
The DSpace Institutional Digital Repository System: Current Functionality

Robert Tansley, Mick Bass, David Stuve

Hewlett-Packard Laboratories

One Cambridge Center

Cambridge, MA 02142

{robert.tansley, mick.bass, david.stuve}

@hp.com

Margret Branschofsky, Daniel Chudnov,

Greg McClellan, MacKenzie Smith

MIT Libraries

77 Massachusetts Ave

Cambridge, MA 02139

{branschofsky, dchud, gam, kenzie}

@mit.edu

Abstract

In this paper we describe DSpace, an open source

system that acts as a repository for digital research and

educational material produced by an organization or

institution. DSpace was developed during two years’

collaboration between the Hewlett-Packard Company

and MIT Libraries. The development team worked

closely with MIT Libraries staff and early adopter faculty

members to produce a ‘breadth-first’ system, providing

all of the basic features required by a digital repository

service. As well as functioning as a live service, DSpace

is intended as a base for extending repository

functionality, particularly to address long-term

preservation concerns. We describe the functionality of

the current DSpace system, and briefly describe its

technical architecture. We conclude with some remarks

about the future development and operation of the

DSpace system.

Categories and Subject Descriptors

H.3.7 [Digital Libraries]: Collection; Standards; User

issues; Dissemination; Systems issues

General Terms

Management, Design, Standardization

Keywords

Digital library, preservation, institutional repository,

open archives

1. Introduction

As more and more research and educational material

is ‘born digital’, institutions and organizations are

increasingly realizing the need for a stable place in which

such material may be stored and accessed long-term. The

Massachusetts Institute of Technology is a perfect

example of an organization with this need. Much of the

material produced by faculty, such as datasets,

experimental results and rich media data as well as more

conventional document-based material (e.g. articles and

reports), is housed on an individual’s hard drive or

department Web server. Such material is often lost

forever as faculty and departments change over time [10].

Providing services for the long-term stewardship of

digital material seems a natural extension of the role of

MIT Libraries. Although systems such as document

management systems exist in this area, many are

commercial and proprietary. Both of these factors raise

the barrier for long-term preservation, since the hosting

institution is reliant on the survival and affordability of

the vendor. Since no existing system was a good fit,

Hewlett-Packard and MIT Libraries collaborated over two

years to create the DSpace digital repository platform

[18]. DSpace provides the basic functionality required to

operate an institutional digital repository, and is intended

to serve as a base for future development to address long-

term preservation and access issues. On November 4,

2002, the system was launched as a live service hosted by

MIT Libraries, and the source code made publicly

available according to the terms of the BSD open source

license [15], with the intention of encouraging the

formation of an open source community around DSpace.

Initial developments in this area have been very

promising.

This paper describes the various functional aspects of

the DSpace system, followed by a brief overview of the

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

architecture of the system. The paper concludes with

some remarks about future plans for the DSpace system.

2. Related Work

DSpace draws on a wealth of previous research and

development in the area of digital library systems.

Though not a full implementation, the DSpace

architecture has roots in Kahn and Wilensky’s

Framework for Distributed Digital Object Services [9], as

well as Arms et al.’s work on digital library architecture

[1], [2]. DSpace does not yet support complex

dissemination of objects, but future releases will build on

existing work on Lagoze et al.’s FEDORA architecture

[16], and the prototype implementation of FEDORA at

the University of Virginia [19].

Another important piece of work that DSpace draws

on is the Consultative Committee for Space Data

Systems’ Reference Model for an Open Archival

Information System (OAIS) [4]. This paper makes use of

the concepts and terms defined in that work.

The EPrints system developed at the University of

Southampton [6] has many similar features to DSpace,

but is optimized to provide access to author-deposited,

document-style material, while DSpace provides a

platform to begin work on long-term preservation

strategies for digital material, including documents and

other material used in scholarly research. DSpace’s

submission user interface in particular draws on

experience gained from the design and use of EPrints’

submission user interface. Interoperability with EPrints

is of course desirable, and can currently be achieved in

part through use of the OAI Protocol for Metadata

Harvesting (OAI-PMH) [14] to provide a cross-archive

access service.

