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RESEARCH ARTICLE
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Australia, 7 Department of Terrestrial Zoology, Western Australian Museum,Welshpool, Western Australia,
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West Perth, Australia, 10 Frogwatch NT, Wagaman, Northern Territory, Australia, 11 El Questro Wilderness

Park, Kununurra Western Australia, Australia

* jseandoody@gmail.com

Abstract

In the wet-dry tropics, animal species face the major challenges of acquiring food, water or

shelter during an extended dry season. Although large and conspicuous animals such as

ungulates and waterfowl migrate to wetter areas during this time, little is known of how

smaller and more cryptic animal species with less mobility meet these challenges. We

fenced off the entire entrance of a gorge in the Australian tropical savanna, offering the

unique opportunity to determine the composition and seasonal movement patterns of the

small vertebrate community. The 1.7 km-long fence was converted to a trapline that was

deployed for 18-21 days during the early dry season in each of two years, and paired traps

on both sides of the fence allowed us to detect the direction of animal movements. We pre-

dicted that semi-aquatic species (e.g., frogs and turtles) would move upstream into the wet-

ter gorge during the dry season, while more terrestrial species (e.g., lizards, snakes,

mammals) would not. The trapline captured 1590 individual vertebrates comprising 60 spe-

cies. There was a significant bias for captures on the outside of the fence compared to the

inside for all species combined (outside/inside = 5.2, CI = 3.7-7.2), for all vertebrate classes,

and for specific taxonomic groups. The opposite bias (inside/outside = 7.3, N= 25) for turtles

during the early wet season suggested return migration heading into the wet season. Our

study revealed that the small vertebrate community uses the gorge as a dry season refuge.

The generality of this unreplicated finding could be tested by extending this type of survey to

tropical savannahs worldwide. A better understanding of how small animals use the land-

scape is needed to reveal the size of buffer zones around wetlands required to protect both
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semi-aquatic and terrestrial fauna in gorges in tropical savannah woodland, and thus in eco-

systems in general.

Introduction

The wet-dry tropics are characterized by distinct wet and dry seasons and are found on every

major continent. While the wet season is often plentiful, the dry season challenges animals to

acquire resources or survive over many months with little to no precipitation. For many spe-

cies, the wet-dry seasons drive an intra-year ‘boom to bust’ cycle which requires highly special-

ized ecological traits to evolve [1, 2]. Understanding how animals respond to dry season

conditions is important—we would expect prolonged dry conditions to impact population

dynamics and ultimately shape an organism’s physiology, ecology and behavior [3–5]. Reveal-

ing these responses is also critical for predicting the impacts of anthropogenic influences on

species and population persistence. For example, climate change models predict increases in

the length and intensity of dry seasons over large areas such as the Amazon Basin [6].

Generally, animals stressed by prolonged dry conditions can either migrate or aestivate dur-

ing the dry season. Many species migrate with the seasonal rhythms in search of water and

food, including African ungulates such as wildebeest, gazelles and zebras. As the dry season

intensifies, they migrate hundreds of kilometers toward greener pastures, returning with the

onset of the wet season several months later [7, 8]. Similarly, many waterfowl species utilize

natural and artificial wetlands as alternative refugia as floodplains retract throughout the dry

season [9–11].

Less well-known is how smaller and more cryptic vertebrates with less mobility meet the

challenge of dry season conditions. Movements of five species of snakes followed retreating

water levels during the dry season in seasonally-flooded wetlands [12, 13]. Not surprisingly,

many semi-aquatic species that require rainfall and temporary wetlands to breed or feed will

often aestivate underground (e.g., frogs, [14]. Fish communities and crocodilians use river

channels and permanent lagoons as dry season refugia [15–17], and in smaller systems fish can

escape drying conditions by seeking refuge in the burrows of other animals [18, 19]. Mosquitos

use non-flowing water bodies as dry season refugia, from which they are able to migrate a few

kilometers to feed [20].

Understanding dry season responses in smaller terrestrial vertebrates would be particularly

invaluable in Australia, where terrestrial animal communities consist almost entirely of small

to medium-sized vertebrates. For example, at a maximum size of<30 kg the dingo, Canis

lupus, is Australia’s largest terrestrial predator [21]. The paucity of large native herbivores and

predators in Australia focuses attention on small to medium-sized animals when considering

the ecology and conservation of vertebrate communities (e.g., [22, 23].

