expression in w --marked clones of cells induces a similar phenotype at 25°C. (e) Dp110DN expression slightly
reduces eye size, and (f) co-expression of wild-type hFOXO3a partially mimicks the hFOXO3a-TM escaper phenotype. (g) The same enhancement of
hFOXO3a activity was observed in a dPKB-/- background. (h,i) Expression of transgenic or endogenous dFOXO results in a small-eye phenotype,
which is also dramatically enhanced by (j) Dp110DN. (k-o) hFOXO3a and dFOXO phenotypes are progressively exacerbated by protein deprivation
(‘sugar’) and complete starvation (‘PBS’). Flies like the one shown in (m) die within one day, and complete starvation of dFOXO-expressing flies
resulted in pupal lethality (not shown). Genotypes are: (a) y w; GMR-Gal4/+; (b) y w; GMR-Gal4/+; UAS-hFOXO3a/+; (c) y w; GMR-Gal4/+; UAS-

hFOXO3a-TM/+; (d) y w hs-flp/y w; GMR > FRT- w+ STOP - FRT > Gal-4/+; UAS-hFOXO3a-TM/+; (e) y w; GMR-Gal4 UAS-Dp110DN/+; (f) y w; GMR-Gal4

UAS-Dp110DN/+; UAS-hFOXO3a/+; (g) y w; UAS-hFOXO3a/GMR-Gal4; dPKB3/dPKB1; (h) y w; UAS-dFOXO/GMR-Gal4; (i) y w; GMR-Gal4/+; EP-dFOXO/+;
(j) y w; GMR-Gal4 UAS-Dp110DN/+; EP-dFOXO/+; (k-m) y w; GMR-Gal4/+; UAS-hFOXO3a/+; (n,o) y w; GMR-Gal4/+; EP-dFOXO/+.
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Overexpressed dFOXO is responsive to insulin

signaling and nutrient levels, inducing organ-size

reduction and cell death

To assess whether dFOXO has a key function in insulin sig-

naling like that of DAF-16 in C. elegans, we tested whether

overexpression of wild-type or mutant forms of hFOXO3a

and dFOXO could antagonize insulin signaling. Elimination

of the three PKB consensus phosphorylation sites in mam-

malian FOXO3a prevents its phosphorylation, subsequent

binding to 14-3-3 proteins, and sequestration in the cyto-

plasm [12]. This leads to constitutive nuclear localization of

the mutant FOXO3a and transcriptional activation of its

target genes. Assuming that blocking the PKB signal would

have the same activating effect on dFOXO, we overexpressed

wild-type and triple PKB-phosphorylation-mutant variants

of both dFOXO and human FOXO3a. Furthermore, we iden-

tified an EP transposable element insertion in the second

dFOXO intron, which permits the GAL4-induced over-

expression of endogenous dFOXO (Figure 1d). We used the

GMR-Gal4 construct to drive UAS-dependent expression in

postmitotic cells in the eye imaginal disc [38]. While expres-

sion of wild-type hF0X03a in the developing eye did not

result in a visible phenotype (Figure 2b), hFOXO3a-TM

expression caused pupal lethality. Few escaper flies eclosed

and displayed a strong necrotic eye phenotype (Figure 2c).

A block of cell differentiation and necrosis was also

observed when hFOXO3a-TM was expressed in cell clones in

the developing eye (Figure 2d). 

Assuming that the lack of a phenotype observed upon UAS-

hFOXO3a expression is due to hFOXO3a inactivation by

endogenous DInr signaling in the eye disc, we performed the

same experiment in a background of reduced insulin signal-

ing. Indeed, in the presence of a dominant-negative (DN)

form of Dp110 (encoding the PI 3-kinase catalytic subunit)

[39], hFOXO3a expression induced a necrotic phenotype

similar to the one observed with the hyperactive phosphory-

lation mutant (Figure 2f). To confirm that hFOXO3a is

responsive to Drosophila insulin signaling and rule out artifi-

cial coexpression effects, we expressed hFOXO3a in flies

mutant for either dPKB (Figure 2g) or Dp110 (not shown),

and observed similar phenotypes to those seen upon coex-

pression of Dp110DN. Drosophila FOXO has qualitatively

similar, but stronger effects. Expressing the wild-type form of

dFOXO causes a weak eye-size reduction and disruption of

the ommatidial pattern even in a wild-type background

(Figure 2h,i), and the phenotype is strongly affected by

Dp110DN as well (Figure 2j). The UAS-dFOXO-TM transgene

appears to cause lethality even in the absence of a Gal4 driver,

as we did not obtain viable transgenic lines with this con-

struct. Furthermore, we examined the effects of nutrient

deprivation on FOXO-expressing tissues. If nutrient availabil-

ity is limited, FOXO should be more active in response to

lowered insulin signaling. Indeed, we observed that the over-

expression phenotypes of both hFOXO3a and dFOXO are

enhanced under conditions of starvation. Drosophila larvae

that are starved until 70 h after egg laying (AEL) die within a

few days. But if the onset of nutrient deprivation occurs after

they have surpassed the metabolic ‘70 h change’ [40,41], they

survive and develop into small adult flies. We therefore sub-

jected larvae expressing hFOXO3a or dFOXO (under GMR

control) to either protein starvation (sugar as the only energy

source) or complete starvation, starting 80-90 h AEL, and

analyzed the effect on the adult’s eyes. Both phenotypes

(Figure 2k,n) were progressively exacerbated by protein star-

vation (Figure 2l,o) and complete starvation (Figure 2m), the

latter condition being accompanied by early adult or larval

lethality, in the case of hFOXO3a or dFOXO, respectively. The

resulting phenotypes are due to the FOXO transgenes, as

wild-type control flies that have been starved during develop-

ment display only a body-size reduction while maintaining

normal proportions and normal eye structure.