The Greenstone software from New Zealand Digital

Library Project at the University of Waikato [7] is

another open source digital library tool that has a focus

on publishing.

CERN have developed the CERN Document Server

Software (CDSware) [3] that is another preprint server.

Commercial document management systems offer

some of the required functionality but do not really suit

the aim of long-term preservation of the material, partly

due to their proprietary nature.

3. Functional Overview

DSpace is designed to operate as a centralized,

institutional service. Different communities within the

institution such as labs, centers, schools or departments

can have their own separate areas within the system.

Members of these communities deposit content directly

via a Web user interface designed to make this depositing

as simple as possible. Alternatively the system features a

batch item importer for the bulk loading of content.

Each community may also appoint people as

‘gatekeepers’, who may review and edit submissions

before their inclusion in the main repository. The DSpace

system then indexes the metadata submitted with the

digital item and makes it available according to the

access privileges determined by the community.

In order to provide a workable service in the available

time, DSpace was developed ‘breadth-first’. In other

words, each of the basic requirements of an institutional

digital repository system was addressed in a relatively

simple manner, so that functionality can evolve with the

service already in production.

The functional aspects of DSpace can be summarized

as follows:

• A data model for basic organization of data is

defined

• Metadata of various types is stored by the system

• The system stores information about users of the

system. Some users might not be humans but other

computerized systems; hence we call users e-people

• While much of the effort is concerned with easing

access to an institution’s digital material, simply

allowing full public access is not always acceptable.

Additionally functions such as depositing and

reviewing must be restricted to appropriate

individuals. Hence the system includes an

authorization function

• The system must be able to accept incoming

material, a process called ingesting [4]

• Some communities may require that material or

accompanying metadata entering the archive be

checked or augmented by designated individuals.

This process is called workflow

• In order that material in the archive may be cited

and accessed using information in a citation, the

CNRI Handle system [8] is used to assign globally

unique, persistent identifiers to archived objects

(‘items’).

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

• End users should be able to explore and discover the

contents of the repository. To this end, DSpace must

offer search and browse functions

• To further increase the possibilities for discovering

material in DSpace, metadata is exposed via the

Open Archives Initiative Protocol for Metadata

Harvesting (OAI-PMH) [4]

• It should be possible to notify end users of the

system when new content of interest to them

appears in the archive, rather than requiring them to

repeatedly access DSpace to check this. DSpace

offers an automatic e-mail alerting service called

subscription

• A Web user interface provides access to the above

functionality

The following sections discuss each of these

functional aspects in detail.

3.1 Data Model

The way data is organized in DSpace is intended to

reflect the structure of the organization using the DSpace

system. This is depicted in Figure 1. Table 1 shows

examples of each type of object.

Community

Collection

Item

Bundle

Bitstream Bitstream Format

Dublin Core
Record

Figure 1: Data Model Diagram

Each DSpace site is divided into communities; these

typically correspond to a laboratory, research center or

department. Communities contain collections, which is a

grouping of related content. Each collection is composed

of items, which are the basic archival elements of the

archive. Items are further subdivided into bundles of

bitstreams. Bitstreams are, as the name suggests, streams

of bits, usually ordinary computer files. Bitstreams that

are somehow closely related are organized into bundles,

for example HTML files and images that compose a

single HTML document.

Object Type Example Instance

Community
Laboratory for Computer Science;

Oceanographic Research Centre

Collection
LCS Technical Reports; ORC

Statistical Data Sets

Item

A technical report; a data set with

accompanying description; a video

recording of a lecture

Bundle

A group of HTML and image

bitstreams making up an HTML

document

Bitstream
A single HTML file; a single image

file; a source code file

Bitstream

Format

Microsoft Word version 6.0; JPEG

encoded image format

Table 1: Example DSpace Objects

The data model supports multiple inclusion at all

levels; that is, an item may belong to more than one

collection, and a collection may be in more than one

community1.

Each item has one qualified Dublin Core metadata

record. Other metadata might be stored in an item as a

serialized bitstream, but we store Dublin Core for every

item for interoperability and ease of discovery. The

Dublin Core may be entered by end-users as they submit

content, or it might be derived from other metadata as

part of an ingest process.