We might expect heterogeneity in the responses of species to dry season conditions within a

given animal community, given a diversity of life history strategies. For example, some species

such as burrowing frogs might move less horizontally because they can burrow during dry con-

ditions. A formal test of the dry season responses of an animal community would require

studying movement patterns in a multitude of species spanning the early dry season (e.g., using

VHF or GPS-based telemetry). Collectively such studies would be prohibitively costly, both

financially and logistically. Alternatively, a large-scale pitfall trapline with paired traps on the

inside and outside of the fence could detect any bias in movement direction of a wide range of

species in an animal community. This method is often used in determining the timing of

Gorges Provide Refugia for Animal Communities in Tropical Ecosystems
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breeding in amphibians; a bias in capture rates on the outside of a fence indicates movement to

the breeding site, whereas the opposite bias reveals post-breeding movements away from the

breeding site [24].

We completely fenced off the entrance of a gorge in the Australian tropical savanna escarp-

ment, as part of a conservation effort to exclude the invasive cane toad (Rhinella marina), offer-

ing a rare opportunity to extensively determine the composition of the small vertebrate

community. The 1.7 km-long fence was converted into a pitfall trapline that was employed for

18–21 days during the early dry season in each of two years (2011 and 2012), and paired traps

on both sides of the fence allowed us to detect the direction of animal movements. We hypoth-

esized that aquatic species (e.g., non-burrowing frogs, turtles) would move upstream into the

gorge during the dry season, while more terrestrial species (e.g., lizards, snakes, and mammals)

would not. We discuss the potential for the generality of our findings for the Kimberley region,

and for other similar systems in the wet-dry tropics.

Methods

Study area, fence conversion and trapping methods

Approvals for the research reported herein were obtained by the Department of Parks and

Wildlife, Western Australia (SF009165) for animal research, and from the Animal Ethics Com-

mittee of the School of Environmental and Life Sciences, Newcastle University (A-2012-214).

The site accessed is owned by El Questro Station and managed by Delaware North as the El

Questro Wilderness Park; we received full approval to access the site. Threatened species were

not captured or handled during the study.

The study was conducted at Emma Gorge, a 1.6 km-long sandstone gorge in the Cockburn

Ranges of El Questro Wilderness Park, Western Australia (15°53’42.12” S, 128°7’56.84” E). The

ecosystem is open savannah woodland and is situated in the wet-dry tropics. The dry season

(May-October) receives very little rainfall (< 60 mm), compared to>800 mm of rain falling

during the wet season (November-April) (Australian Bureau of Meteorology). The Cockburn

ranges rise to ~400 m above the adjacent floodplain, and are dissected by numerous sandstone

gorges.

The upstream part of Emma Gorge commences at a waterfall, whereas Emma Creek contin-

ues downstream between cliffs and scree slopes ranging ~100–200 m high. The creek

averages< 0.5 m deep and splits into two channels that rejoin further downstream where

water flows out of the gorge and into the low savannah woodland (Figs 1 and 2). During our

study the open savannah grassland/woodland was dominated by a scattered overstory of cab-

bage gum (Eucalyptus confertiflora), northern salmon gum (E. bigalerita), Darwin woollybutt

(E.miniata) and silky-leafed grevillea (Grevillea pteridifolia).

The entrance to Emma Gorge included a cattle fence that spanned 1.2 km across the alluvial

floodplain, terminating at rocky hills associated with the gorge walls (Fig 2). In March 2011,

volunteers for the Stop the Toad Foundation converted this fence into a cane toad (Rhinella

marina) exclusion fence (Figs 1 and 2), using a design similar to that used to exlcude invasive

cane toads from artificial waterways in the Northern Territory [25]. Conversion involved rein-

forcing the fence with 1 m-high shade cloth, attached to the fence using c-clips, and either bur-

ied in the ground or folded towards the outside and covered with rocks in situations where the

substrate was too hard to penetrate with a shovel. In addition, the ends of the fence were

extended up the gorge slopes by 0.3 km to the west and 0.2 km to the east, creating a 1.7 km-

long fence. The ends of the fence terminated at cliffs (Fig 2). The fence crossed two branches of

Emma Creek, a perennial system that remains running throughout the dry season.