The dFOXO overexpression phenotype (Figure 2i,j) does not

appear to be caused by the activation of any of the known

cell-death pathways. Expression of the caspase inhibitors

p35 or DIAP1, or of p21, an inhibitor of p53-induced apop-

tosis [42], and loss of eiger, which encodes the Drosophila

homolog of tumor necrosis factor (TNF) [43], did not sup-

press the eye phenotype (data not shown). In agreement

with our results, it was observed in a parallel study that the

GMR-dFOXO overexpression phenotype is insensitive to

caspase inhibitors, and is not accompanied by increased

acridine-orange-detectable apoptosis in the imaginal disc

[44]. It therefore remains unclear whether high levels of

nuclear dFOXO induce a specific caspase-independent cell-

death program or whether nuclear accumulation of overex-

pressed dFOXO leads to secondary necrosis in a rather

nonspecific fashion. Furthermore, the necrotic eye pheno-

type does not reflect the phenotype observed following a

complete block in insulin signaling. Loss-of-function muta-

tions in insulin-signaling components reduce cell size and

cell number but do not increase cell death in larval tissues

[45,46]. In summary, our overexpression experiments are

consistent with a model in which, under normal conditions,

excess FOXO transcription factor is phosphorylated by

dPKB and kept inactive in the cytoplasm. Under conditions

of reduced insulin-signaling activity or nutrient deprivation,

dFOXO or hFOXO3a protein translocates to the nucleus

and induces growth arrest and necrosis. 

dFOXO loss-of-function mutants are viable, have no

overgrowth phenotype and are hypersensitive to

oxidative stress

Although the overexpression experiments described above

did not reveal the physiological function of dFOXO, they
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provided the entry point for isolation of loss-of-function

mutations. We made use of the EP35-147 element, which

permits the generation of the necrotic eye phenotype

(Figure 2j) by driving expression of endogenous dFOXO in

the presence of Dp110DN. We mutagenized homozygous EP

males, mated them to homozygous GMR-Gal4 UAS-

Dp110DN females and then screened the F1 generation for

reversion of the strong gain-of-function phenotype and its

associated semilethality. Several loss-of-function alleles of

dFOXO were isolated and molecularly characterized. Two

such revertants are shown in Figure 3c (dFOXO21) and

Figure 3d (dFOXO25). In dFOXO21 and dFOXO25, the codons

for W95 and W124 within the forkhead domain are mutated

to stop codons, respectively (Figure 1c), so they are assumed

to be null alleles of dFOXO. We performed the subsequent

phenotypic and epistasis analyses with these two lines. 

Because FOXO transcription factors have been proposed to

be the primary effectors of insulin signaling, on the basis of

epistasis of daf-16 over daf-2 in C. elegans, it seemed reason-

able to expect an overgrowth phenotype in dFOXO-/- flies as

is observed in dPTEN loss-of-function mutants. To our sur-

prise, dFOXO loss-of-function mutants are homozygous-

viable and display no obvious phenotype under normal

culturing conditions (Figure 3h). Thus, dFOXO is not essen-

tial for development. Only close inspection of the dFOXO

mutants revealed that their wing size is significantly reduced

(Figure 4i). But cellular and organismal growth are unaffected

by dFOXO mutations. To assess whether dFOXO-mutant tissue

grows to a different size than wild-type tissue, we recombined

the dFOXO21 and dFOXO25 alleles onto the FRT82 chromo-

some and induced genetic mosaic flies with the ey-Flp/FRT

system [47]. When the eye and head capsule were composed

almost exclusively of dFOXO-/- tissue (w--marked in

Figure 3e,f, on the right), no head-size difference was observed

compared to the control fly with a head homozygous for the

FRT82 chromosome without the dFOXO mutation

(Figure 3e,f, left). This is consistent with experience from

extensive genetic screens for recessive growth mutations

carried out in our lab. An ey-Flp-screen on the right arm of

chromosome 3 did not reveal any mutations in dFOXO

based on an altered head-size phenotype (H.S. and E.H.,

unpublished observations). 

We next asked whether cell size, like organ size, was not

affected by the loss of dFOXO. For this purpose, we used a

heat shock-inducible Flp construct to generate clones of

homozygous dFOXO-/- photoreceptor cells and wild-type

cells within one adult eye (Figure 3g). The cells lacking

dFOXO are marked by the absence of pigment granules.

Consistent with the absence of a ‘bighead’ phenotype,

dFOXO-/- cells and wild-type cells have the same size. Simi-

larly, no significant difference in the body weight of mutant

and control flies was observed (Figure 3h). In contrast, flies

with a viable heteroallelic combination of dPTEN loss-of-

function alleles are significantly bigger than wild-type flies

[48]. Taken together, these results argue that with the excep-

tion of the slight wing-size reduction, dFOXO is not

required to control cellular, tissue, or organismal growth in

a wild-type background.