In an ideal world, nothing entering a DSpace system

should ever be removed; however, practical and legal

factors sometimes necessitate this. Items can be removed

from DSpace in one of two ways: They may be

'withdrawn', which means they remain in the archive but

are completely hidden from view. In this case, if an end-

1

It should be noted that software has not yet been extensively tested to

create or deal with such circumstances. This will be a requirement for

MIT in the near future so forthcoming updates will address this.

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

user attempts to access the withdrawn item, they are

presented with a 'tombstone' that indicates the item has

been removed. For whatever reason, an item may also be

'expunged' if necessary, in which case all traces of it are

removed from the archive.

3.1.1 Bitstream Formats. Each bitstream is associated

with one Bitstream Format. Because preservation services

are an important aspect of the DSpace service, it is

important to capture the specific formats of files that

users submit. In DSpace, a bitstream format is a unique

and consistent way to refer to a particular file format. An

integral part of a bitstream format is an either implicit or

explicit notion of how material in that format can be

interpreted. For example, the interpretation for bitstreams

encoded in the JPEG standard for still image

compression is defined explicitly in the Standard

ISO/IEC 10918-1. The interpretation of bitstreams in

Microsoft Word 2000 format is defined implicitly,

through reference to the Microsoft Word 2000

application. Bitstream formats can be more specific than

MIME types or file suffixes. For example,

application/ms-word and .doc span multiple versions of

the Microsoft Word application, each of which produces

bitstreams with presumably different semantics.

Supported The format is recognized, and the

hosting institution is confident it can

make bitstreams of this format useable

in the future, using whatever

combination of techniques (such as

migration, emulation, etc.) is

appropriate given the context of need.

Known The format is recognized, and the

hosting institution will promise to

preserve the bitstream as-is, and allow it

to be retrieved. The hosting institution

will attempt to obtain enough

information to enable the format to be

upgraded to the ‘supported’ level.

Unsupported The format is unrecognized, but the

hosting institution will undertake to

preserve the bitstream as-is and allow it

to be retrieved.

Table 2: Bitstream Format Support Levels

Each bitstream format additionally has a support

level, indicating how well the hosting institution is likely

to be able to preserve content in the format in the future.

There are three possible support levels that bitstream

formats may be assigned by the hosting institution. The

host institution should determine the exact meaning of

each support level, after careful consideration of costs

and requirements. MIT Libraries’ interpretation is shown

in Table 2.

3.2 Metadata

Broadly speaking, DSpace holds three sorts of

metadata about archived content: Descriptive,

administrative and structural metadata.

3.2.1 Descriptive Metadata. Each Item has one

qualified Dublin Core metadata record. MIT Libraries,

and the default configuration shipped with the open

source use a derivation of the Library Application Profile

set of elements and qualifiers [5]. Institutions with other

requirements can easily change this, as DSpace maintains

a registry of elements and qualifiers, though the system’s

search functionality and submission UI would not be

updated automatically in the present version of the

system.

Other descriptive metadata about items, for example

MARC records, may be held in serialized bitstreams.

Communities and collections have some simple

descriptive metadata (a name, and some descriptive

prose), held in the DBMS.

3.2.2 Administrative Metadata. This includes

preservation metadata, provenance and authorization

policy data. Most of this is held within DSpace's

relational DBMS schema. Provenance metadata (prose) is

stored in Dublin Core records. Additionally, some other

administrative metadata (for example, bitstream byte

sizes and MIME types) is replicated in Dublin Core

records so that it is easily accessible outside of DSpace,

for example via the OAI protocol.

3.2.3 Structural Metadata. This includes information

about how to present an item, or bitstreams within an

item, to an end-user, and the relationships between

constituent parts of the item. As an example, consider a

thesis consisting of a number of TIFF images, each

depicting a single page of the thesis. Structural metadata

would include the fact that each image is a single page,

and the ordering of the TIFF images/pages. Structural

metadata in DSpace is currently fairly basic; within an

item, bitstreams can be arranged into separate bundles as

described above. Additional structural metadata can be

stored in serialized bitstreams, but DSpace does not

currently natively understand this. This will be a very

active area of future development of DSpace.