Gorges Provide Refugia for Animal Communities in Tropical Ecosystems

PLOSONE | DOI:10.1371/journal.pone.0131186 July 2, 2015 3 / 14



Fig 1. Study area, showing the 1.7 km-long pitfall trapline across the entrance to EmmaGorge, in QuestroWilderness Park, in northernWestern
Australia.Colors link points along the trapline with the elevation profile.

doi:10.1371/journal.pone.0131186.g001
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In the present study the toad fence was converted into a trapline by adding 47 traps in 2011

(26 pitfall traps and 21 funnel traps) and 62 traps in 2012 (the same 26 pitfall traps and 36 fun-

nel traps). Pitfalls consisted of buckets (20 liter, 31 cm dia X 41 cm high) sunk into the ground

and funnel traps (75 cm L x 18 cmW x 18 cm H; W.A. Poultry Equipment, Baldivis, Western

Australia) were placed against the fence. Traps were paired such that each trap on one side of

the fence was mirrored by another of its type on the opposite side. Distance between traps var-

ied from 10–30 m and was based on equal dispersion of available traps along the trapline. To

prevent captured animals from desiccating and overheating, wet absorbent cloths were used in

all traps and additional shade and protection was provided in buckets (plastic plates) and fun-

nel traps (vegetation).

Traps were open for 24 hours and checked once a day between 0600 and 1000 hrs during

the following periods: 2011: 18 days during 27 May-23 June; 2012: 21 days during 25–29 April,

3–8 May, and 30 May- 8 June. Captured animals were identified and immediately released on

the opposite side of the fence from which they were captured, based on the assumption that

Fig 2. (A) Aerial view from the southwest of Emma Gorge, showing the 1.7 km-long trapline (arrows)
crossing the dirt road into Emma Resort. Note that animals moving across the west wing (white arrows) of the
trapline towards the gorge would be moving from drier savannah woodland (brownish) towards wetter
riparian areas (greenish), while animals crossing the east wing (yellow arrows) towards the gorge would be
moving from one riparian area to another. (B) Ground view of the west wing of the EmmaGorge trapline,
showing the fence in savannah woodland in the foreground and the escarpment in the background.

doi:10.1371/journal.pone.0131186.g002
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animals were attempting to move to that side when they were captured. Animals were released

in shade to prevent stress from desiccation.

Turtles (Chelodina burrungandjii) captured in the trapline were individually marked by fil-

ing notches in the carapacial edge as part of a long-term mark-recapture study, and were

released at their point of capture. We hand captured turtles in the gorge (by snorkeling during

the day and spotlighting at night) opportunistically 6–12 times each year from early April to

late June. Captured turtles were individually marked as above and immediately released at

their point of capture on the opposite side of the fence.

Data Analyses and approvals

We analyzed the data for all species combined, and for taxonomic and behaviorally distinct

groups to see how differently the groups behaved, and how widely applicable the general trend

of moving into the gorge was. Three tiers of groups were investigated: tier 1 identified the dif-

ferent vertebrate classes (amphibians, reptiles and mammals); tier 2 groups indicated amphib-

ian ecotype (obligate burrowers vs. ‘typical’ frog), mammal infraclass (eutherian vs marsupial),

and reptile order/suborder (lizard, snake, turtle); tier 3 identified lizard family (Gekkonidae,

Varanidae, Pygopodidae, Scincidae), and snake ecotype (aquatic vs terrestrial). Obligate bur-

rowers included the ornate burrowing frog (Platyplectrum ornatum), the toadlet (Uperoleia

spp.), and the northern spadefoot toad (Notaden melanoscaphus). These groups were separated

on the rationale that obligate burrowers should be less inclined to seek refuge in wet gorges

during the dry season (because they would be more inclined to burrow to escape the dry sea-

son). Metamorphic frogs were deleted from the analyses because they would be expected to be

dispersing away from water, rather than in a random manner, under a null model (see S1

Table). Snakes were divided into semi-aquatic and terrestrial ecotypes using the rationale that

semi-aquatic snakes (Tropidonophis mairii) are more dependent upon water, and so might be

more inclined to seek refuge in wet gorges.

