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Abstract. Mutations in the gene l(1)zwlO disrupt the 
accuracy of chromosome segregation in a variety of 

cell types during the course of Drosophila develop- 
ment. Cytological analysis of mutant larval brain neu- 

roblasts shows very high levels of aneuploid cells. 

Many anaphase figures are aberrant, the most frequent 

abnormality being the presence of lagging chromosomes 
that remain in the vicinity of the metaphase plate when 
the other chromosomes have migrated toward the spin- 
dle poles. Finally, the centromeric connection between 

sister chromatids in mutant neuroblasts treated with 

colchicine often appears to be broken, in contrast with 

similarly treated control neuroblasts. The 85-kD pro- 

tein encoded by the l(1)zwlO locus displays a dynamic 
pattern of localization in the course of the embryonic 

cell cycle. It is excluded from the nuclei during inter- 

phase, but migrates into the nuclear zone during pro- 

metaphase. At metaphase, the zwlO antigen is found in 

a novel filamentous structure that may be specifically 
associated with kinetochore microtubules. Upon ana- 

phase onset, there is an extremely rapid redistribution 
of the zwlO protein to a location at or near the kineto- 

chores of the separating chromosomes. 

NE strategy to define the molecular components of 
structures required for accurate chromosome segre- 
gation during mitosis is the study of mutations that 

disrupt this process. This approach has the advantage that it 
may illuminate important molecules present only in modest 
concentrations; moreover, the mutant phenotypes may yield 
useful clues to the function of the corresponding gene prod- 
ucts. Several techniques have been developed for the 
identification of mutations in Drosophila melanogaster that 
disrupt mitotic chromosome behavior (reviewed in Gatti and 
Goldberg, 1991). Extensive screening for such mitotic mu- 
tants has thus far revealed mutations in only two loci that 
cause a high percentage of dividing cells to become aneu- 
ploid. These genes are rough deal (rod) and lethal on the X 
chromosome zeste-white 10 (l[1]zwlO, subsequently abbre- 
viated here as zwlO; also known as mit[1115 [Lindsley and 
Zimm, 1990]) (Smith et al., 1985; Karess and Glover, 1989; 
Gatti and Baker, 1989). 

In this paper, we report both a detailed analysis of the cyto- 
logical phenotypes caused by lesions in zwlO, as well as mo- 
lecular studies on the zwlO locus and the protein it encodes. 
Our results reveal a requirement for zwlO function at a time 
near anaphase onset for the accuracy of sister chromatid dis- 
junction and/or early anaphase chromatid movement. Such 
a role for the zwlO product appears to be reflected in the 
remarkable series of transformations in the intraceUular lo- 
cation of this protein we have observed during the cell cycle. 

Materials and Methods 

Drosophila Stocks 

The zwlO alleles zwl0 s~, a spontaneous mutation (Schalet, 1986), and 
zwlO szu, a mutation generated in a mei-9 background (Lindsley and 
Zimm, 1990), were obtained from A. Schalet (Yale University, New Haven, 
CT). B. Judd (National Institute of Environmental Health Sciences, Re- 
search Triangle Park, NC) kindly provided two additional zwlO alleles 
(zwlO 65i2~ induced by ethyleneimine; and zw]O 65121, induced by ethylene- 
imine and x rays), representative alleles of nearby lethal complementation 
groups (zw4 ~e4, zwl3 eS~ and zw2~b11), and the rearrangements Df(1)w rjl, 
Df(l)64j4, and Dp(1;2)w +7~ These strains have been described in detail 
by Judd et ai. (1972). The allele zwlO ts (Smith et al., 1985) was received 
from B. Baker (Stanford University, Palo Alto, CA). Mutations and rear- 
rangements were maintained in females over either of the X chromosome 
balancers FM7a or FMt, 169a, or in males covered by the Y chromosome 
derivatives w§ BSw+y+Y(see Lindsley and Zimm, 1986, 1987, 1990 for 
further explanation of chromosomes and genetic symbols used). 

To obtain larvae hemizygous for mutant zwlO alleles (zwlOr), males of 
genotype zwlt~/w§ crossed with C(1)DX, yf/y'ry 5~ females (from D. 
Glover, Dundee University, UK). Male larvae, distinguished by the external 
morphology of the larval gonad, are thus zwlO~/Y. Females heterozygous 
for zwlO mutations and deletions of the zwlO region were generated by cross- 
ing zwlOVFM7a females to Df(1)wrJl/BSw+y+Y males. Offspring larvae of 
interest (zwlOVDf(1)w ~11) could be differentiated from their siblings by sex 
and by virtue of their yellow-colored (w +) Malphigian tubules. 

Stocks used in germline transformation experiments and subsequent 
genetic manipulations are described below. 

Cytology 

Metaphase figures were examined using standard cytological procedures 
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(C-atti et al., 1974; Gatli and Goldberg, 1991). Ganglia from wandering 
third instar larvae were dissected in 0.7% NaCl, incubated in 0.5 x 
10 -5 M colchicine in 0.7% NaC1 for 1 h at 25~ and then immersed in 
0.5 M sodium citrate (hypotonic solution) for 7 rain. The ganglia were then 
fixed for '~30 s in acetic acid/methanol/distilled water (11:11:2). Fixed 
brains were immediately transferred into a drop of aceto-orcein stain (2% 
oreein in 45% acetic acid) on a coverslip and squashed onto a glass slide. 
For examination of anapbases, the colchicine and hypotonic treatments 
were excluded from the above procedure. Cytological preparations accord- 
ing to a different protocol (Gonz~lez et ai., 1988; Karess and Glover, 1989) 
yielded identical results (data not shown). Mitotic index was determined by 
averaging the number of cells undergoing mitosis per optic field under stan- 
dardized conditions, using a phase-contrast Neofluar 100x oil-immersion 
Zeiss objective (Carl Zeiss, Inc., Thornwood, NY), 10x oculars, and the 
Optivar set at 1.25x. 

Nucleic Acids 

The preparation of recombinant DNA from plasmid, cosmid, or bacterio- 
phage lambda vectors, or genomic DNA from Drosophila adults, has previ- 
ously been noted (Gunaratne et al., 1986; Mansukhani et al., 1988a,b). 
Genomic clones were isolated either from an EMBL4 genomie library 
(Gunaratne et ai., 1986), or from a cosmid library kindly provided by J. 
Tamkun (University of Colorado, Boulder, CO). Restriction fragments were 
subeloned into the polylinker of Bluescript KS + (Stratagene Inc., La Jolla, 
CA). Transfer of DNA from agarose gels to Gene Screen Plus membranes 
(New England Nuclear, Boston, MA) was carried out using the alkaline blot 
method (Sambrook et al., 1989). For radiolabeling, primer extensions from 
either purified DNA or DNA fragments excised from low-melt agarose gels 
(SeaPlaque, FMC Marine Colloids, Rockland, ME) were performed essen- 
tially as described by Feinberg and Vogelstein (1983). In situ hybridization 
of DNA fragments labeled with biotin-I 1-dUTP to salivary gland polytene 
chromosomes was performed as previously described (Gunaratne et al., 
1986) using the Detek kit (Ergo Biochemistry Inc., New York, NY). 

Poly(A)+ RNA was isolated from staged wild-type Drosophila accord- 
ing to the procedure of Dombr~di et al. (1989). Electrophoresis of glyoxa- 
lated poly(A)+ RNA on agarose gels, transfer to Hybond-N membranes, 
and hybridization of Northern blots with labeled probes was also carried 
out as detailed by the same authors. 

Full length zwlO eDNA clones were isolated from a Drosophila imaginai 
disc eDNA library supplied by Dr. Nieholns Brown (Harvard University, 
Cambridge, MA). Since the pNB40 vector used allows directional eDNA 
cloning (Brown and Kafatos, 1988), the orientation of transcription could 
be readily determined by restriction analysis. A BglII-NotI fragment con- 
taining the entire zwlO eDNA was cloned into the BamHI and NotI sites of 
Bluescript KS- ,  yielding the construct 20.4KS-. Deletions were con- 
strncted using partial ExollI nuclease digestion as described by Henikoff 
(1984) using the Erase-a-Base kit (Promega Corp., Madison, WI). 
20.4KS- was digested with KpnI and ClaI for deletions starting from the 
Y-end of the eDNA, while SacI and NotI were used for deletions starting 
from the T-end. Double stranded plasmid DNA was sequenced by the 
dideoxy chain termination method of Sanger et al. (1977) using the T7 DNA 
polymerase Sequenase (United States Biochemical Corp., Cleveland, OH), 
35S-dATP (Amersham Corp., Arlington Heights, IL), and gradient gels 
with wedge spacers (Bethesda Research Laboratories, Gaithersburg, MD). 
Both strands were sequenced completely and in duplicate, using standard 
Bluescript primers (Stratagene Inc.). To confirm the absence of introns 
around the site of the zwlO sl insertion, primers derived from the zwlO 
cDNA sequence were synthesized and used for sequencing the wild-type 
genomic clone. Sequence analysis was carried out using the GCG package, 
and FASTA searches of Genbank, EMBL, PIR, Swiss-Prot, and NBRF 
databanks (Devereux et al., 1984). 