3.3 E-people

Many of DSpace's features such as document

discovery and retrieval can be used anonymously, but

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

users must be authenticated to perform functions such as

submission, email notification ('subscriptions') or

administration. Users are also grouped for easier

administration. DSpace calls users e-people, since some

users may be machines rather than actual people.

DSpace holds the following information about each e-

person:

• E-mail address

• First and last names

• Authentication information, such as an encrypted

password

• A list of collections for which the e-person wishes to

be notified of new items

• Whether the e-person 'self-registered' with the

system; that is, whether the system created the e-

person record automatically as a result of the end-

user independently registering with the system, as

opposed to the e-person record being generated from

the institutions personnel database, for example.

E-people can be members of 'groups' to make

administrator's lives easier when manipulating

authorization policies.

READ

The action of knowing of an object's

existence, and viewing any metadata

associated with it

WRITE

Modifying the metadata associated

with an object. This does not include

the ability to delete

ADD

The action of adding an object (e.g. an

item) to a container (e.g. a collection).

In order to submit an item to a

collection, an end-user must have ADD

permission on that collection

REMOVE
The action of removing an object from

a container

WORKFLOW

May participate in a workflow

associated with a collection; for

example, permission to reject a

particular submission from entering the

collection

Table 3: Possible Actions in DSpace

3.4 Authorization

DSpace has a flexible authorization system. In order

for a user to perform an action on an object, they must

have permission; DSpace operates a 'default deny' policy.

Permissions do not 'commute'; for example, if an e-

person has READ permission on an item, they might not

necessarily have READ permission on the bundles and

bitstreams in that item.

The actions that the authorization system understands

are shown in Table 3. Note that there is no 'DELETE'

action. In order to 'delete' an object (e.g. an item) from

the archive, one must have REMOVE permission on all

objects (in this case, collection) that contain it. The

'orphaned' item is automatically deleted.

Policies can apply to individual e-people or groups of

e-people. Additionally they can apply to the 'anonymous'

group, which means that anyone can perform the action

described by the policy.

3.5 Ingest Process and Workflow

Figure 2 is a simple illustration of the current

ingesting process in DSpace. The batch item importer is

an application that turns an external Submission

Information Package (SIP) [4] (an XML metadata

document with some content files) into an "in progress

submission" object. The Web submission UI is similarly

used by an end-user to assemble an "in progress

submission" object.

Batch Item
Importer

Web Submit
UI

Workflow

Item Installer

External SIP

In Progress
Submission

Archived Item

INGEST PROCESS

Figure 2: DSpace Ingest Process

Depending on the policy of the collection to which the

submission is targeted, a workflow process may be

started. This typically allows one or more human

reviewers or 'gatekeepers' to check over the submission

and ensure it is suitable for inclusion in the collection.

Workflows are defined when the collection is first

established, set up by the system administrator, and apply

to every item submitted to that collection.

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

When the batch item importer or Web Submit UI

completes the InProgressSubmission object, and invokes

the next stage of ingest (be that workflow or item

installation), a provenance message is added to the

Dublin Core which includes the filenames and

checksums of the content of the submission. Likewise,

each time a workflow changes state (e.g. a reviewer

accepts the submission), a similar provenance statement

is added. This allows us to track how the item has

changed since a user submitted it. (The History

subsystem is also invoked, but provenance is easier for us

to access at the moment.)

Once any workflow process is successfully and

positively completed, the InProgressSubmission object is

consumed by an "item installer", that converts the in

progress submission into a fully blown archived item in

DSpace. The item installer:

• Assigns an accession date

• Adds a "date.available" value to the Dublin Core

metadata record of the item

• Adds an issue date if none already present

• Adds a provenance message (including bitstream

checksums)

• Assigns a Handle persistent identifier

• Adds the item to the target collection, and adds

appropriate authorization policies

• Adds the new item to the search and browse indices

• (Soon) creates and archives an OAIS Archival

Information Package, represented in a standard,

open format such as METS [12].

3.5.1 Workflow Steps. A collection's workflow can

have up to three steps. Each collection may have an

associated e-person group for performing each step; if no

group is associated with a certain step, that step is

skipped. If a collection has no e-person groups associated

with any step, submissions to that collection are installed

straight into the main archive.