A critical role has been reported for mammalian and

C. elegans FOXO proteins in resistance against various cellu-

lar stresses, in particular oxidative stress [16,17,49], DNA

damage [15] and cytokine withdrawal [50]. We tested the

stress resistance of adult dFOXO mutant flies by measuring

survival time following different challenges. Among starva-

tion on water, oxidative-stress challenge, bacterial infection,

heat shock, and heavy-metal stress, the only condition for

which hypersensitivity was observed is oxidative stress.

When placed on hydrogen-peroxide-containing food,

dFOXO mutant flies display a significantly reduced survival

time compared to control flies (Figure 3i). A very similar

effect is elicited by paraquat feeding. These observations are

consistent with the paraquat hypersensitivity of daf-16

mutants in C. elegans [51], suggesting that a role for FOXO

proteins in protecting against oxidative stress is conserved

across species.
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Figure 3 (see figure on the next page)

Null dFOXO mutants are viable, have no overgrowth phenotype and are hypersensitive to oxidative stress. (a) Dp110DN expressing control fly.
(b) EP-driven coexpression of dFOXO elicits a necrotic eye phenotype. (c,d) EMS-induced mutations in dFOXO lead to a reversion of the
overexpression phenotype. (e,f) Selective removal of dFOXO from the head (right) does not lead to an organ-size alteration compared to a control
fly (left). (g) w

--marked dFOXO-deficient photoreceptor cells are the same size as wild-type cells. (h) In contrast to dPTEN, dFOXO null mutants
have no organismal growth phenotype. For each genotype, the left bar indicates the body weight of females and the right bar the weight of males.
Values are shown ± standard deviation (SD). (i) dFOXO mutants are hypersensitive to oxidative stress. The graph shows a survival curve of male
adult flies on PBS/sucrose gel containing 5% hydrogen peroxide. The observed hypersensitivity is more pronounced in males, but is also observed in
females (not shown). The increased resistance of homozygous EP-dFOXO flies might be caused by low basal dFOXO overexpression from the EP

element, which occurs due to leakiness of UAS enhancers in the absence of Gal4. Control flies placed on PBS/sucrose without oxidant survived
during the time window shown. Genotypes are: (a) y w; GMR-Gal4 UAS-Dp110DN/+; (b) y w; GMR-Gal4 UAS-Dp110DN/+; EP-dFOXO/+; (c) y w; GMR-

Gal4 UAS-Dp110DN/+; EP-dFOXO21/+; (d) y w; GMR-Gal4 UAS-Dp110DN/+; EP-dFOXO25/+; (e,f) y w ey-flp/y w; FRT82/FRT82 cl3R3 w+ (left); y w ey-flp/y

w; FRT82 EP-dFOXO21/FRT82 cl3R3 w+ (right); (g) y w hs-flp/y w; FRT82 EP-dFOXO21/FRT82 w+.
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Figure 3 (see legend on the previous page)
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The growth-deficient phenotypes of DInr, chico,

Dp110 and dPKB mutants are significantly

suppressed by loss of dFOXO

We performed genetic epistasis experiments to examine

whether the growth phenotypes of DInr-signaling mutants

are dependent on dFOXO function. For this purpose, we

either generated double-mutant flies or investigated the

double-mutant effect only in the head using the ey-Flp/FRT

system. In contrast to the absence of a growth phenotype in

single dFOXO mutant flies, lack of dFOXO significantly sup-

presses the growth-deficient phenotype observed in flies

mutant for the insulin receptor substrate (IRS) homolog

chico (Figure 4). Flies mutant for chico are smaller because

they have fewer and smaller cells [45]. Loss of one dFOXO

copy dominantly suppresses the cell-number reduction in

chico mutant flies without affecting cell size. The suppression

is more pronounced when both copies of dFOXO are

removed in a chico mutant background. In this situation, the

chico small body-size phenotype is partially suppressed.

Homozygous chico-dFOXO double-mutant flies have more,

and even slightly smaller, cells than homozygous chico single

mutants. It seems that removal of dFOXO accelerates the cell

cycle at the expense of cell size in a chico background.

We next asked whether dFOXO interacts with other compo-

nents of the Drosophila insulin-signaling pathway. The ey-

Flp/FRT system was used to generate heterozygous

insulin-signaling mutant flies with heads homozygous for

each mutation. Removal of DInr, Dp110 or dPKB leads to a

characteristic ‘pinhead’ phenotype, which is substantially

suppressed by the presence of a dFOXO loss-of-function

allele on the same FRT chromosome as the insulin-signaling

mutation. In all three cases, we observed a partial rather

than a complete rescue of the tissue growth repression, con-

sistent with the finding that dFOXO mutations affect only

the cell-number aspect of the chico phenotype. Surprisingly,

loss of dFOXO dramatically delays lethality in dPKB

mutants. Complete loss of dPKB leads to larval lethality in

the early third instar, but homozygous dPKB-dFOXO double

mutants are able to develop into pharate adults of reduced

size, most of which fail to eclose (Figure 5l). The lethality

associated with the complete loss of dPKB is therefore

largely due to hyperactivation of dFOXO.