Germline Transformation 

A 4.6 kb BamHI fragment from the cosmid genomic clone cosB was in- 
serted into the BamHI site of pWS, a transformation vector carrying a mini- 
white + gene (Klemenz et al., 1987). The resulting construct was injected 
into w; Sbe  Delta2-3/TM6, Ubx embryos, which express transposase 
(Robertson et al., 1988); GO survivors were single-pair mated to zlw 11e~ 
and the G1 was screened for pigmented eye color. Independently derived 
transformants were isolated and mated to ~w 1lee to determine the linkage 
of w + and to maintain the line. In one line (1-1) the fragment had integrated 
into the Delta2-3, Sb chromosome and was subsequently crossed away from 
Delta2-3 and Sb. In two others (2A and 3A), w + was linked to Ubx, a 

marker on TM6. Males containing these autosomally located transduced 
DNA fragments were mated with zwl0X/Baiancer females to test for the 
presence of non-Bar eyed zwl0 ~ male progeny in the next generation. 
Three different zwlO alleles (zwlO sl, zwlO s2u, and zwlO 6s~2~ were rescued 
by the 1-1, 2A and 3A transformant lines. In each case, the low viability, 
sterility, eye morphology, and mitotic (cytological) phenotypes of the zwlO 
mutations were complemented by the autosomai fragment. 

Antibody Production and Purification 

A 2.2-kb NruI-NotI fragment from the full length zwlO eDNA was blunt-end 
ligated in frame with the lacZ gene in pWR590-2 (Guo et al., 1984). An 
overnight culture of the XLI-Blue bacterial strain (Stratagene Inc.) carrying 
the lacZ.-zwlO fusion clone was grown, induced with isopropylthio-/~-D- 
galactoside (IPTG), harvested, and analyzed by previously described 
methods (Mansukhani et ai., 1988a,b). The gel was stained with 50% meth- 
anol containing Coomassie brilliant blue for 5 min, then destained with dis- 
tilled water. The fusion protein band was excised, placed in a dialysis bag, 
and electroeluted for 4 h at 100 V. Protein was dialyzed in several changes 
of PBS (formulation of Karr and Alberts, 1986) and the concentration 
checked by SDS-PAGE. To verify the identification of the fusion protein, 
Western blotting was used as previously described (Mansnkhani et al., 
1988b), except that alkaline phosphatase-conjugated anti-rabbit IgG (Sigma 
Chemical Co., St. Louis, MO) was used in the detection system (Sambrook 
et al., 1989). Fusion protein was injected into two rabbits and boosted twice 
thereafter. Both preimmune and immune sera were collected separately for 
each rabbit. 

To facilitate purification of anti-zwl0 antibodies, and to exclude antibod- 
ies reacting exclusively to the #-gaiactosidase moiety of the lacZ-zwlO fu- 
sion described above, a trpE-zwlO fusion was constructed in the vector 
pATH3 (Dieckmaun and Tzagoloff, 1985). The same zwlO eDNA 
NruI-NotI fragment used to make lacZ-zwlO was blunt-and ligated into the 
BamHI site of pATH3 (which was made blunt by filling in with Klenow 
DNA polymerase), so that zwlO was in frame with trpE sequences. The 
resulting construct was called pATH3-zwlO. Derivatives containing shorter 
zwl0-specific segments were created by digestingpATH3-zwlO with XhoI or 
HindlII and recireularizing the products in a very dilute ligation mixture. 
The XhoI derivative (trpE-zwlOX) lacks the central portion of zwlO (amino 
acids 177--495) and the HindlII derivative (trpE-zwlOH) does not contain 
the COOH-terminal end (amino acids 528-721). It should be noted that all 
lacZ.-zwlO and trpE-zwlO fusion proteins lack the NH2 terminus of the 
zwlO protein (amino acids 1-76). 

trpE-zwlO fusion proteins were induced as described by Dieckmann and 
Tzngoloff (1985). Induced trpE-zwlO fusion proteins were isolated as the in- 
soluble fraction after the lysis of cells with lysozyme and NP-40 in TEN 
buffer (50 mM Tris.HCl, pH 7.5, 0.5 mM EDTA, 0.3 M NaCl). Protein was 
solubilized in cracking buffer (0.01 M sodium phosphate, pH 7.2, 1% 2-mer- 
captoethanol, 1% SDS, 8 M urea) and dialyzed overnight in PBS. 

For immunoaflinity purification, the trpE-zwlO fusion protein of interest 
was coupled to washed cyanogen bromide-activated Sepharose 4B (Sigma 
Chemical Co.) for 16 h in coupling buffer (0.1 M NaHCO~, pH 8.3, 0.5 M 
NaC1) at 4~ The buffer was removed and the remaining active groups 
blocked for 1 h at room temperature in 0.2 M glycine, pH 8.0. The fusion 
protein-coupled resin was poured into a column and washed extensively 
with PBS. Crude serum diluted 1:10 in PBS was first applied to a column 
of Sepharose 4B-coupled insoluble protein extract from XLI Blue cells not 
expressing the fusion protein and prepared according to the same protocol. 
The resultant preadsorbed crude serum was then re, circulated during a 
period of 12 h through the column containing the immobilized fusion pro- 
tein. The column was washed extensively with PBS, and the bound antibody 
was eluted with 0.2 M glycine, pH 2.7. The purified antibody solution 
('~100/zg/mi) was immediately neutralized by the addition of 1/7 vol. of 
1 M Tris.HC1, pH 8.9, and dialyzed for 24 h in three changes of PBS. 

This procedure was carried out separately for preimmune sera and im- 
mune sera obtained from each rabbit; results obtained with both rabbits 
were qualitatively identical. The preimmune sera failed to identify zwlO fu- 
sion proteins on Western blots, and did not detect signals above background 
in immunofluorescence experiments. Antibodies purified against the deriva- 
tives trpE-zwlOX and trpE-zwlOH generated identical results on Western 
blots and in embryo staining. 

I m m u n o f l u o r e s c e n c e  

Wild-type Oregon R embryos were collected for 2 h to enrich for the pres- 
ence of syncytial blastoderm embryos. Embryos were washed, dechorio- 
nated, and fixed with formaldehyde in the presence of taxol as described 
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(Karr and Alberts, 1986). Alternatively, embryos were fixed directly in 
methanol-EGTA (Warn and Warn, 1986). Both procedures gave similar 
results upon staining embryos with the purified antibody, although the 
former method yielded a higher signal-background ratio. 

Embryos were incubated in immunoaflinity purified anti-zwlO antibody 
appropriately diluted in TBS + Triton (TBST) I (50 mM Tris.HCl, pH 7.4, 
50 mM NaCI, 0.02% sodium azide, 0.1% Triton X-100) overnight at 4~ 
The primary antibody was washed off in 4 x 5 min washes in TBST. 
Biotinylated goat anti-rabbit IgG (Vector Laboratories, Inc., Burlingame, 
CA) was added at 1/200 dilution (to a final concentration of 7.5/~g/ml) for 
I-2 h at room temperature, after which the embryos were washed with 

TBST as before. Next, either streptavidin-rhodamine isothiocyanate (Jack- 

son Immunoresearch Laboratories, Inc., West Grove, PA) or cell sorter 

grade avidin DS-rhodamine (Vector Laboratories, Inc.; final concentration 

20 #g/nil) were added and incubated for 1 h at room temperature. The em- 

bryos were washed and Hoechst 33258 (Sigma Chemical Co.) was added 

to a final concentration of 0.05/~g/ml for 5 rain. Finally, the embryos were 

washed briefly in TBST and mounted in glycerol containing n-propyl gallate 

or p-phenylenediamine. Identical results were obtained using, as the sec- 

ondary antibody, rhodamine-conjugated goat anti-rabbit IgG from several 

sources (Sigma Chemical Co.; Boehringer Mannheim Corp., Indianapolis, 

IN; Jackson Immunoresearch Laboratories, Inc.). In all cases, staining with 

the above reagents carried out in the absence of the anti-zwlO antibody or 
with purified preimmune sera did not identify any specific structures. Em- 
bryos were observed under epifluorescence using a Zeiss Axioskop (Carl 
Zeiss, Inc.) with a Neofluar 100x objective. Images were recorded with Ko- 
dak Technical Pan Film (Eastman Kodak Co., Rochester, NY). 