In other words, the sequence is this: The collection

receives a submission. If the collection has a group

assigned for workflow step 1, that step is invoked, and

the group is notified. Otherwise, workflow step 1 is

skipped. Likewise, workflow steps 2 and 3 are performed

if and only if the collection has a group assigned to those

steps.

When a step is invoked, the task of performing that

workflow step is put in the 'task pool' of the associated

group. One member of that group takes the task from the

pool, and it is then removed from the task pool, to avoid

the situation where several people in the group may be

performing the same task without realizing it.

The member of the group who has taken the task from

the pool may then perform one of three actions, shown in

Table 4.

If a submission is rejected, the reason (entered by the

workflow participant) is e-mailed to the submitter, and it

is returned to the submitter’s workspace. The submitter

can then make any necessary modifications and re-

submit, whereupon the process starts again.

If a submission is 'accepted', it is passed to the next

step in the workflow. If there are no more workflow steps

with associated groups, the submission is installed in the

main archive.

One last possibility is that a workflow can be 'aborted'

by a DSpace site administrator. This is accomplished

using the administration section of the Web UI.

Workflow Step Possible actions

1
Can accept submission for inclusion,

or reject submission.

2

Can edit metadata provided by the

user with the submission, but cannot

change the submitted files. Can

accept submission for inclusion, or

reject submission.

3

Can edit metadata provided by the

user with the submission, but cannot

change the submitted files. Must then

commit to archive; may not reject

submission.

Table 4: Possible Workflow Steps in DSpace

3.6 Handles

Researchers require a stable point of reference for

their works. The simple evolution from sharing of

citations to emailing of URLs broke when Web users

learned that sites can disappear or be reconfigured

without notice, and that their bookmark files containing

critical links to research results could not be trusted long

term. To help solve this problem, a core DSpace feature

is the creation of persistent identifier for every item,

collection and community stored in DSpace. To persist

identifiers, DSpace requires a storage- and location-

independent mechanism for creating and maintaining

identifiers. DSpace uses the CNRI Handle System for

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

creating these identifiers [8]. The rest of this section

assumes a basic familiarity with the Handle system.

DSpace uses Handles primarily as a means of

assigning globally unique identifiers to objects. Each site

running DSpace needs to obtain a Handle 'prefix' from

CNRI, so we know that if we create identifiers with that

prefix, they will not clash with identifiers created

elsewhere.

Presently, Handles are assigned to communities,

collections, and items. Bundles and bitstreams are not

assigned Handles, since over time, the way in which an

item is encoded as bits may change, in order to allow

access with future technologies and devices. Older

versions may be moved to off-line storage as a new

standard becomes de facto. Since it is usually the item

that is being cited, rather than the particular bit

encoding, it only makes sense to persistently identify and

allow access to the item, and allow users to access the

appropriate bit encoding from there.

The Handle system also features a global resolution

infrastructure; that is, an end-user can enter a Handle

into any service (e.g. Web page) that can resolve

Handles, and the end-user will be directed to the object

(in the case of DSpace, community, collection or item)

identified by that Handle. In order to take advantage of

this feature of the Handle system, a DSpace site must also

run a 'Handle server' that can accept and resolve

incoming resolution requests. All the code for this is

included in the DSpace source code bundle.

Handles can be written in two forms:

hdl:1721.123/4567
http://hdl.handle.net/1721.123/4567

The above represent the same Handle. The first is

possibly more convenient to use only as an identifier;

however, by using the second form, any Web browser

becomes capable of resolving Handles by means of a

proxy server run by CNRI. An end-user need only access

this form of the Handle as they would any other URL. It

is possible to enable some browsers to resolve the first

form of Handle as if they were standard URLs using

CNRI’s Handle Resolver plug-in, but since the first form

can always be simply derived from the second, DSpace

displays Handles in the second form, so that it is more

useful for end-users.

It is important to note that DSpace uses the CNRI

Handle infrastructure only at the 'site' level. For example,

in the above example, the DSpace site has been assigned

the prefix '1721.123'. It is still the responsibility of the

DSpace site to maintain the association between a full

Handle (including the '4567' local part) and the

community, collection or item in question. This is done

internally with a database table.