We also observed that dFOXO interacts with the tumor sup-

pressors dTSC1 and dPTEN. Tissue-specific removal of either

gene from the head leads to a bighead phenotype

(Figure 5h,j). The dTSC1-/- bighead phenotype is enhanced

by loss of dFOXO (Figure 5i). This observation is consistent

with the recently reported negative feedback loop between

dS6K and dPKB. Mutant dTSC1 larvae have elevated levels

of dS6K activity, which in turn downregulates dPKB activity

[31]. This reduction in dPKB activity probably leads to

enhanced activation of dFOXO, which in turn partially miti-

gates the overgrowth phenotype by slowing down prolifera-

tion. The dTSC1 phenotype can therefore be enhanced by

loss of the inhibitory function of dFOXO. Unexpectedly, the

dPTEN-/- bighead phenotype was slightly suppressed by

dFOXO mutations (Figure 5k). From the current model, it

would be expected that in a dPTEN mutant dPKB activity is

high and dFOXO is to a large extent inactive in the cyto-

plasm. Thus, removal of dFOXO function should have no

effect on the dPTEN phenotype. At present, we can only spec-

ulate about possible explanations for this observation. In a

parallel study, it has been shown that dFOXO can induce

transcription of DInr [52]. It may be that in a dPTEN-mutant

background dFOXO activates DInr expression in a negative-

feedback loop. In this model, concomitant loss of dFOXO

would alleviate the dPTEN overgrowth phenotype by lower-

ing DInr levels. Another possible explanation is that dFOXO

has additional functions when localized to the cytoplasm or

during its nuclear export, such as interacting with other pro-

teins. Loss of dFOXO might affect the function of interaction

partners that have a role in dPTEN signaling. 

In summary, our epistasis analysis provides strong genetic

evidence that dFOXO is required to mediate the organismal

growth arrest that is elicited in insulin-signaling mutants.

dFOXO upregulates transcription of the d4E-BP

gene

We have shown previously that Drosophila embryonic Kc167

cells respond to insulin stimulation with upregulated activi-

ties of dPKB and dS6K [53,54]. We performed mRNA profil-

ing experiments using the Affymetrix GeneChip system to

measure on a genome-wide scale the transcriptional

changes induced by insulin in these cells. On the basis of

the currently held model that FOXO transcription factors

are transcriptional activators that are negatively regulated by

insulin, we expected potential dFOXO target genes to be

repressed in Kc167 cells upon insulin stimulation. Figure 6a

shows a selection of dFOXO target gene candidates that are

transcriptionally downregulated by a factor of two or more

upon insulin stimulation and whose promoter regions

contain one or more conserved forkhead-response elements

(FHREs) with the consensus sequence (G/A)TAAACAA [55].

Three of these candidate gene products are each involved in

one of two biological processes known to be negatively reg-

ulated by insulin, namely gluconeogenesis (PEPCK) and

lipid catabolism (CPTI and long-chain-fatty-acid-CoA-

ligase). The remaining candidates are involved in stress

responses (cytochrome P450 enzymes), DNA repair (DNA

polymerase iota), transcription and translation control

(d4E-BP and CDK8), and cell-cycle control (centaurin

gamma and CG3799). Several of the insulin-repressed genes

have been reported to be transcriptionally induced in
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Drosophila larvae under conditions of complete starvation

(d4E-BP and PEPCK) or sugar-only diet (CPTI and long-

chain-fatty-acid-CoA-ligase) [41,56].

We chose d4E-BP for further investigation, because it has previ-

ously been reported to be insulin-regulated at the level of

protein phosphorylation, but not at the level of gene expression
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Figure 4

Loss of dFOXO suppresses the cell-number reduction in chico mutants. (a-e) Partial rescue of the chico phenotype by mutations in dFOXO. Bar sizes
are 100 �m (low magnification) and 20 �m (high magnification). Each graph displays the variation of a single parameter between the five genotypes
shown in (a–e): (f) body weight, (g) cell number in the eye, (h) cell size in the eye, (i) wing area, (j) cell number in the wing, and (k) cell size in the
wing. (f) dFOXO-/- partially suppresses the low-body-weight phenotype of chico-/-. The suppression is less pronounced in the wing (i), because dFOXO-
null mutants have significantly smaller wings than control flies, although their body weight is the same. In a chico-/- background, loss of dFOXO leads
to increased cell numbers in the eye (g) and in the wing (j) compared to the chico single mutant. Although organ and tissue size is increased, cell size
significantly decreases in the chico-dFOXO double mutant both in the eye (h) and in the wing (k). It seems that loss of dFOXO in a chico-/- background
leads to increased proliferation rates. All values are shown ± SD. Genotypes are: (a) y w;; EP-dFOXO/EP-dFOXO; (b) y w;; EP-dFOXO21/EP-dFOXO25; (c)
y w; chico1/chico2; EP-dFOXO21/+; (d) y w; chico1/chico2; EP-dFOXO21/ EP-dFOXO25; (e) y w; chico1/chico2.
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[57]. The d4E-BP gene encodes a translational repressor and

was initially identified as the immune-compromised Thor

mutant in a genetic screen for genes involved in the innate

immune response to bacterial infection [58,59]. Figure 6b

shows the presence of several FHREs in the genomic region

around the d4E-BP locus. The d4E-BP protein is negatively

20.10 Journal of Biology 2003, Volume 2, Issue 3, Article 20 Jünger et al.                                                                   http://jbiol.com/content/2/3/20