For each group, mean daily counts were calculated as the number of individuals of each spe-

cies captured divided by the number of days the traps were open. To investigate differences in

mean daily counts for each subgroup within a group between the inside and outside of the

fence, a Generalised Linear Mixed Model (GLMM) with Poisson distribution and log link func-

tion was performed in SAS, with fixed effects for the full factorial model of trap position, year,

and group to test if catch rates differed either side of the fence and whether they varied between

years and/or between groups. Variation due to other sources of variation were not central to

the research question so were modeled as random effects. The primary random term was asso-

ciated with assessing the degree to which day to day variability differed between the two years.

Three additional terms tested whether this day by year term varied by trap position, groups or

the combination of trap position by group. If a random effect could be estimated it was kept in

the model to ensure that fixed effects estimates would not be underestimated by ignoring asso-

ciated random effects. Where models did not converge initially, random effects with the small-

est level of variability were removed until the model converged. From the fitted model we

obtained the mean daily counts along with ratios of counts from the outside divided by the

inside of the fence for each of the animals groupings. The 95% confidence intervals of mean

counts and the ratio of counts of outside/inside were determined from appropriate combina-

tions of terms on the linear predictor (based on the log link function). The associated standard

errors and confidence intervals were converted from the linear predictor to the original scale

by exponentiation. As part of the modelling process, overdispersion was evaluated using the

ratio of the Pearson Chi-Square/DF. Where the ratio exceeded one, we observed the effect of

adding random intercept terms on the degree of overdispersion and if ratios returned to values

Gorges Provide Refugia for Animal Communities in Tropical Ecosystems
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close to ‘1’, we were satisfied that the random terms were sufficient to explain the overdisper-

sion. Because we looked for multiple effects within 7 groups, we applied a Bonferroni correc-

tion whereby we set the significance level to α = 0.05/7 = 0.007 to control family wise error rate

at α = 0.05. We determined the probability of a difference in mean number of daily captures

between the inside and outside of the fence (Pi,o) for a subgroup. Finally, we determined the

probability of an interaction between subgroup type, and the difference in mean number of

daily captures between the inside and outside of the fence (Pi,o�group).

In the case of turtles only, where the number trapped on the inside of the fence was zero, the

uncertainties for the mean counts (inside and outside) and the ratio (outside/inside) were

determined by a Bayesian approach and expressed as 95% credible intervals. No p-value exists

with the Bayesian approach; instead, Pr (0<8) = X means that the probability of ‘0’ being< ‘8’

= X. For the counts in or out, the credible intervals (c) were given using a conjugate uniform

gamma prior Gamma (a = 1, b = 0) and the posterior of the Poisson parameter was given as

Gamma (c+a, n+b), where the number of periods n was set to the number of trap days, 39. As

the gammas for each sample follow a chi-squared distribution, the credible interval for the

ratio was determined using an F distribution. The details for all these variables followed Lindley

[26]. The central value for the ratio was estimated as the median using the F distribution. There

were not enough captures for birds (n = 2) or dragon lizards (Agamidae, n = 2) to model these

groups, and these data were therefore excluded from statistical analyses.

Results

We captured 1590 individual vertebrates comprising 60 species, including amphibians

(N = 1290, 13 spp.), reptiles (N = 274, 39 spp.) and mammals (N = 24, 7 spp.) (Table 1). We

captured 719 individuals in 2011 and 871 individuals in 2012.

For all species combined, there was a significant bias for captures on the outside of the fence

compared to captures on the inside of the fence (p< 0.001), with an overall ratio of outside/

inside (O/I) of 5.2 (Table 2). For each of the tiered groups and subgroups, with the exception of

marsupials, there was a bias towards captures on the outside of the fence, although in a number

of cases the bias was not statistically significant (Table 2). There were no year effects for any

groups/subgroups in any of the models.