3.7 Search and Browse

DSpace allows end-users to discover content in a

number of ways, including:

• Via external reference, such as a Handle

• Searching for one or more keywords

• Browsing though title, date and author indices

Search is an essential component of discovery in

DSpace. Users' expectations from Web search engines are

quite high, so a goal for DSpace is to supply as many

search features as possible. DSpace's indexing and search

module has a very simple API which allows for indexing

new content, regenerating the index, and performing

searches on the entire corpus, a community, or collection.

Behind the API is the Java freeware search engine

Lucene. Lucene gives us fielded searching, stop words,

stemming, and the ability to incrementally add new

indexed content without regenerating the entire index.

Another important mechanism for discovery in

DSpace is the browse. This is the process whereby the

user views a particular index, such as the title index, and

navigates around it in search of interesting items. The

browse subsystem provides a simple API for achieving

this by allowing a caller to specify an index, and a

subsection of that index. The browse subsystem then

discloses the portion of the index of interest. Indices that

may be browsed are item title, item issue date and

authors. Additionally, the browse can be limited to items

within a particular collection or community.

3.8 OAI Support

The Open Archives Initiative has developed a

Protocol for Metadata Harvesting (OAI-PMH) [14]. This

allows sites to programmatically retrieve or 'harvest' the

metadata from several sources, and offer services using

that metadata, such as indexing or linking services. Such

a service could allow users to access information from a

large number of sites that are collated in a central

catalog.

DSpace exposes the Dublin Core metadata for items

that are publicly (anonymously) accessible. Additionally,

the community and collection structure is also exposed

via OAI-PMH's 'sets' mechanism. OCLC's open source

OAICat framework is used to provide this functionality

[13].

DSpace's OAI-PMH service exposes deletion

information for withdrawn items.

While OAICat supports resumption tokens, DSpace

does not, simply because of time and resource constraints

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

on the development effort. The need for flow control in

the harvesting will increase as the amount of content in

DSpace archives increases, so a future release will

include resumption token support.

3.9 Subscriptions

As noted above, end-users (e-people) may 'subscribe'

to collections through the Web user interface in order to

be alerted when new items are added to those collections.

Each day, end-users who are subscribed to one or more

collections will receive an e-mail giving brief details of

all new items that appeared in any of those collections the

previous day. If no new items appeared in any of the

subscribed collections, no e-mail is sent. Users can

unsubscribe themselves at any time.

3.10 History

While provenance information in the form of prose is

very useful, it is not easily programmatically

manipulated. The History system captures a time-based

record of significant changes in DSpace, in a manner

suitable for later ‘refactoring’ or repurposing.

Currently, the History subsystem is explicitly invoked

when significant events occur (e.g., DSpace accepts an

item into the archive). The History subsystem then

creates RDF data [20] describing the current state of the

object. The RDF data is modelled using the ABC Model

[11], an ontology for describing temporal-based data, and

stored in the file system. Some simple indices for

unwinding the data are available.

3.11 Web User Interface

Built on Java Servlet and JavaServer Page technology,

DSpace’s Web user interface allows end-users to access

DSpace via their Web browsers. The user interface

consists of the following:

• On-line help

• Community and collection home pages,

configurable by individual communities. Recent

arrivals in the collection are displayed, as well as

convenient subscribing and depositing controls

• Searching and browsing

• Item pages, which display the basic metadata

associated with an item. The full Dublin Core and

bitstreams contained in an item may be accessed

from this page (subject to authorization). DSpace

does not yet have a sophisticated dissemination

mechanism; we are investigating relevant work such

as FEDORA [16] to address this. Figure 3 shows an

example item display page

Figure 3: Item Display Page

Figure 4: Deposit Interface Screen

• ‘My DSpace’, where authorized users can deposit

material, perform any workflow tasks they have

been assigned, and manage their automatic e-mail

alert subscriptions. Figure 4 shows an example of

the depositing interface

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

• Administration section, consisting of pages intended

for use by central administrators. Presently, this part

of the Web UI is very basic so users of the

administration subsystem need to know what they

are doing! In the future, as this subsystem is

improved, it will be possible to pass more

responsibility for administration to individual

communities as the administration UI becomes

more developed.