Confocal microscopy was carried out using a Zeiss Axiovert 10 attached 
to a Bio-Rad MRC600 confocal imaging system (Bio-Rad Laboratories, 
Cambridge, MA) at CorneU, and a confocal imaging system (Carl Zeiss, 
Inc.) at the Beckman Institute. To view DNA with the confocal microscope, 
stained embryos were incubated overnight with chromomycin C (Sigma 
Chemical Co.). For visualization of MTs, mouse anti-tubulin antibody 
(from K. Kemphnes, Cornell University, Ithaca, NY) was used followed by 
FITC-conjugated goat-anti-mouse IgG antibody (Sigma Chemical Co.) in 
the above procedure. BX63, a mouse mAb described by Frasch et al. (1986), 
was the gift of D. Giover, and was used to stain centrosomes. 

Detecting zwlO on Western Blots 

zwl0/Y mutant larva (see above) were collected, dissected, and frozen in 
liquid nitrogen. Larval ganglia, embryos, larva, or adult flies were 
homogenized in Sample Buffer (62.5 mM Tris-HC1, pH 6.8; 5% 
2-mereaptoethanol, 3% SDS, 10% glycerol, 0.1% bromophenol blue), im- 
mediately boiled for 5 minutes, then cooled on ice for 5 minutes, and 
pelleted. Supcrnatant protein was separated by SDS-PAGE. Western blot- 
ting was performed as described above for fusion proteins. Alternatively, 
the enhanced chemiluminescence (ECL) Western Blotting System (Amer- 
sham Corp.) was used essentially as described in the instruction manual. 
Briefly, anti-zwlO crude serum was diluted 1/700 in 5% dried milk in Tween 
T~'is Buffered Saline (TTBS; 20 mM Tris.HC1, 137 mM NaCI, 0.05% 
Tween-20, pH 7.6, shaking overnight at room temperature. After three 10- 
rain washes in TTBS, the blot was incubated for 1 h in peroxidase- 
conjugated donkey anti-rabbit IgG (Amersham NA.934; Amersham Corp.) 
diluted 1/2,000 in milk-TTBS. After three 10-min washes in TTBS, the blots 
were processed for luminescence exactly as described in the instruction 
manual. 

For subsequent incubation with other antibodies to confirm protein lev- 

els, the blots were washed in TTBS for 30 rain at room temperature, and 

the same procedures followed as above. 

Transfection 

To overexpress the zwlO protein in Drosophila Schneider line 2 ($2) tissue 
culture cells, the entire zwlO eDNA, containing the first methionine as well 
as untranslated leader sequences, was cloned into the BamHI site of pPAC, 
which contains the strong actinSC promoter (a gift of Mark Krasnow, Stan- 
ford University, Palo Alto, CA) to make the constructpPAC-zwlO. $2 cells 
were grown in appropriate cell media (Gibco Laboratories, Grand Island, 
NY) plus FCS (Sigma Chemical Co.) for 1 d. pPAC-zwlO DNA was trans- 
fccted into the cells with the calcium-phosphate method (Xiao and Lis, 

1. Abbreviations used in this paper: KMT, kinetochore microtubule; MT, 
microtubule; PSCS, precocious sister chromatid separation; TBST, TBS + 
Triton; TTBS, Tween TBS. 

1989), then allowed to grow for 3 d. Cells were harvested by centrifugation 
and boiled in sample buffer as above. 

Results 

Cytological Characterization of Mutant Larval Brains 

The viability of flies homozygous or hemizygous for mutant 
alleles ofzwlO is severely reduced. The majority ofzwlO mu- 
tant animals die during late larval and pupal stages (Shannon 
et al., 1972); survival through embryonic and early larval 
stages is thought to be ensured by maternal wild-type gene 
product from heterozygous mothers (Gatti and Baker, 1989; 
see also Discussion below). Division of brain neuroblasts 
and imaginal disk cells occurs during the third larval instar, 
and is required for subsequent adult metamorphosis but not 
for larval life itself. The third instar larvae of mitotic mutants 
thus contain populations of cells undergoing improper mito- 
sis. In particular, the dividing ceils in the neural ganglia 
(brain neuroblasts) of third instar larvae are well suited to 
cytological observation which may suggest the origin of the 
mitotic defect. To elucidate the role played by the zwlO prod- 
uct in ensuring proper chromosome segregation during ceil 
division, we have continued the analysis of mitosis in zwlO 
mutant larval neuroblasts initiated by Smith et al. (1985). 

Aneuploidy. In preparations of wild-type larval ganglia, 
four pairs of chromosomes are clearly visible in each 
metaphase figure (Fig. 1 a). However, a high proportion 
(•50%) of brain cells in animals homozygous or hemizy- 
gous for a variety of zwlO alleles are hyperploid (Table I; 
Smith et al., 1985). This is almost certainly an underesti- 
mate of the number of cells with abnormal chromosome 
complements: because chromosomes may be lost during 
squashing, hypoploid nuclei have not been scored in these 
studies. Examples of hyperploid mitotic figures are shown 
in Fig. 1, b and c. The distribution of karyotypes (Table I) 
suggests that zwlO mutations cause essentially random mi- 
totic segregation of chromosomes, with all major chromo- 
somes affected to a similar extent. 

Abnormal Anaphases. Aneuploidy caused by zwlO muta- 
tions clearly involves improper chromosome segregation at 
anaphase. In wild-type male larval ganglia, most anaphases 
resemble that shown in Fig. 1 d; only a small percentage of 
anaphases can be classified as aberrant. Conversely, a high 
frequency ('~40%) of abnormal anaphases are present in 
neuroblasts of animals hemizygous for any of several zwlO 
mutant alleles (Table II). The defect most often observed is 
the presence of one or more chromatids lagging at the 
metaphase plate when the remainder have already migrated 
to their respective poles (Fig. 1, e and f ) .  In some cases, 
some chromatids are clearly pulled at their kinetochore but 
are nonetheless delayed in their approach to a pole, while 
other chromatids appear not to be subjected to poleward 
forces at the time of fixation (Fig. 1 g). It is of interest that 
lagging chromatids are often found in the near vicinity of 
their sisters, which thus appear to be similarly affected (Fig. 
1, fund g). In a fraction of cases, anaphases are either com- 
pletely disorganized (Fig. 1 i), or result in obviously unequal 
chromosome complements at the two spindle poles (Fig. 1 
h). Any of these aberrant events at anaphase could poten- 
tiaUy produce aneuploidy in daughter cells. 

Precocious Sister Chromatid Separation. Smith et al. 
(1985) have suggested an alternative explanation for the high 
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Hgure 1. Cytological etfects of zwlO mutations in neuroblast cells. (a-c) Colchicine-treated metaphase figures. (a) Oregon R wild-type 
moles showing two pairs of metacentric autosomes, a telocentric X chromosome, a linear, heterochromatic Y chromosome (4A, XY), 
and two dot-like fourth chromosomes not scored in subsequent figures. (b) Adjacent aneuploid zwlOSt/Y cells (4A, XXY and 6A, XY). 
(c) 7A, 4XY zwlOa~ cell. (d-i) Anaphase figures from cells not treated with colchicine. (d) Oregon R wild type. (e-f) (zwlOi2~ Ar- 
rows denote lagging chromatid(s). (g) (zwlOS~ly) The open arrow shows a lagging sister chromatid pair; the black arrow indicates a 
ehromatid apparently not subjected to poleward forces. (h) (zwlOSt/Y) Unequal anaphase. (i) (zwlO~2~ Disorganized anaphase. (/-l) 
Colchicine-treated metaphase figures showing precocious sister chromatid separation in zwlOO.~ q and l) and zwlOSt/Y (k) neuroblasts. 
In some cases, the apposition between sister ehromatids, particularly at centromeric regions, remains close (/; arrow in k). 

levels of aneuploidy observed in zwlO mutant brain cells. 
They reported that in many colchicine-induced metaphase 
figures in mutant ganglia, sister chromatids appeared to be 
physically unconnected with each other. These investigators 
proposed that prematurely separated chromatids could es- 

tablish connections at random to microtubules (MTs) 
emanating from the two spindle poles, and would thus segre- 
gate randomly at anaphase. 