Journal of Biology 2003, 2:20

Figure 5

Growth-deficient phenotypes of DInr, Dp110 and dPKB mutants are suppressed by loss of dFOXO. (a) Control fly. (b) Selective removal of DInr
from the head leads to a pinhead phenotype, which is partially suppressed by the loss of dFOXO (c). The same suppression is observed in Dp110-,
and dPKB-pinheads (d-g). The TSC1-/- bighead phenotype (h) is enhanced by mutations in dFOXO (i), but the dPTEN-/- bighead (j) is slightly
suppressed (k). (l) Living without PKB. In contrast to the larval lethality of dPKB null mutants, dPKB-dFOXO double mutants develop into small
pharate adults, most of which fail to eclose. Bar sizes are 200 �m (low magnification) and 20 �m (high magnification). Genotypes are: (a) y w ey-flp/y

w; FRT82/FRT82 cl3R3 w+; (b) y w ey-flp/y w; FRT82 DInr304/FRT82 cl3R3 w+; (c) y w ey-flp/y w; FRT82 DInr304 EP-dFOXO25/FRT82 cl3R3 w+; (d) y w ey-flp/y

w; FRT82 Dp1105W3/FRT82 cl3R3 w+; (e) y w ey-flp/y w; FRT82 Dp1105W3 EP-dFOXO25/FRT82 cl3R3 w+; (f) y w ey-flp/y w; FRT82 dPKB1/FRT82 cl3R3 w+;
(g) y w ey-flp/y w; FRT82 dPKB1 EP-dFOXO25/FRT82 cl3R3 w+; (h) y w ey-flp/y w; FRT82 dTSC1Q87X/FRT82 cl3R3 w+; (i) y w ey-flp/y w; FRT82 dTSC1Q87X EP-

dFOXO25/FRT82 cl3R3 w+; (j) y w ey-flp/y w; FRT40 dPTEN117-4/FRT40 cl2L3 w+; (k) y w ey-flp/y w; FRT40 dPTEN117-4/FRT40 cl2L3 w+; FRT82 EP-

dFOXO25/FRT82 cl3R3 w+; (l) y w;; EP-dFOXO21/EPdFOXO25 (left), y w;; dPKB1 EP-dFOXO21/dPKB1 EP-dFOXO25 (middle), dPKB1/dPKB1 (right).
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regulated by insulin through LY294002- and rapamycin-sensi-

tive phosphorylation [57], suggesting involvement of the

Dp110 and dTOR signaling pathways. Phosphorylation of

d4E-BP leads to the dissociation of d4E-BP from its binding

partner, the translation initiation factor deIF4E, which then

participates in the formation of a functional initiation complex.

Positive transcriptional regulation of d4E-BP by dFOXO, which

corresponds to negative transcriptional regulation by insulin,

would be a complementary mechanism of regulation.

We then investigated whether overexpression of endogenous

dFOXO could induce transcriptional upregulation of the

d4E-BP gene. On the basis of our overexpression results, we

chose the Dp110DN-dFOXO coexpression to efficiently acti-

vate dFOXO. Eye imaginal discs from Dp110DN-expressing

third instar larvae display a low level of basal d4E-BP transcrip-

tion throughout the disc, which is not induced by the driver

construct alone (Figure 6d). Coexpression of dFOXO elicited a

dramatic upregulation of d4E-BP transcription posterior to the

morphogenetic furrow (Figure 6e). Consistent with this obser-

vation, we were able to induce expression of the d4E-BP

enhancer trap line Thor1 with human FOXO3a-TM (Figure 6f-

h). It remained unclear, however, whether regulation of d4E-

BP expression by dFOXO is of physiological relevance. 
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Figure 6

dFOXO regulates transcription of the d4E-BP gene. (a) A selection of microarray-identified genes that are transcriptionally downregulated after 2 h
of insulin stimulation in Kc167 cells and contain forkhead response elements (FHREs) in their genomic upstream or intronic sequences. (b) FHREs
(red) at the d4E-BP locus; black boxes are exons. (c,d) Overexpression of Dp110DN alone does not induce transcription of d4E-BP in imaginal discs,
but (e) coexpression of dFOXO strongly upregulates the gene. (f-h) Expression of human FOXO3a-TM induces expression of the d4E-BP enhancer
trap line Thor1. (i) d4E-BP and dPKB interact genetically. The Thor1 mutation increases the ommatidial number in dPKB-mutants by 9% without
affecting cell size. Values are shown ± SD. Genotypes are: (c) y w; GMR-Gal4 UAS-Dp110DN/+; (d) y w; GMR-Gal4 UAS-Dp110DN/+; (e) y w; GMR-Gal4

UAS-Dp110DN/+; EP-dFOXO/+; (f) y w; (g) y w; Thor1/+; (h) y w; Thor1/GMR-Gal4; UAS-hFOXO3a-TM/+; (i) from right to left: y w;; dPKB3/dPKB1, y w;

Thor1/+; dPKB3/dPKB1, y w; Thor1/Thor1; dPKB3/dPKB1.
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It has been previously reported that overexpression of d4E-

BP partially suppresses the dPKB overexpression phenotype

[57], but as ectopic expression experiments have to be inter-

preted with some caution, we assessed whether loss of d4E-

BP function suppresses the cell-number reduction in

insulin-signaling mutants as does loss of dFOXO function.

We generated double-mutant flies for dPKB and d4E-BP and

observed that the Thor1 mutation slightly but significantly

suppressed the reduced cell-number phenotype in a dose-

dependent manner. The Thor1 mutation itself had no effect

on ommatidial number compared to wild-type flies (data

not shown), so we can rule out additive effects of d4E-BP

and dPKB. These observations strongly argue that under

conditions of reduced insulin-signaling activity the dFOXO-

dependent reduction in cell number is in part mediated by

the transcriptional upregulation of its target d4E-BP.