Although the entire system is designed to be easy to

modify to suit an institution’s needs, the Web UI has

been designed to be particularly so:

• Since JavaServer Pages are mostly HTML with

small pieces of Java embedded code, they are easy to

modify without touching the business logic code in

the Servlets.

• Institutions are also likely to have existing

electronic authentication infrastructure. By

implementing a Java interface and altering a

configuration parameter, DSpace can be made to

use this local authentication infrastructure. DSpace

is shipped with a simple e-mail address/password

authentication module, and the MIT

implementation, which understands X509

certificates.

4. System Architecture

The main code of DSpace is implemented in Java,

and runs on any UNIX-like system such as Linux or HP-

UX. It makes use of several third-party open source

systems:

• PostgreSQL, an open source relational database

system

• Jakarta Tomcat Java Servlet container

• Apache HTTPD server, for optional SSL and X509

certificate support

Alternative tools may be used in place of these; for

example Tomcat may be replaced with Caucho’s ‘Resin’

application server. In order to minimize the barrier to

adoption, however, by default DSpace makes use of an

entirely free, open source tool stack.

The main DSpace system is organized into three

layers, each of which consists of a number of

components. Figure 5 depicts this.

...

Workflow

Manager

Content

Management

API

E-person/

Group

Manager

Authorisation

History

Recorder

Business

Logic Layer
Administration

Toolkit

Federation

Services

Storage API

DSpace Public API

Bitstream Storage Manager
RDBMS Wrapper

Search
(Lucene

Wrapper)

Browse API

Handle

Manager

Web UI

OAI

Metadata

Providing

Service

Batch Item

Importer

JDBC

PostgreSQL
Filing System

Application

Layer

Storage

Layer

CNRI
Handle

Server

Plug-in

Item

Exporter

Figure 5: DSpace System Architecture

The storage layer is responsible for physical storage of

metadata and content. It consists of a ‘wrapper’ around

JDBC for database access, and a simple bitstream storage

and retrieval API called the bitstream storage manager.

Presently, the bitstream storage manager is very

lightweight and simply stores bitstreams in a file system.

This can easily be modified, and will shortly be extended

to cover multiple file systems to enable larger volumes of

content to be stored.

The business logic layer deals with managing the

content of the archive, users of the archive (e-people),

authorization, and workflow.

 The application layer contains components that

communicate with the world outside of the individual

DSpace installation, for example the Web user interface

and the Open Archives Initiative protocol for metadata

harvesting service.

Each layer only invokes the layer below it; the

application layer may not use the storage layer directly,

for example. Each component in the storage and business

logic layers has a defined public API. The union of the

APIs of those components is referred to as the Storage

API (in the case of the storage layer) and the DSpace

Public API (in the case of the business logic layer). These

APIs are in-process Java classes, objects and methods.

These could be exposed as Web services via a suitable

component in the application layer.

Since each component has a clearly defined API, they

may be modified and replaced individually, without

requiring extensive modification of the rest of the system.

It is important to note that each layer is trusted.

Although the logic for authorizing actions is in the

business logic layer, the system relies on individual

applications in the application layer to authenticate e-

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

people correctly and securely. If a 'hostile' or insecure

application were allowed to invoke the Public API

directly, it could very easily perform actions as any e-

person in the system.

The reason for this design choice is that

authentication methods will vary widely between

different applications, so it makes sense to leave the logic

and responsibility for that in those applications.

5. Conclusions and Future Work

DSpace has been a ‘breadth-first’ attempt to start

addressing a growing and unfulfilled need of academic

institutions and other organizations. MIT Libraries has

been running DSpace as a live service at MIT for several

months, and several other institutions have successfully

installed and started to run DSpace. MIT Libraries

remain committed to maintaining the DSpace service and

software.

Naturally, DSpace does not currently address all of

the issues of long-term preservation and access of digital

material; however it serves as a useful basis for

developing and deploying solutions to those issues.

Already, an open source community is forming around

DSpace. This exciting development bodes well for the

future development and impact of DSpace. In addition,

two further pieces of work are already under way to

enhance the DSpace system.