We have verified the occurrence of this form of precocious 
sister chromatid separation (PSCS). In the presence of col- 
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Table L Aneuploidy in l(1)zwlO Mutant Brains 

Number of Number of Percent 
Genotype brains figures 4AXY 5AXY 4AXXY 4AXYY 6AXY 5AXXY 5AXYY 7AXY Other aneuploid 

zwlO~t2~ 6 240 95 41 12 10 13 6 5 3 55 60.4 

zwlOS2S4/Y 7 232 104 36 18 11 8 4 3 2 46 55.1 

zwl0SUy 6 323 147 53 24 19 9 5 6 1 59 54.5 

X/Y (Oregon R) 10 1000 989 4 1 2 1 0 0 0 3 1.1 

Neural ganglia from males bemizyguus for the indicated zwlO alleles or from wild-type Oregon-R males were dissected, incubated with colchicine, treated with 
hypotonic solution, fixed, stained, and squashed as described in Materials and Methods. Number of brains and Number offigures refer respectively to the total 
number of brains and the total number of colchicine-induced metaphase figures examined. The number of figures with particular karyotypes are listed. Because 
of difficulties in recognition of the small fom'th chromosome, only the large second and third autosomes (A), which cannot be distinguished from each other, and 
the X and Y chromosomes were scored. Thus, the normal diploid male karyotype would be 4AXY. Similar results were obtained by Smith et al. (1985) for brains 
from individuals hemizygnus for other l(1)zwlO alleles. 

chicine, 30-40 % of zwlO mutant nuclei display one or more 
chromatid pairs with PSCS (Table II). Sister chromatids are 
often adjacent to each other, yet appear unattached at their 
centromeres (Fig. 1, j ,  k, and l). Control ganglia from 
C~)DX, yf/Y siblings of hemizygous mutants show PSCS at 
a frequency of <2 %. Particular care was taken to ensure 
similar treatment of mutant and control brains. Both types 
of ganglia were dissected at the same time from animals 
grown in the same bottle; the brains were mixed and exposed 
to colchicine in the same vessel. Mutant and control brains 
were squashed together on the same slide; control ganglia 
can be recognized by the characteristic morphology of the 
attached X chromosome (see Materials and Methods). The 
absence of sister chromatid separation in wild-type, colchi- 
cine-treated Drosophila neuroblasts has also recently been 
noted by Gonz~dez et al. (1991). 

Although the PSCS phenomenon is a characteristic of 
zwlO mutants, the hypothesis of Smith et al. (1985) in its sim- 
plest form (see above) is unlikely to explain elevated levels 
of aneuploidy. First, zwlO ganglia cells which have been sub- 
jected to neither colchicine nor hypotonic treatments do not 
show PSCS. Sister chromatids in these neuroblasts remain 
closely apposed to each other (data not shown); however, it 
is not clear whether or not the connection at the centromere 
is broken. A stronger argument is that random attachment 

of the chromatids to the spindle should not result in the lag- 
ging chromosomes or chromatids observed in anaphase 
figures (although figures with unequal numbers of chromo- 
somes at the two poles would be apparent). We thus consider 
that PSCS is possibly an artefactual colchicine-dependent 
effect that may nonetheless reveal important differences be- 
tween the centromeres of chromosomes in wild-type and 
mutant cells (see Discussion). 

Other Mitotic Parameters. It is conceivable that the cyto- 
logical effects of zwlO mutations result from difficulties in 
progression through the cell cycle. For example, lagging 
chromatids appear at high frequencies after release of cells 
from a metaphase-arrested state (Hsu and Satya-Prakash, 
1985). We have thus measured two parameters that provide 
some indication of the numbers of cells in various stages of 
mitosis. The mitotic index, an average of the number of cells 
undergoing mitosis per optic field, is similar in wild-type 
larval brains and in larval brains from a mutant that appears 
to represent the null state of the zwlO locus (see below; Table 
I1). In addition, the ratio between the number of cells in 
anaphase relative to the total number of mitotic figures is 
also not grossly affected by this mutation in zwlO (Table II). 

Tests for the Null Phenotype. To determine whether the 
phenotypes discussed above mirror the null state of the zwlO 
gene, we have examined the cytological characteristics of 

Table I1. Mitotic Parameters of l(1)zwlO Mutant Brains 

Percent aberrant 
Genotype anaphases PSCS MI Percent anaphase 

zwlO6J~~ 40.3 (149;9) 28.3 (956;6) ND ND 

zwlOSZU/Y 38.6 (153;8) 40.4 (755;5) ND ND 

zwl0Sl/Y 47.4 (156;9) 30.0 (1136;7) 0.60 15.4 (23o5;7) 

C(1)DX, yf/Y ND 1.1 (3o00:15) 0.55 14.1 (2380;9) 

X/Y (Oregon R) 3.2 (222;10) 1.8 (10o0;5) 0.57 14.4 (3211;8) 

zwlOSl/Df(1)w'Jl 40.7 (22;2) 32.3 (295;2) ND ND 

This table catalogs the results of three separate experiments. (a) The percentage of anaphases which appear abnormal is scored under Percent aberrant anaphases. 
This information was obtained from neural ganglia that were fixed and stained in the absence of colchicine or hypotonic treatments (see Materials and Methods). 
The first of the adjacent numbers, presented in smaller type and within parentheses, indicates the total number of anaphascs scored; the second number refers 
to the number of brains examined. (b) PSCS shows the percentage of colchicine-induced, hypotonic-treated metaphase figures in which the centromeric connection 
between one or more pairs of sister chromatids appears to be severed. The larger of the adjacent numbers within parentheses indicates the total number of metaphase 
figures, the smaller, the total number of brains. (c) Brains fixed and stained without pretreatment (no colchicine or hypotonic incubations) were analyzed for mitotic 
index (MI) and percentage of total mitotic figures that are in anapbase (Percent anaphase). The mitotic index is expressed as the number of nuclei in division 
per optic field under standard conditions (see Gatti and Baker, 1989). As shown, hemizygosity for the l(l)zwlO s~ mutation has little effect on the mitotic index. 
For comparison, known mitotic mutants which result in few or no cells in division have mitotic indices two orders of magnitude lower than wild-type controls, 
while the mitotic index in brains of  individuals carrying mutations causing metaphase arrest is 1.5-6 times higher than controls (Gatti and Baker, 1989). In the 
last column, both normal- and aberrant-appearing anaphases were combined. By visual inspection, ,040% of l(1)zwlOSt/Y anaphases in this experiment were 
aberrant, in accord with the results from the independent experiment tabulated in the second column. For comparison, <0.6% of dividing cells are in anaphase 
in ganglia from known metaphase arrest mutants (Gatti and Baker, 1989). Adjacent numbers here refer to the total number of optic fields and the number of brains 
examined (see Materials and Methods). 
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larvae heterozygous for a deletion (Df(1)w "n) that removes 
zwlO and for a zwlO mutant allele. Levels of hyperploidy 
(52.1% [74/142 nuclei] for zwlOamO/Df(1)w ~J~ and 49.6% 
[64fl29] for zwlOSZ/Df(1)w'J9 were similar to values ob- 
served in zwlO hemizygous animals (compare with Table 
1). Both frequencies of aberrant anaphases and PSCS in 
zwlO~~ mitotic figures were also close to values 
seen for the mutant alleles alone (Table It). If the zwlO alleles 
examined were hypomorphic, it would be expected that 
deficiency/mutant heterozygotes would display a stronger 
phenotype than animals homozygous or hemizygous for the 
mutation alone. These classical genetic tests therefore sug- 
gest that the mutations we have analyzed, all of which have 
similar effects, characterize the null state of the zwlO gene; 
this hypothesis is supported by analysis of the zwlO protein 
in mutant animals, as reported below. 

Molecular Mapping of  the zwlO Locus 

A portion of the Drosophila X chromosome including the 
zwlO gene was cloned during the course of a chromosomal 
walk through the zeste-white interval (Goldberg et al., 1983; 
Gunarame et al., 1986; our own unpublished data). Within 

this region, zwlO must be located distal (relative to the cen- 
tromere) of the deletion Df(1)64j4, and completely within the 
duplication Dp(I;2)w §176 ~ig.  2). The locations of the 
breakpoints associated with these two rearrangements were 
ascertained by whole genomic Southern blots and by in situ 
hybridization to salivary gland polytene chromosomes from 
larvae of the appropriate genotype (Fig. 2; data not shown). 
These results delimit zwlO to a region of 11 kb within the 
cloned X chromosome interval. 