Amphibians were both trapped significantly more on the outside of the fence than the inside

(p< 0.001), demonstrating a very strong bias (O/I = 8.1; Table 2). Both obligate burrowing

frogs and ‘typical’ frogs showed a strong, significant bias for being captured on the outside of

the fence (O/I = 6.7 and 10.1, respectively, p< 0.001 for both), and the bias for typical frogs

was greater than that for obligate burrowing frogs, but not significantly so (pi,o�group = 0.093;

Table 2).

Reptiles showed the same pattern as amphibians, but to a lesser extent (p< 0.001; O/

I = 2.2). Within reptiles, all orders/suborders showed significant biases towards the outside of

the fence (Table 2; O/I = lizards 1.7, p = 0.006; snakes 3.7, p<0.001; turtles 12.5, probability

that zero is less than 8 [Pr (0<8)] 8 = 0.999). There were, however, differences between the

types, with the bias for turtles being much stronger (O/I = 12.5) than any other reptile type

(and indeed, any other group or subgroup). When broken down further, only skinks out of all

lizard subgroups were deemed to have a significant bias (O/I = 2.0; p = 0.001), although all liz-

ard types showed some (non-significant) bias (Table 2; O/I = geckos, 1.8; goannas, 1.7; pygo-

pods, 2.5). Skinks were considerably more numerous than the other lizard types. Both semi-

aquatic and terrestrial snakes showed a significant and strong bias for being captured on the

outside of the fence (O/I = 4.8, p< 0.001; 3.4, p = 0.006, respectively; Table 2), but the differ-

ence between the two was not significant (Table 2).

Gorges Provide Refugia for Animal Communities in Tropical Ecosystems
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Table 1. Diversity of vertebrate species captured in the pitfall trapline at EmmaGorge during 2011–2012. The three tiers reflect groupings based on
taxonomy or ecotype.

Species Tier 1 Tier 2 Tier 3 2011 2012 Total

AMPHIBIA Frogs

Crinia bilingua amphibian typical - 131 325 456

Limnodynastes lignarius amphibian typical - 0 6 6

Litoria caerulea amphibian typical - 1 0 1

Litoria nasuta amphibian typical - 82 73 155

Litoria copelandi amphibian typical - 0 7 7

Litoria inermis amphibian typical - 22 66 88

Litoria pallida amphibian typical - 0 10 10

Litoria rothi amphibian typical - 0 4 4

Litoria rubella amphibian typical - 1 0 1

Litoria wotjulumensis amphibian typical - 10 10 20

Notaden melanoscaphus amphibian burrowing - 0 1 1

Platyplectrum ornatum amphibian burrowing - 66 142 208

Uperolia spp. amphibian typical - 263 70 333

REPTILIA Lizards

Diporiphora arnhemica reptile lizard dragon 1 0 1

Ctenophorus caudicinctus reptile lizard dragon 1 0 1

Crenadactylus ocellatus reptile lizard gecko 0 1 1

Gehyra nana reptile lizard gecko 0 1 1

Heteronotia binoei reptile lizard gecko 5 8 13

Heteronotia planiceps reptile lizard gecko 2 0 2

Varanus acanthurus reptile lizard goanna 1 1 2

Varanus glebopalma reptile lizard goanna 2 1 3

Varanus gouldi reptile lizard goanna 0 2 2

Varanus scalaris reptile lizard goanna 3 8 11

Varanus tristis reptile lizard goanna 1 0 1

Delma tincta reptile lizard pygopod 2 0 2

Delma borea reptile lizard pygopod 1 3 4

Lialis burtonis reptile lizard pygopod 5 8 13

Carlia amax reptile lizard skink 3 7 10

Carlia gracilis reptile lizard skink 4 7 11

Carlia rufilatus reptile lizard skink 5 0 5

Carlia tricantha reptile lizard skink 2 6 8

Cryptoblepharus metallicus reptile lizard skink 3 0 3

Ctenotus halysis reptile lizard skink 0 1 1

Ctenotus inornatus reptile lizard skink 24 14 38

Ctenotus pantherinus reptile lizard skink 5 0 5

Ctenotus robustus reptile lizard skink 13 9 22

Ctenotus tantillus reptile lizard skink 1 0 0

Eremiascincus isolepis reptile lizard skink 3 2 5

Lerista borealis reptile lizard skink 2 0 2

Menetia maini reptile lizard skink 8 3 11

Morethia ruficauda reptile lizard skink 3 1 4

Proablepharus tenuis reptile lizard skink 5 1 6

Tiliqua scincoides reptile lizard skink 0 1 1

Snakes

(Continued)
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The bias for mammals (O/I = 1.8) was not statistically significant, possibly due to a modest