Microarray studies in both mammalian [23] and Drosophila

[52] cells imply that FOXO transcription factors exert their

physiological functions by modulating expression of large

sets of target genes.

Discussion
Forkhead transcription factors of the FOXO subfamily

mediate insulin-regulated gene expression in C. elegans and

mammals. In this study, we provide genetic evidence that

the Drosophila FOXO/DAF-16 homolog dFOXO is an impor-

tant downstream effector of Drosophila insulin signaling and

a regulator of stress resistance. 

dFOXO is a critical target of dPKB but mediates

only part of its function

Genetic studies in C. elegans and Drosophila have led to two

models regarding the output of the insulin pathway. First,

the complete epistasis of daf-16 over the insulin pathway

mutants daf-2, age-1, akt-1 and akt-2 suggests that the

primary function of PKB is to inactivate FOXO transcription

factors [60]. Second, it has been proposed that the TSC

tumor suppressor complex is the major target of PKB

[61,62] in the regulation of cell growth in Drosophila. Our

analysis of Drosophila FOXO indicates that it is indeed a crit-

ical PKB target, but that it mediates only one aspect of PKB

function. Several lines of evidence support this model.

Firstly, the effects of ectopic overexpression of dFOXO and

hFOXO3a in the developing Drosophila eye are altered by

Dp110 and dPKB signaling as well as by nutrient levels.

Under conditions of lowered insulin signaling, the pheno-

types resulting from expression of dFOXO and hFOXO3a

were dramatically enhanced. This situation was mimicked

by expressing a dPKB-insensitive phosphorylation mutant,

suggesting that endogenous dPKB signaling is required to

mitigate the effects of ectopically expressed dFOXO and

hFOXO3a. Secondly, the physiological relevance of dFOXO

in dPKB signaling is most vividly demonstrated by our

observation that the larval lethality associated with the com-

plete loss of dPKB is rescued by dFOXO mutations to the

extent that some flies develop to pharate adults. The lethal-

ity associated with loss of dPKB function is therefore to a

large extent due to the hyperactivation of dFOXO. Thirdly,

loss of dFOXO function suppresses the effects of insulin-

signaling mutations only partially; dFOXO mediated a

reduction in cell number but not in cell size in response to

reduced insulin signaling. 

dFOXO controls the reduction in cell number in

body-size mutants

Genetic analysis of the control of body size in Drosophila has

revealed two classes of mutations. Flies carrying mutations

in chico or viable allelic combinations of DInr, Dp110, and

dPKB are reduced in body size by up to 50% owing to a

reduction in both cell size and cell number. Conversely,

flies mutant for dS6K exhibit a more moderate reduction in

body size, caused almost exclusively by a reduction in cell

size [36]. This suggests that the pathways controlling cell

number and cell size bifurcate at or below dPKB. Although

dFOXO single mutants have no obvious size phenotype,

loss of dFOXO substantially suppresses the cell-number

reduction observed in insulin-signaling mutants. It appears

that dFOXO mediates the repression of proliferation in flies

mutant for DInr, chico, Dp110, and dPKB without being

required for the reduction in cell size. Chico-dFOXO double

mutant flies even have slightly smaller cells than chico

mutants, suggesting that removal of dFOXO permits cell-

cycle acceleration under conditions of impaired insulin sig-

naling. The pathway controlling body size in response to

insulin therefore bifurcates at the level of dPKB: dPKB con-

trols cell number by inhibiting dFOXO function and dPKB

controls cell size, at least under some conditions, by regulat-

ing S6K activity by phosphorylation of dTSC2 [29]. 

The signaling systems controlling cell size and cell number

are tightly interconnected. Genetic and biochemical analy-

ses have revealed five different links between the dTSC-

dTOR-dS6K pathway and the DInr-dPKB-dFOXO pathway.

First, under conditions of unnaturally high insulin-signaling

activity (that is, following the oncogenic activation of

dPKB) dPKB phosphorylates and inactivates dTSC2, result-

ing in increased activation of dS6K [29]. Under normal

culture conditions this regulation does not seem critical,

however, loss of dPKB function does not lower dS6K activ-

ity in larval extracts [54]. Second, under physiological con-

ditions, dPDK1 regulates dPKB as well as dS6K [63]. Third,

dS6K itself downregulates dPKB activity in a negative feed-

back loop [31]. Fourth, under severe starvation conditions,

nuclear dFOXO presumably activates target genes that

reduce cell proliferation. One of these target genes is
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d4E-BP, which encodes an inhibitor of translation initiation.

When conditions improve, the insulin and TOR signaling

pathways can stimulate translation by disrupting the 4E-

BP/eIF4E complex via phosphorylation of 4E-BP, and in par-

allel by repressing FOXO-dependent 4E-BP expression. Fifth,

under even more severe starvation or stress conditions, full

activation of dFOXO upregulates expression of the insulin

receptor itself, thus rendering the cell hypersensitive to low

insulin levels (see [52]). These multiple positive and nega-

tive interactions ensure a continuous fine adjustment of the

growth rate to changing environmental conditions.