Two observations suggested that part of the zwlO locus 
must lie near the Dp(1;2)w +~3~ breakpoint at coordinate 
-0 .3  on Fig. 2. First, the genetic map distance between zwlO 
and the adjacent lethal complementation group zw4 is very 
small (<0.026 map units, or <7.8 kb based on a conversion 
of 1 map units = 300 kb in this region of the X chromosome) 
(Kidd et al., 1983), yet Dp~;2)w ~3 l  encompasses zwlO 
but not zw4. Second, a spontaneous allele, zwl0 s~ (Schalet, 
1986), is associated with a 4.5-kb insertion of DNA at coor- 
dinate +1.7. This DNA insertion in zwlO st is most likely a 
Doc mobile element, based on the similarity of their restric- 
tion maps (Driver et al., 1989). 

Northern blot analysis of adult poly(A) + mRNA re- 
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Figure 2. Genetic and molecular map of the zwlO region. Lethal complementation groups in the vicinity of l(1)zwlO are shown at the top 
of the figure, distances between genes are given in centimorgans (Judd et al., 1972). (w) Loci contained within the duplication 
Dp(1;2)w*7~ genes deleted in Df(1)64j4 are indicated by the hatched bar. The molecular map is shown only for a 16-kb region immedi- 
ately adjacent to the zwlO gene; coordinates are given in kb, with 0 defined as the BamH/site at the left end of Fragment A used to rescue 
zwlO phenotypes (see text). The mobile element in zwlO s~ is diagrammed to the same scale as the remainder of the restriction map. The 
direction of transcription producing poly(A)+ RNAs from this region is shown by arrows; the sizes of mature transcripts are indicated 
below. H, HindIII; X, XhoI; B, BamHI; R, EcoRI; C, SacI; N, NotI; and S, SalI. 
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vealed a 2.6-kb transcript located just proximal to the 
Dp(1;2)w §  breakpoint and that spanned the site of the 
zwl0 s~ insertion element (Fig. 2); this was therefore a likely 
candidate for the zwlO mRNA. A 4.8-kb fragment of 
genomic DNA (Fragment A: coordinates 0--4.8 on Fig. 2), 
encoding the entire 2.6-kb transcript but containing no other 
complete transcriptional unit, was transformed into Dro- 
sophila by P element-mediated germline transformation. 
This fragment, as present in three independent autosomal 
transformant lines, is necessary and sufficient to rescue the 
lethal phenotype of several zwlO alleles (Materials and 
Methods). Fragment A also repairs the zwlO mitotic pheno- 
type. For example, in rescued zw10S2u/Y; Pl-Fragment A]/+ 
larval ganglia, the frequency of aneuploidy (1.2 %) and PSCS 
(4.3%) were at wild type levels (compare with Table II), 
while anaphases were normal (not shown). Thus, the entire 
zwlO locus must reside within the 4.8-kb Fragment A 
depicted in Fig. 2, and appears to be transcribed into a 
poly(A)+ RNA 2.6 kb in length. 

Molecular Analysis of  the zwlO Locus 

The zwlO transcript is developmentally regulated. The 
highest levels of this RNA are found in embryos and in adult 
females (Fig. 3), consistent with the idea that maternally 
supplied zwlO supports the rapid syncytial divisions of early 
embryogenesis. Levels of zwlO RNA are substantially de- 
creased during the first and second larval instar, but then in- 
crease in third instar larvae and in early pupae. Presumably, 
this reflects the increased number of proliferating cells in late 
larval/early pupal imaginal discs. Only a single 2.6-kb RNA 
band is seen at any stage of development on Northern blots; 
it nonetheless remains possible that alternatively processed 
species of similar length, or rare RNAs of different sizes, 
may be produced from the same transcriptional unit. 

Three cDNA clones homologous to the 2.6-kb zwlO 
mRNA were isolated from an imaginal disc cDNA library 
(Brown and Kafatos, 1988). Substantial overlap in the re- 
striction maps of these cDNAs suggests that they all repre- 
sent the same species (data not shown). The sequence of the 

longest of these cDNAs (2,576 bp) contains an open reading 
frame beginning at nucleotide 103 that encodes a protein of 
721 amino acids (Fig. 4). However, it should be cautioned 
that the nucleotides in the vicinity of this putative initiation 
codon show only partial agreement with the Drosophila 
translation start consensus (C A C/A C/A AUG; Cavener and 
Ray, 1991). Better matches are seen in the vicinity of the 
downstream methionine codons at nucleotide positions 
232-235, 343-345, and 400--402. Although it is thus possi- 
ble that translation of the corresponding mRNA may initiate 
at any of these positions, the size of the zwlO protein (see be- 
low) is most consistent with use of the codon indicated in 
Fig. 4. 

A computerized search has failed to reveal significant ho- 
mologies to any protein within the Genbank, EMBL, PIR, 
and Swiss-Prot databases. Given the cell cycle-dependent 
changes in the intracellular location of zwlO protein that will 
be described below, it is of interest that the zwlO sequence 
contains motifs that may be subject to phosphorylation. A 
potential tyrosine kinase phosphorylation site (consensus se- 
quence R/K [2,3] D/E [2,3] Y) is found beginning at amino 
acid 48, while sites possibly available for phosphorylation by 
the cdc2 kinase (TP and SP) start at amino acids 63 and 167 
(Shalloway and Shenoy, 1991). 

Antibodies Against the zwlO Protein 

Polyclonal rabbit antibodies were generated against gel- 
purified/~-galactosidase-zwl0 fusion protein (/3-gal-zwlO) 
that had been produced in E. coli cells. Crude antisera were 
purified by immunoaffinity chromatography against trpE- 
zwlO protein fusions (see Materials and Methods for further 
information concerning the preparation and characterization 
of these reagents). The purified antibodies recognize a single 
band of 85 kD, consistent with the size of the predicted zwlO 
protein, in Western blots of 0-16-h old embryos, of third in- 
star larvae, and of Drosophila Schneider Line 2 tissue cul- 
ture cells (Fig. 5, A and B). When the same Schneider cell 
line is transfected with a construct containing the complete 
zwlO open reading frame under the control of the strong 

Figure 3. Developmental reg- 
ulation of the zwlO transcript. 
The poly(A)+RNA fractions 
from various stages (0-24-h 
embryos, first, second, and 
third larval instars, light early 
pupae [E] and dark late pupae 
[L], adult males [M] and 
adult females IF] were iso- 
lated (see Materials and Meth- 
ods). In the blot shown, 10 t~g 
of poly(A)+RNA was loaded 
in each lane. The zw10 probe 
used was a fragment contain- 
ing the full-length zwlO cDNA, 
and hybridizes to a single 2.6- 
kb transcript. Hybridization 
of the same Northern blot with 
a probe prepared from Dmras- 
64BA (ms) (Mozer et al., 
1985) to control for loading is 
shown below. 
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aa¢TTrTrr~¢~TTa0r^G¢~a~G~rra¢A~1~u~¢~A~r~r¢~Ta~T~¢G¢~raaxx~`xGaAGaAr¢rG~c~^GcxG~xc 1o2 

lo3 ~ T G ~ A G ~ h G A ~ G c ~ c c ~ c G ~ T T c ~ T ~ G c T G G A ~ c G T T c ~ ~ G ~ c ~ 0 ~ ° ~ c ~ c ~ r ~ c c ~ c c c ~ r ~ c c ~ G ` ~  204 

2o5 a~c~c~c~c~r~cr~cc~e~ce~cca~c~c~¢~a~c~c~xc~c~cc¢~c~c~c~c~c¢e~^c~c~ ~oe 

2 3 9 Q E P Y N P A R L C E ' L L D N C I E P V I ~ R P V . A D Y S E E A  272 

~ ~ r ~ G r G G c ~ c c ~ * c ~ r T e ~ * T r 0 ~ c a c ~ c c ~ m 0 c c * c ~ a a ~ 0 c c c ~ c ~ ^ ~ c ~ ¢ ~ c ~ T r c a c c c ~ c r ~ c ~ * ~ ¢ r r ~ L a ~ c ~ r c ^ 0 ~  lo2o 