sample size (N = 25, Table 2). When broken into mammal infraorder, the bias increased for

eutherian mammals (O/I = 2.2) and was removed for marsupials (O/I = 1.0), although the bias

for eutherian mammals remained non-significant due to low counts (p = 0.13; Table 2).

Discussion

We demonstrated a strong bias in captures on the outside vs. the inside of an extensive trapline

that cut-off an entire gorge entrance, revealing, for the first time, the mass migration of an

entire community of small vertebrates into the gorge as the dry season progressed. This migra-

tion involved all classes of terrestrial vertebrate. The influx, combined with a larger bias in

more aquatic and semi-aquatic species (e.g., turtles, ‘typical’ frogs and semi-aquatic snakes),

implicate the dry season ‘retraction’ of water and moisture into the gorge as the cause of the

mass movements. Moreover, additional observations indicated that the bias was reversed as the

wet season began for turtles, indicating (return) movements out of the gorge during the wet

season. Movements from one wet area to another wet area across part of the fence (i.e., along

Emma Creek), combined with recaptures of turtles further within the gorge (Fig 1), shed doubt

on the explanation that the bias simply reflected smaller-scale movements from small dry

patches to small wet patches.

The interpretation of an influx of vertebrates into the gorge during the early dry season was

strongly supported by the data. For each of the groups and subgroups, with the exception of

marsupials, there was a bias towards captures on the outside of the fence (Table 2). Although

the bias was not statistically significant for a few sub-groups, this was generally correlated with

low samples sizes in those groups (see also confidence intervals in Table 2). Second, more

aquatic or semi-aquatic species showed a stronger bias for being captured on the outside of the

Table 1. (Continued)

Species Tier 1 Tier 2 Tier 3 2011 2012 Total

Antaresia childreni reptile snake terrestrial 1 1 2

Demansia papuensis reptile snake terrestrial 12 16 28

Furina ornate reptile snake terrestrial 1 3 4

Pseudechis australis reptile snake semi-aquatic 7 0 7

Pseudechis weigli reptile snake terrestrial 1 8 9

Ramphotyphlops guentheri reptile snake terrestrial 0 1 1

Ramphotyphlops kimberleyensis reptile snake terrestrial 1 1 2

Tropidonophis mairii reptile snake terrestrial 2 21 23

Turtles

Chelodina burrungandjii reptile turtle - 0 8 8

Mammals

Leggadina lakedownensis mammal eutherian - 3 2 5

Mus musculus mammal eutherian - 0 6 6

Planigale maculata mammal marsupial - 5 0 5

Pseudomys delicatulus mammal eutherian - 1 0 1

Pseudomys nanus mammal eutherian - 2 3 5

Rattus tunneyi mammal eutherian - 0 1 1

Zyzomys argurus mammal eutherian - 0 1 1

Birds

Coturnix ypsilophora bird - - 2 0 2

doi:10.1371/journal.pone.0131186.t001
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fence than less aquatic or semi-aquatic species, as demonstrated by higher O/I ratios in frogs

vs. other vertebrates, turtles vs. other reptiles, typical frogs vs. obligate burrowing frogs, and

semi-aquatic snakes vs. terrestrial snakes (Table 2). Third, there was no effect of year on our

results; the strong bias for captures on the outside of the fence remained consistent across both

years. This suggests that the mass migration was an annual event rather than a one-off phe-

nomenon (attributable to a large wet season, for example). Finally, mark-recapture data for tur-

tles indicate long distance movements up the gorge during the dry season, and subsequent

movement out of the gorge during the late dry/early wet season. We recaptured four of the tur-

tles (by hand) that were initially captured in the trapline, further upstream in the gorge. Three

individuals were captured 1.5–1.6 km upstream of the fence on 7 May 2012, 7 May 2013, and