Evolutionary conservation of insulin signaling and

FOXO function

Genetic dissection of signaling by insulin and its target

DAF-16 has been pioneered in C. elegans and has helped to

unravel the role of this pathway in dauer formation and

longevity. Our analysis shows that the same pathway with

the homologous nuclear targets operates in flies in the

control of cell growth and proliferation, processes that do

not involve insulin signaling in worms. Dauer formation

and possibly longevity affect the entire organism and do not

depend on cell-autonomous functions of the insulin signal-

ing pathway [64]. The cell-growth phenotype in Drosophila,

however, depends on the cell-autonomous functioning of

the insulin-signaling cascade [45]. Insects enter diapause in

response to diverse environmental cues (nutrients, day

length or temperature) and arrest development or the aging

process in a manner similar to dauer formation in worms

[65]. Ageing, and possibly diapause, is also under the

control of the insulin pathway in Drosophila [65,66]. It has

recently been shown that heterozygous IGF-1R mutant mice

also exhibit a prolonged lifespan [3]. It therefore appears

that the function of the insulin pathway, its components,

and possibly at least some of its targets, have been con-

served throughout evolution.

dFOXO may integrate different forms of cellular

stress

The longevity phenotype of IGF-1R-deficient mice is associ-

ated with enhanced resistance to oxidative stress [3]. It is

likely that this phenomenon is due to hyperactivation of

FOXO proteins, as several studies have shown that FOXO

transcription factors play a role in the oxidative-stress

response in mammalian cells [16,17] as well as in C. elegans

[49]. Our observation that dFOXO mutant flies are hyper-

sensitive to oxidative stress confirms that, in addition to

their role in insulin signaling, the role of FOXO proteins in

protecting against cellular stress is highly conserved. The

mechanism by which dFOXO confers oxidative-stress resis-

tance is not yet known. In our microarray experiment, we

identified several genes encoding cytochrome P450

enzymes as dFOXO target gene candidates (Figure 6a). As it

has been shown that cytochrome P450 enzymes reduce the

toxic effects of paraquat in mice [67], they might partially

mediate the protective effect of dFOXO. Furthermore, it

remains to be established whether the regulation of dFOXO

by insulin is required for dFOXO’s protective properties. It

is tempting to speculate that distinct stress-induced signal-

ing pathways activate dFOXO under conditions of cellular

stress, in addition to the negative input from the insulin

cascade, as several stress-induced phosphorylation sites are

conserved between hFOXO3a and dFOXO (A Brunet and

ME Greenberg, personal communication). This view is sup-

ported by our observation that overexpression of a FOXO

variant that cannot be inactivated by PKB elicits cell death,

a phenotype not observed in larval tissues lacking insulin-

signaling components [45]. This result argues that dFOXO

induces cellular responses that are independent of insulin. 

The emerging model postulates that positive and negative

inputs converge on FOXO proteins in response to different

environmental conditions, making them central and impor-

tant integrators controlling cellular (cell-cycle progression)

and organismal adaptations (dauer formation, diapause

and longevity; see Figure 7). Elucidating the positive inputs

that converge on FOXO, by mutating conserved phosphory-

lation sites in the single Drosophila homolog of this class,

should help us to better understand dFOXO’s integrator

function. 

Materials and methods
Identification of dFOXO

We searched the Drosophila genome [68] using a TBLASTN

algorithm for sequences with homology to the DNA-

binding domain of human FOXO3a (amino acids 157-

251). The resultant matches were further assessed for the

presence of consensus PKB phosphorylation sites R-X-R-X-

X-S/T [37].

We used a genomic DNA stretch flanking the only identified

region fulfilling these criteria to search a collection of

Drosophila expressed sequence tags [69], which eventually

identified two clones (LD05569 and LD18492) containing

identical full-length cDNA sequences of 3.7 kb length. The

dFOXO gene is annotated in FlyBase [70] (FBgn0038197)

under the name foxo.

Generation of plasmids and transgenic flies

The cDNA clone LD05569 contains the full-length dFOXO

cDNA within the pBS-SK(+/-) vector (Stratagene [71]). To

generate a triple PKB phosphorylation mutant of dFOXO, we

used PCR-based site-directed mutagenesis (QuickChange,

Stratagene) to introduce the three point mutations T44A,

S190A and S259A. Primer sequences are available upon
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request. The mutated sequence was confirmed by double-

stranded DNA sequencing. To generate UAS constructs, the

cDNA inserts from both wild-type dFOXO and triple-mutant

dFOXO were subcloned from pBS-SK(+/-) into the pUAST

transformation vector [72] as EcoRI-Asp718 fragments. The

corresponding UAS constructs containing the cDNA encod-

ing wild-type and triple-mutant hFOXO3a [12] were gener-

ated by subcloning the inserts from pECE-HA-hFOXO3a and

pECE-HA-hFOXO3a-TM (generous gifts of Anne Brunet)

into pUAST as BglII-XbaI fragments. Fragments were excised

from the pECE clones via complete digestion with XbaI fol-

lowed by partial BglII digestion. All sequences were con-

firmed by double-stranded DNA sequencing. The four

resultant UAS constructs are referred to as UAS-dFOXO,

UAS-dFOXO-TM, UAS-hFOXO3a and UAS-hFOXO3a-TM.

To generate transgenic Drosophila lines, P-element-mediated

germline transformation was carried out as described

previously [73]. Several independent transformant lines

were recovered for each construct with the exception of

UAS-dFOXO-TM, for which we did not obtain a viable

transformant line.