102i ¢T~cTGcT~cA¢A~¢T~ac~0~AT~cTa~A~T~T~Tc~AaGGA¢¢hcAT~TTTTT0G¢AT?ATTGG~GAT¢AT~T~GG&Th~TG~T~ATTA 1122 
3 0 7 L L L H T L A G I N C S V S R D Q " V F G I I G D H V K D K . L K L  ~40 

4 0 9 T A R E I I Q R D L Q D M V L V A P ~ N H S A E V A N D P , L , p R  442 

4 4 3 C " I S K S A Q D F V K L " D R I L R Q P T D K L G D Q E A D P I A  476 

4 7 7 6 V l S I M L H T Y I N E V P K V H R K L L E S I P Q Q A V L F H N  510 

~633 AATTGTAT~TTCTTCACACACTG~GTAGCGCAGCATGCG~c~GGGCATCGAAAGCTT~GCGGCGCTGGCCAA~ACACTGCAGGCCACCGGTCAG~GCAT 1734 

5 1 1 N C M F F T H W V A Q H A N K G ~ E S L A A L A K T L Q A T G Q Q H  544 

1735 TTCCGCGTGCAGGTcGACTACC~TCCTccATCCTGATGGGCATC~GCAGGAGTTCGAGTTCG~AGCACGCACACGCTGGGCTCTGGTCCACTG~GCT~ i~36 

5 7 9 V R Q C L R ~ L E L L K M V W A ~ V L P E T V y N A T F C E L I ~ T  612 

6 1 3 F V A E L I R R V F T L R D I S A Q ~ A C E L ~ D L I D V V L Q R A  ~46 

2143 GAGCTGTGG~GCGA~GGCGT~GGCC~GCTGA~GCCAGCTA~GT~GGATGAGATAAAG~ACCT~TCAGGGCGTTGTT~CAGGATAC~GATTGGCGG~CC 2244 

2245 A&~GCCATTA¢GCAG~TGTAT&~GGCGcGTGCGTTTrTTGcG&GCG&GG~TGTTG~CAGCGGATAGAC&TcAC&TTTGAGGTGG?~CGG&GTCT~A 2346 
~15 K A I T Q I V * 721 

2449 rGrr~rx¢m~s~r~T~rcc^c~h~¢mrcc^Trcrr~cc~c~^c0c^^c~cAm~rT~cr~^^~crrmTr~r~r~^~c~¢r~ 2sso 

2551 ~TCCCATTAAAAAA 2576 

Figure 4. Sequence of the zwlO cDNA. The nucleotide sequence of the coding strand of the longest zwlO cDNA clone, with position 1 
assigned to the Y-most base. The ATG at 103 is the most likely site of initiation, but other ATGs (at 232, 343, and 400) are also possible 
choices (see text). A stop codon (TAG) at position 2,268 has been signified by an asterisk. The sequence is thus postulated to contain 
a 5'-untranslated region from nucleotides 1-102, and a T-untranslated region from nucleotides 2,269-2,576. A single long open reading 
frame encodes a predicted protein sequence, here represented by the single-letter code, of 721 amino acids in length, having a molecular 
weight of 82,115. These sequence data are available from EMBL/GenBank/DDBJ under accession number X64390. 

actin5C promoter (Bond and Davidson, 1986), this same 
band is clearly overproduced (Fig. 5 A). 

Evidence that the antibody reacts specifically with the 
zwlO gene product is provided by the analysis of extracts 
from larvae hemizygous for mutant zwlO alleles. The zwl051 

and zwlO ~:2° mutants have no detectable 85-kd zwlO protein 
(Fig. 5 B). The zwlO 51 allele does not appear to encode sta- 
ble zwlO cross-reactive polypeptides, and is thus likely to 
represent the null state of the locus. This result is expected, 
because the zwl051 gene is interrupted by a DNA insertion 
(Fig. 2), These exogenous sequences are located within an 
exon near the middle of the coding sequence (see Materials 

and Methods), between nucleotides 1,220 and 1,375 (Fig. 4). 
Males of genotype zwlO~L2o/Y display a band of ,'~75 kD 
that we presume to be a truncated product caused by a non- 
sense or frameshift mutation; the amount of this 75-kD pro- 
tein is reduced relative to the amount of 85-kD zwlO protein 
in wild type (Fig. 5 B). 

Immunolocalization of the zwlO Antigen 

To determine the location of zwlO protein at different stages 
of the cell cycle, we chose to examine mitosis in syncytial 
blastoderm embryos by indirect immunofluorescence using 
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Figure 5. Detection of the zwlO protein on Western Blots. (A) 
The zwlO protein is recot, niTed by purified antibodies. Protein ex- 
tracts from Drosophila Schneider Line 2 tissue culture cells ($2), 
0-16-h-old embryos, and Schneider cells transfected with a con- 
struct placing the zwlO eDNA under the control of the high-level 
act/nSC promoter ($2 +pPAC-zwlO) were subjected to SDS-PAGE 
and blotted, followed by detection with an affinity-purified poly- 
clonal antibody to zwlO epitopes (see Materials and Methods). The 
84-kd zwlO protein (arrowhead, left) is overexpressed when pPAC- 
zwlO is tran.,~,xl into $2 cells. (B) The zwlO protein is altered 
in zwlO mutants. In wild-type larvae Oane 1) the zwlO protein ap- 
pears as a single band of 85 kd (arrowhead, left). In zwlO sl larvae, 
there is no detectable protein of this size present (lane 2). In 
zwlO ~sa~ larvae (lane 3), protein of the wild type size is also not 
observed, and is replaced by a cross-reacting protein of '~75 kD 
present in lower abundance (smaller arrowhead, right). Total pro- 
tein from two third-instar male larvae of the appropriate genotype 
was loaded in each lane. Anti-zwlO crude serum was diluted 1/700. 
(C and D) Reaction of the filters depicted in A and B, respectively, 
with antibody to a 54-kD Drosophila protein (R. Gandhi and M. L. 
Goldberg, manuscript in preparation) as a loading control. 

the purified antibodies described above. Distinctive patterns 
are observed at different stages of mitosis. The progression 
of these zwlO staining patterns through the cell cycle is also 
identical in the mitotic domains of cellularized embryos 
(Foe, 1989) and in larval neuroblast cells, so the observed 
distribution ofzwlO protein is not specific to syncytial blasto- 
derm stages 9-13 (data not shown). 

Prometaphase to Metaphase. During interphase and most 
of prophase, the zwlO protein appears to be excluded from 

the nucleus (see below). At a time we assume corresponds 
to the partial breakdown of the nuclear envelope at the begin- 
ning of prometaphase (Stafstrom and Staehelin, 1984; 
Hiraoka et al., 1990), zwlO antigen starts to coalesce in the 
nuclear domain (Fig. 6, a and d). The staining is mostly 
amorphous and surrounds the condensing chromosomes, but 
a few discrete spots appear to be recognized by the antibody. 

By metaphase, zwlO protein becomes localized to discrete, 
filamentous structures residing in the central, longitudinal 
portion of the spindle (Fig. 6, b and e; Fig. 7, A-C). The 
strands originate near the centrosomes at opposite poles of 
the spindle apparatus, but zwlO staining of the centrosomes 
per se is not observed (Fig. 7 B). Remarkably, and in con- 
trast with the total tubulin pattern, zwlO antigen appears to 
pass directly through the chromosomal mass at the meta- 
phase plate (Fig. 7, A and C). 

Anaphase. At the beginning of anaphase, zwlO antigen be- 
comes excluded from the region of the metaphase plate, and 
the filaments shorten from their ends nearest the centro- 
somes. As a result, zwlO protein becomes concentrated into 
punctate structures at the leading edges of the separated 
chromatids (Fig. 6, c and ~ Fig. 7, D--F). At this level of 
resolution, the number and position of these structures is 
consistent with localization at the centromere/kinetochore 
region of individual chromatids. The zwlO protein appears 
to remain at or near the kinetochores through the remainder 
of anaphase, although the shortening of kinetochore 
microtubules (KMTs) at these later stages of anaphase 
renders resolution in the kinetochore-centrosome interval 
difficult (Fig. 6, g and j) .  