13 May 2013; another was captured 100 m upstream of the fence on 5 May 2012. Opportunistic

captures of turtles by El Questro rangers (M. Bass, unpubl. data) during the onset of rainfall in

the very late dry season and early wet season (October-December) in 2012 revealed a reverse

bias, with 22 of 25 captures occurring on the inside of the fence (I/O = 7.3, N = 25). Most of

these captures were near the two creek crossings. Our null model was no difference in numbers

of animal captures between the inside and outside of the trapline. It could be argued, however,

that we should see higher capture rates inside the fence due to a humidity gradient (wetter

areas within the gorge). Regardless, we found higher capture rates on the outside of the fence.

Collectively, our data suggest that the small vertebrate community could spend as much as 5–6

months in the gorge during the dry season, although further taxon-specific studies are needed

to test this idea.

Table 2. Mean daily captures on the inside and outside of the fence for all groups, and the ratios of outside/inside. All means are fitted model means
[95% confidence intervals]. O/I = mean daily counts outside of fence/mean daily counts inside of fence, as defined by the fitted model means. Pi,o refers to the
probability of a difference in mean number of daily captures between the inside and outside of the fence for a subgroup. Pi,o*group refers to the probability of an
interaction between subgroup type, and the difference in mean number of daily captures between the inside and outside of the fence.

Group Sub-group Mean daily count inside
[95% CI*]

Mean daily count outside
[95% CI*]

O/I
ratio

O/I [95%
CI*]

Pi,o Pi,

o*group

All species 4.2 [2.7, 6.4] 21.6 [14.5, 32.2] 5.2 [3.7, 7.2] <0.001

vertebrate class amphibian 2.5 [1.6, 3.7] 20.1 [14.1, 28.7] 8.1 [5.7, 11.6] <0.001

mammal 0.4 [0.2, 0.9] 0.7 [0.3, 1.3] 1.8 [0.7, 4.5] 0.204 <0.001

reptile 2.0 [1.3, 2.9] 4.4 [3.0, 6.3] 2.2 [1.5, 3.2] <0.001

amphibian ecotype typical frog 1.6 [0.7, 2.0] 11.7 [7.3, 18.6] 10.1 [6.5, 15.6] <0.001 0.093

obligate
burrower

1.1 [0.6, 2.0] 7.5 [4.7, 12.2] 6.7 [4.3, 10.5] <0.001

mammal infraorder eutherian 0.5 [0.2, 1.1] 1.0 [0.6, 1.8] 2.2 [0.8, 5.9] 0.127 0.424

marsupial 0.6 [0.2, 1.9] 0.6 [0.2, 1.9] 1.0 [0.2, 5.3] 0.974

reptile order/
suborder

lizard 1.9 [1.3, 2.6] 3.2 [2.4, 4.2] 1.7 [1.2, 2.5] 0.006

snake 0.5 [0.2, 0.8] 1.7 [1.2, 2.4] 3.7 [1.9, 7.1] <0.001 0.033

turtle 0.0 [0.0, 0.1] 0.2 [0.1, 0.4] 12.5^ [2.5,1] +

lizard family gekkonid 0.4 [0.1, 1.0] 0.6 [0.3, 1.3] 1.8 [0.5, 6.6] 0.343

varanid 0.4 [0.2, 1.0] 0.7 [0.4, 1.4] 1.7 [0.6, 4.8] 0.326 0.968

pygopodid 0.3 [0.1, 1.0] 0.8 [0.5, 1.5] 2.5 [0.7, 8.6] 0.153

scincid 1.4 [1.0, 1.9] 2.8 [2.1, 3.6] 2.0 [1.3, 3.0] 0.001

snake ecotype semi-aquatic 0.3 [0.1, 0.9] 1.6 [1.0, 2.5] 4.8 [1.6, 14.2] 0.006 0.609

terrestrial 0.4 [0.3, 0.8] 1.5 [1.1, 2.1] 3.4 [1.8, 6.6] <0.001

*Due to the alternative Bayesian approach used for turtles, 95% CI is expressed as 95% credible intervals for this group.
+The central value for the ratio for turtles was estimated as the median using the F distribution.
^No p-value exists due to the alternative Bayesian approach used (see Methods).