EMS reversion mutagenesis

To generate dFOXO loss-of-function mutants, homozygous

y w;; EP35-147 males were mutagenized with 27 mM ethyl

methanesulfonate (EMS) according to standard procedures

[74]. Mutagenized males were mated to homozygous y w;

GMR-Gal4 UAS-Dp110DN virgins. Roughly 60,000 F1

progeny were screened for suppression of semilethality and

the eye phenotype shown in Figure 3b. F1 revertants were

retested for transmission of the reversion to F2 and positive

candidate lines were then balanced over TM3 Sb Ser. To

characterize the mutations, the dFOXO open reading frame

from each individual mutagenized chromosome was ampli-

fied by RT-PCR and sequenced. The cDNA derived from the

unmutagenized EP35-147 chromosome was used as a refer-

ence sample to identify mutations. Promising mutations

were verified by double peak analysis of PCR fragments

amplified from genomic DNA using the Sequencher

program (Gene Codes Corporation [75]).

Drosophila strains

The EP-35-147 line was kindly provided by Konrad Basler,

the GMR-Gal4 driver was a gift from M. Freeman. The GMR-

Gal4, UAS-Dp110DN line was obtained from Sally Leevers,

the eiger mutants from Masayuki Miura, and the Thor1 line

from Paul Lasko.

Phenotype analyses

All phenotypes were analyzed in females raised at 25°C

unless indicated otherwise. Body weight, cell size and cell

number were determined as described previously [5]. The

body weight experiment was performed in duplicate, and

male and female flies were measured separately (n = 12 for

each gender and genotype; the highest and lowest values

were excluded from the analysis). Flies were reared under

identical, non-crowding conditions and were of identical

age (2 d) at the time of the experiment. The sizes of omma-

tidia and rhabdomeres were quantified with the program

NIH Image 1.61. [76].

Clonal analysis

To induce loss-of-function clones, we used the Flp/FRT and

ey-Flp systems to generate mosaic flies by mitotic recombi-

nation [47,77]. Overexpression clones were generated as

described [63].

In situ hybridizations

In situ hybridizations to eye imaginal discs was performed

as described [78,79]. The d4E-BP cDNA was PCR-amplified

with Pfu polymerase from Promega [80] from total double-

stranded cDNA derived from adult y w flies and cloned
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Figure 7

dFOXO may be an integrator of cellular stress. We propose a model in
which dFOXO senses different forms of cellular stress (that is, nutrient
deprivation or reactive oxygen species) and induces cellular responses,
such as proliferation arrest, in part by repressing translation via
upregulation of d4E-BP. The various signaling proteins shown in the
figure are discussed in the text. 
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into the pCAPS vector (PCR blunt-end cloning kit from

Roche [81]). Insert orientation was determined by sequenc-

ing. Vector-specific PCR primers flanking the multiple

cloning site (MCS) and containing either T7 or SP6 RNA

polymerase promoters were used to synthesize double-

stranded DNA templates for the labeling in vitro transcrip-

tion reaction. The sense probe was transcribed with T7 and

the antisense probe with SP6 RNA polymerase. 

Cell culture

Drosophila embryonic Kc167 cells were maintained as

described elsewhere [53]. Briefly, cells were grown at 25°C

in Schneider’s Drosophila medium (Gibco/Invitrogen [82])

supplemented with 10% heat-inactivated fetal calf serum,

FCS. Cells were split and diluted to a density of 1x106 per

ml twice a week. For the microarray experiment, cells were

grown into the stationary phase for 7 d and then stimulated

with 100 nM bovine insulin for 2 h. 

Microarray experiment

The microarray experiment was performed at the Functional

Genomics Center Zürich (FGCZ) using the Affymetrix

GeneChipTM system [83]. Total RNA was extracted from

untreated control cells and insulin-treated cells 2 h after

stimulation using the RNeasy Mini kit (Qiagen [84])

according to the manufacturer’s instructions. From each cell

population, three independent samples were taken,

processed in parallel and hybridized to three separate

microarrays. Synthesis of cDNA and labeled cRNA, array

hybridization and scanning were performed according to

the standard Affymetrix protocols. The .chp files for the

individual scanned microarrays were imported into the

Affymetrix Data Mining ToolTM software for data analysis. 

Stress treatments

Stress-resistance experiments were performed with 3-day-

old adult flies, and males and females were assayed sepa-

rately. For bacterial infection experiments, adult flies were

pricked with a thin needle which had been dipped in a con-

centrated bacterial culture [85]. Bacterial strains tested were

the Gram-negative Erwinia carotovora carotovora and the

Gram-positive Micrococcus luteus. Heat shock was performed

by continuous exposure to 37°C. Resistance to heavy metals

during development was assayed by rearing flies on food

containing either 2.5 mM copper, 6 mM zinc or 200 �M

cadmium. For the starvation test, flies were transferred from

normal food to empty vials closed with a wet foam stopper.

For oxidative-stress challenge, flies were starved in empty

vials for 6 h and then transferred to vials containing a gel of

phosphate-buffered saline (PBS), 10% sucrose, 0.8% low-

melt agarose and the respective oxidative agent (either 5%

H2O2 or 20 mM paraquat). The oxidant was added to the

solution after cooling to 40°C. A control population of flies

was placed in vials containing the PBS-sucrose gel without

oxidant. Dead flies were counted every 12 h (n = 80 for each

gender and genotype). The hydrogen peroxide and paraquat

experiments were each done in triplicate. Larval starvation

was performed by rearing larvae on normal fly food until 80

h after egg deposition, then floating them in 30% glycerol,

washing with water and transfering batches of 30-40 larvae

to vials containing a gel of either PBS, 20% sucrose and

0.8% agarose (sugar condition) or PBS-agarose only (com-

plete starvation).
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