The transition between the metaphase and early anaphase 
states ofzwlO is very rapid. Mitosis in syncytial Drosophila 
embryos is metasynchronous: division starts at successively 
later times in nuclei increasingly closer to the embryonic 
equator, forming a mitotic wave (Foe and Alberts, 1983). As 
seen in Fig 8, adjacent nuclei can display the mature 
metaphase and anaphase zwlO patterns, but intermediate 
structures are sometimes observed. Although the rate of mi- 
totic wave propagation is quite variable, at an average value 
of 100/~m/min (Foe and Alberts, 1983), and given the ap- 
proximate distance between adjacent nuclei (,~20 ~m at 
blastoderm stages 11-12), we estimate that the transition be- 
tween the metaphase and anaphase states ofzwlO may be ac- 
complished in periods as short as 10-12 s. 

Telophase, Interphase, and Prophase. At the beginning 
of telophase, the zwlO antigen becomes excluded from the 
domain of the reforming nucleus (Fig. 6, h and k). Staining 
is also restricted to the extranuclear cytoplasm during inter- 
phase (Fig. 6, i and l) and prophase (not shown). 

Discuss ion  

zwlO Mutations Affect Chromosome Segregation 

Several observations indicate that zwlO* function is neces- 
sary to ensure accurate chromosome segregation during cell 
division in most, if not all, Drosophila tissues. (a) A 
temperature-sensitive mutation of zwlO (zwlO ~) caused a 
120-fold increase in the incidence of clones of homozygous 
mulu'ple wing hair (mwh) ceils in the wings of zwlO~/Y; 
mwh/+ males raised at semi-restrictive temperature. Addi- 
tional tests implicated an elevated frequency of mitotic non- 
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Figure 6. Immunolocalization of the zwlO protein during the cell cycle in wild-type syneytiai blastoderm embryos. Embryos were fixed, 
stained, and processed for indirect immunofluorescence as described (see Materials and Methods). (a-c and g-i) zwlOprotein localization 
is shown; below each of these is shown the corresponding DNA staining (d-f and j-l). (a and c) Prometaphase; zwlO protein moves into 
the nuclear domain; Imnctate staining is visible. (b and e) Metaphase; zwlO filamentous strands are completely formed; considerable sub- 
structure is apparent. (c and f)  Anaphase; zwlO protein is rapidly relocalized to the kinetochore regions of separating sister chromatids 
(arrows). (g and j )  Late anaphase; zwlO protein remains on kinetochores (arrows). (h and k) Telophase; zwlO antigen disappears from 
kinetochores. Faint cytoplasmic staining is apparent. (i and/) Interphase; no nuclear localization is visible. Bar, 10 t~m. 

disjunction in the formation of these somatic clones (Smith 
et ai., 1985). (b) As discussed above, a high proportion of 
zwlO mutant larval brain neuroblast cells are aneuploid. 
Many anaphase figures in these cells axe obviously aberrant. 
(c) Upon completion of the second meiotic division in 
escaper males, spermatid nuclei containing different num- 

bers of chromosomes are produced (our own unpublished 
observations). It is not presently clear whether missegrega- 
tion occurs during the first or second meiotic divisions, or 
during earlier mitoses in the male gernfline. (d) Maternally 
supplied zwlO gene product is necessary for embryogenesis, 
as shown by germline clonal analysis (Perrimon et al., 
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Figure 7. Localization of zwlO protein in comparison with chromosomes, centrosomes, and tubulin. The embryos were processed for indi- 
rect immanofluorescence and confocal microscopy as outlined in the Materials and Methods. Superimposed images were obtained from 
the same focal plane. (A) At metaphase, zwlO protein (orange) filaments extend through the chromosomal mass (blue) and have considerable 
substructure (particularly apparent in the nucleus at far left). (B) Centrosomes (yellow) and the zwlO protein (red) at metaphase, zwlO 
protein filaments extend to, but do not overlap with, centrosomes. (C) Tubulin staining (green) and zwlO protein (red) at metaphase. The 
zwlO protein is localized to only a subsection of the mitotic spindle (arrow; regions of overlap between zwlO and tubnlin are yellow.) (D) 
Regions in or near kinetochores of chromosomes (blue) are the sites of zwlO protein localization (red) during early-mid anaphase. (E) 
At early anaphase, centrosomes (yellow; solid arrows) are well resolved from zwlO (red; outline arrow). (F) zwlO (red) is restricted to 
discrete spots at the centrosome-distal portion of each hemispindle at anaphase onset (tubulin staining is green while overlap is yellow). 
Thus, zwlO is not found along the length of the KMTs at this stage of the cell cycle. Bars, 10 #m. 

1989). In addition, syncytial blastoderm embryos derived 
from zwlO escaper females (see below) have abnormally 
spaced nuclei of aberrant morphology (our own unpublished 

results). 
These findings may be understood in terms of the varying 

requirements for cell division at different stages in Drosoph- 

i/a development. Maternally derived gene products within 
the egg must be used to construct the molecular machinery 
required for the rapid embryonic mitoses after fertilization, 

because little transcriptional activity occurs during this 
period. For many proteins involved in mitosis, the maternal 
contribution is sufficient to allow development into larval 
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Figure 8. Rapid relocalization 
of the zwlO protein. (a) zwlO 
antigen staining; the cone- 
sponding DNA staining is pre- 
sented in b. Metaphase zwlO 
protein strands (/arge arrow at 

left) are replaced in an adja- 

cent nucleus by kinetochore 
region stainirlg (smaller ar- 
rows to the right) at anaphase. 

stages (Gatti and Baker, 1989). Larval growth per se is ac- 
complished through an increase in cell size, accompanied in 
some tissues by polytenlzation. Cell division within the larva 
is in general restricted to tissues that will play a role in subse, 
quent adult morphogenesis: the nervous system, imaginal 
discs, and abdominal histoblasts. 

The phenotype of zwlO mutants is consistent with this pic- 
ture. Because sufficient zwlO product is supplied by zwlO/+ 
heterozygous mothers, zwlO embryos can survive as larvae. 
However, zygotic expression of zwlO in the larval tissues 
enumerated above would be necessary for further develop- 
ment. Mitosis in larval brain neuroblasts and the imaginal 
disks giving rise to the adult cuticle would therefore be ab- 
normal, resulting in substantial late larval/pupal lethality 
(Gatti and Baker, 1989). On the other hand, effects of zwlO 
mutations on embryogenesis would only be observed when 
zwlO protein within the egg is depleted, as in eggs produced 
by homozygous escaper females. 

Cytological Effects of  zwlO Mutations 

The evidence presented above clearly shows that mutations 
in the zwlO gene cause aberrant anaphases within larval neu- 
roblasts, in turn generating a high proportion of aneuploid 
brain cells. We have also verified that the phenomenon of 
PSCS is an additional consequence of zwlO lesions in 
colchicine-treated neural ganglia. However, the proposition 
that the anaphase defects observed are due to PSCS before 
anaphase onset remains questionable, because of uncertain- 
ties about the state of cells exposed to colchicine and because 
of our lack of knowledge concerning the forces that deter- 
mine sister chromatid interactions. 

The consideration of published precedents for the cytolog- 
ical phenotypes discussed above may be instructive in specu- 
lations concerning potential functions of the zwlO § protein. 
Lagging sister chromatids have been postulated to result 
from damage to the centromere/kinetochore produced by 
drugs (Brinkley et al., 1985; Hsu and Satya-Prakash, 1985), 
by injection with anticentromere antibodies (Bernat et al., 
1991), or by microirradiation of kinetochores with a laser 
(McNeill and Berns, 1981). PSCS has been documented in 
two Drosophila meiotic mutants, orientation disruptor (ord) 
(Goldstein, 1980; Lin and Church, 1982) and mei-S332 
(Davis, 1971; Kerrebrock et al., 1992). Finally, several cyto- 
logical features of zwlO mutations, including aneuploidy and 
lagging chromatids at anaphase, have been noted both in 
Drosophila mutant for the gene rough deal (rod) (Karess and 

Glover, 1989) and in cell cultures derived from patients with 
the human genetic disorder Roberts Syndrome (Jabs et al., 
1991). 