doi:10.1371/journal.pone.0131186.t002
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At first glance our data could be said to simply reflect short-distance movements (e.g., a few

meters) from drier to wetter areas. Indeed, we do not know how far animals moved into the

gorge, Figs 1 and 2). However, animals captured in the east wing of the fence, along Emma

Creek, moved from one wet area to another (Fig 2). For example, in 2012 O/I ratios in the east

wing (eastern half) of the trapline were 4.2 (N = 178) for all vertebrates, 4.6 (N = 134) for

amphibians, 3.6 (N = 41) for reptiles, and 2.0 (N = 3) for mammals. Thus, our data support the

idea that animals were moving further, following retracting water and ground moisture over a

larger scale (see also Bernardino and Dalrymple 1992). However, movement data on individual

species are needed to confirm how far individuals are moving. Also, our data are not sufficient

to reveal the ultimate cause(s) for the movements—some species may move to wetter areas to

prevent desiccation, while other may be tracking food resources. The influx of terrestrial spe-

cies into the gorge was surprising and contrary to our initial hypothesis, and may be explained

by species tracking their prey. For example, many of the snake species feed on frogs, and the

former may be moving up the gorge to feed on the latter. Madsen and Shine [27] suggested

that migrations of water pythons (Liasis fuscus) from a wetland to floodplain margins reflected

similar movements of their chief prey species (Rattus colletti). Also surprising was the move-

ment of obligate burrowing frogs across the landscape. These species do not generally feed or

breed during the dry season, and aestivate underground during that time (it has been hypothe-

sized that obligate burrowing frogs seek dry season refugia underground [28]). However, our

data revealed that at least some individuals make horizontal movements into wetter areas prior

to aestivation, raising questions about the simplicity of that hypothesis. Perhaps these frogs are

seeking a particular soil texture or density to construct refuges within the gorge. Collectively, it

appears that most species are moving into the gorge as a dry season refuge, but that their life

histories, ecology and behavior may dictate how they use this refuge (i.e., to aestivate, become

inactive, or continue to feed). Future studies documenting seasonal variation in movements

with the different groups would allow a formal test of the refugia hypothesis.

How general are our findings? There is little doubt that the mass movements we revealed

reflect adaptations to endure the dry season, despite our inadequate knowledge of the extent of

the movements and their ultimate function. Mortality of is often highest during the dry season

(e.g., [5, 29]; thus, the dry season would be expected to influence population dynamics via natu-

ral selection. However, we only studied movements in one gorge. There are hundreds of sand-

stone gorges within the 423,000 km2 Kimberley region of northern Australia. In the ~350 km2

Cockburn Ranges alone there are> 40 gorges (Fig 3). Gorges across the Kimberley region

likely provide refugia essential to the persistence of communities of small vertebrates in the sur-

rounding tropical savannah woodland. It is likely that spring-fed creeks, rivers and other wet-

lands that persist during the dry season provide similar refugia for animals. However, many

rocky gorges tend to retain water well into the early dry season due to high runoff and the grad-

ual release of water from the surrounding rocky high ground. Gorge walls also provide cooler

microhabitats via well-shaded areas and lush vegetation, including rainforest elements. Gorges

may support animal communities with higher species diversity than communities using creeks

and rivers as dry season refugia, a testable hypothesis within a comparative framework.

Considerable research and thought has been invested in understanding the size of buffer

zones around wetlands needed to protect semi-aquatic species and assemblages using those

wetlands [30, 31]. Our study extends that notion to terrestrial species, and reinforces the need

for protecting the savannah woodland beyond the gorge entrances for semi-aquatic animals

that reside within gorges (e.g., turtles). Currently, the Kimberley region is a wilderness area

with very little land clearing or extensive habitat modification [32, 33]. Nevertheless, our study

strongly suggests that an understanding of how animals use the landscape is needed to reveal
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the size of buffer zones around wetlands required to protect both semi-aquatic and terrestrial

fauna in gorges in tropical savannah woodland, and thus in ecosystems in general.

Supporting Information

S1 Table. Raw capture data from the Emma Gorge fence trapline for 2011–2012.

(XLSX)
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