A puzzling phenotypic consequence of mutations in zwlO 
arises from the survival of a small number of "escaper" adults 
of both sexes that are either hemizygous or homozygous for 
all known zwlO mutations. Both male and female escapers 
are sterile and exhibit a variety of cuticular defects (Shannon 
et al., 1972). Although the sterility of zwlO escaper females 
can be explained by embryonic mitotic defects we have ob- 
served in their progeny, the fact that mutant hemizygous 
males contain immotile sperm (Shannon et al., 1972; our 
own unpublished observations) is more difficult to under- 
stand. Examination of the "onion stage" of spermatogenesis 
in mutant testes shows the presence of variable-sized sper- 
matid nuclei, indicating that chromosomal nondisjunction or 
chromosome loss has occurred in the male germline. How- 
ever, this alone does not account for sperm immotility: even 
sperm that contain only the tiny fourth chromosome are mo- 
tile and capable of fertilization (Lindsley and Grell, 1969). 
The zwlO product might therefore play an additional role in 
spermatogenesis or sperm function that is independent of 
chromosome segregation. 

zwlO Protein Is Dynamically Localized in 
Mitotic Structures 

Embryonic zwIO protein undergoes cell-cycle dependent 
redistribution to different components of the mitotic appara- 
tus. At the prophase-prometaphase transition, zwlO protein 
becomes localized in the nuclear domain, and becomes as- 
sociated with, or forms, a filamentous structure which per- 
sists through metaphase. A very rapid transition to a region 
at or near kinetochores is seen coincident with anaphase on- 
set. At telophase, the zwlO protein is excluded from the 
reforming nuclear domain and becomes dispersed in the 
cytoplasm. The dynamic nature of zwlO distribution through 
these cell cycles is most likely because of intracellular move- 
ment of the same protein pool, rather than to reflect new pro- 
tein synthesis, given the rapidity of embryonic nuclear divi- 
sions (Foe and Alberts, 1983). 

The nature of the structures recognized by anti-zwlO anti- 
bodies at metaphase and anaphase is uncertain. It is possible 
that the zwlO protein filaments form an independent structure 
not directly associated with MTs. Alternatively, some man- 
ner of zwlO association with spindle MTs would seem possi- 
ble. It is clear that the zwlO antigen could not be associated 
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with all MTs within the spindle, but is instead generally 
confined to a narrower region than the wide barrel-shaped 
spindle (Fig. 7 C). Thus, zwlO protein may be specifically 
associated with the KMTs, in accordance with its movement 
to the kinetochore region at anaphase onset. Moreover, al- 
though zwlO protein colocaliTes with the leading edges of the 
chromosomes during anaphase at the resolution of light mi- 
croscopy, we have no evidence that this site corresponds to 
the kinetochore per se. The resolution of these issues awaits 
further ultrastructural and biochemical studies. 

The zwlO protein does not appear to correspond to any 
of the large number of proteins already known to inhabit 
the mitotic spindle or the kinetochore/eentromere. Such 
proteins have been identified by several protocols: as 
microtubule-associated proteins (MAPs) based on their 
copurification with MTs (reviewed by Olmstead, 1986; Kel- 
logg et al., 1989), on the basis of antisera obtained by immu- 
nization against nuclei (Frasch et al., 1986) or mitotic chro- 
mosome scaffolds (Compton et al., 1991), or as polypeptides 
recognized by antisera from various patients with autoim- 
mune disease (CREST sera; Moroi et al., 1980). Recently, 
it has also been observed that cytoplasmic dynein is as- 
sociated with kinetoehores and the spindle (Pfarr et al., 

1990; Steuer et al., 1990; Wordeman et al., 1991). To our 
knowledge, none of these or other components show the 
same pattern of cell cycle-specific localization as zwlO (see 
Brinkley, 1990; Pluta et al., 1990; Pankov et ai., 1990; 
Earnshaw and Cooke, 1991). 

The structure assumed by the zwlO antigen at metaphase 
is strongly evocative of the location of an antigen called 
spoke (Paddy and Chelsky, 1991). Anti-spoke antibodies 
stain KMTs, revealing a filamentous structure with a regular 
helical substructure, similar to that seen in Fig. 6, b and e 
and Fig. 7, A-C However, we do not believe that zwlO 
represents the Drosophila homolog of spoke: unlike spoke, 
the metaphase structures identified by anti-zwlO antibodies 
extend through the chromosomal mass. Furthermore, spoke 
is not redistributed onto kinetochores at anaphase, and in- 
stead remains associated with KMTs (Paddy and Chelsky, 
1991). It nonetheless remains possible that the zwlO meta- 
phase structure is formed in association with a putative Dro- 
sophila spoke polypeptide. 

The Role of zwlO in Mitotic Chromosome Segregation 

Although the cytological evidence clearly shows that the 
zwlO product is required to ensure the accuracy of mitotic 
chromosome segregation, several unresolved issues pre- 
clude precise determination of its molecular function. Per- 
haps most importantly, we do not yet understand the 
significance of the high levels of PSCS observed in colchi- 
cine-treated zwlO neuroblasts. It is unclear whether this 
phenomenon monitors some indirect but nonetheless differ- 
entiai response of zwlO and wild-type brain cells to colchi- 
cine, or instead indicates differences in some inherent prop- 
erty of the centromeric attachment between sister chromatids. 
In addition, because zwlO mutations do not result in cell cy- 
cle arrest, zwlO activity cannot be unambiguously ascribed 
to a particular phase of the cell cycle. In spite of these gaps 
in our knowledge, the available cytological and immunocy- 
tochemical results nonetheless provides some clues to the 
possible roles played by the zwlO protein. 

zwlO protein in the structure seen during metaphase that 

is roughly coincident with the spindle could be imagined to 
function in any of several ways. This protein could be of im- 

portance for spindle organization, for chromosome attach- 
ment or anchorage to the spindle, for ensuring the bipolar 
cormeetion of sister kinetoehores to opposite spindle poles, 
or for chromosomal movement during eongression to the 
metaphase plate. However, preliminary three-dimensional 
observations in zwlO mutant brains and in embryos produced 
by homozygous mutant germline clones show no obvious 
defects in the structures of the metaphase spindle or of the 
metaphase plate (our own unpublished results). Of course, 
we cannot exclude the possibilities that subtle metaphase 
defects occur, or that zwlO activity during metaphase is re- 
quired for subsequent anaphase movements. In addition, it 
should be remembered that one phenotypic effect of zwlO 
mutations, that of PSCS, presumably occurs during a 
metaphase-like state induced by colchicine (Gonz,51ez et al., 
1991). 

We believe that hypotheses predicting an activity of zwlO 
protein at anaphase onset (rather than earlier at metaphase) 
are more compatible with the apparent normality of recta- 
phase in mutants and with the extremely rapid transition be- 
tween metaphase and anaphase locations of the zwlO antigen. 
The nature of the signals governing entry into anaphase re- 
main quite mysterious (Murray et al., 1989), and little is un- 
derstood of the crucial process that breaks the centromeric 
connection between sister chromatids at the beginning of 
anaphase (Murray and Szostak, 1985). We can thus only 
guess at the manner by which the movement of zwlO to the 
kinetochore region at anaphase onset could influence the ac- 
curacy of sister chromatid disjunction. 

zwlOcould be imagined to be a partially redundant compo- 
nent of a system positively required to activate sister chro- 
matid separation or chromatid movement to the poles. Alter- 
natively, zwlO protein could act as a feedback control 
rendering certain events at anaphase onset dependent upon 
the successful completion of earlier events. For example, 
zwlO might help ensure that anaphase will not begin if the 
spindle is not intact or if one or more chromosomes have not 
yet become properly aligned at the metaphase plate. It has 
been suggested that kinetochores unattached to the spindle 
may generate signals blocking anaphase onset (Zirkle, 1970; 
Ault and Nicklas, 1989; Rieder and Alexander, 1989; Bernat 
et al., 1991). Recently, "checkpoint" genes that apparently 
fulfill such a role have been found in yeast by Li and Murray 
(1991) and by Hoyt et al. (1991). Because we observe no obvi- 
ous changes in cell cycle progression in zwlO mutants (Table 
II), delays of anaphase onset caused by zwlO ~ activity 
would have to be quite short. In a different scenario, zwlO ÷ 
might render sister chromatid separation dependent upon M 
phase promoting factor (MPF) inactivation, which is nor- 
mally a precondition for most anaphase events (Murray et 
al., 1989). Loss of such zwl0+-mediated feedback inhibi- 
tion could potentially explain the PSCS phenomenon ob- 
served in colchicine-treated mutant neurohlasts that retain 
high levels of MPF activity (Whitfleld et ai., 1990). 

The unexpected distribution of the zwlO protein as a func- 
tion of the cell cycle remains difficult to interpret in terms 
of molecular activities that explain the observed phenotypes. 
We nonetheless believe that these initial results are suf- 
ficiently intriguing that future studies of the zwlO protein and 
phenotype will provide unique insights into the function of 
the spindle and of the centromere/kinetochore. 
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