Starting with seven other research institutions

(Cambridge University in the UK, the University of

Toronto in Canada, and Columbia University, Cornell

University, Ohio State University, and the Universities of

Rochester and Washington in the USA) MIT is

establishing a federation of DSpace partners to explore

the issues around deploying the DSpace service at

different locales. Much of this work will involve

exploring organizational issues, as well as maintaining

and enhancing the functionality of the DSpace code base.

Hewlett-Packard Laboratories, the World-Wide Web

Consortium and MIT are also collaborating in another

project called SIMILE [17]. The SIMILE work involves

exploring the use of RDF and Semantic Web techniques

to address two problems. The first is how to achieve

interoperability among diverse metadata schemas, and

the digital works to which they are applied. The second

problem is to do with individuals interacting with

DSpace: Given this diverse metadata, how does DSpace

allow individual users to find and organize information

relevant to them?

The success of the DSpace work to date, combined

with the strong interest in the digital library community

and the exciting new work being undertaken, give us

great confidence in our ability to contribute to the fields

of the preservation and management of digital research

and education material, and the field of open access to

such material.

6. Acknowledgments

We would like to thank the following for their previous

contribution to the DSpace work: Mary Barton, Peter

Breton, Peter Carmichael, Bill Cattey, Eric Celeste, Joyce

Ng and Julie Harford Walker. We would also like to

thank the staff at MIT Libraries and the members of our

early adopter communities for their valuable input.

7. References

[1] Arms, William Y.: Key Concepts in the Architecture of the

Digital Library, D-Lib Magazine, July 1995.

http://www.dlib.org/dlib/July95/07arms.html

[2] Arms, William Y., Blanchi, Christophe, and Overly,

Edward A.: An Architecture for Information in Digital

Libraries, D-Lib Magazine, February 1997.

http://www.dlib.org/dlib/february97/cnri/02arms1.html

[3] CERN Document Server Software (CDSware).

http://cdsware.cern.ch/

[4] Consultative Committee for Space Data Systems,

Reference Model for an Open Archival Information System

(OAIS), CCSDS 650.0-R-2, Red Book, Issue 2, July 2001.

http://ccsds.org/documents/pdf/CCSDS-650.0-R-2.pdf

[5] Dublin Core Library Application Profile.

http://dublincore.org/documents/2002/09/24/library-

application-profile/

[6] GNU EPrints Software. http://software.eprints.org/

[7] The Greenstone Digital Library Software

http://www.greenstone.org/

[8] Handle System Overview.

http://www.ietf.org/internet-drafts/draft-sun-handle-

system-10.txt

[9] Kahn, Robert and Wilensky, Robert: A Framework for

Distributed Digital Object Services, May 1995.

http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

[10] Koehler, Wallace: Web Page Change and Persistence-A

Four-Year Longitudinal Study. In Journal of the American

Society for Information Science and Technology 53, 2

(December 2001) 162—180.

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

[11] Lagoze, C. and Hunter, J. “The ABC Ontology and

Model”, in Proceedings of the International Conference

on Dublin Core and Metadata Applications 2001, Tokyo,

2001, 160-176.

[12] Metadata Encoding and Transmission Standard (METS).

http://www.loc.gov/standards/mets/

[13] OCLC Research OAICat Open Source Project.

http://www.oclc.org/research/software/oai/cat.shtm

[14] Open Archives Initiative. http://www.openarchives.org/

[15] Open Source BSD License. Available at

http://www.opensource.org/licenses/bsd-license.php

[16] Payette, Sandra and Lagoze, Carl: Flexible and Extensible

Digital Object and Repository Architecture, in Christos

Nikolau and Constantine Stephanidis, eds., Research and

Advanced Technologies for Digital Libraries: Proceedings

of the Second European Conference, ECDL ‘98,

Heraklion, Crete, Greece, September 21-23, 1998, G.

Goos, J. Hartmanis, and J. van Leeuwen, eds., Lecture

Notes in Computer Science, 1513 (Berlin: Springer, 1998)

http://www.cs.cornell.edu/payette/papers/ECDL98/FEDO

RA.html

[17] SIMILE: Semantic Interoperability of Metadata and

Information in unLike Environments.

http://web.mit.edu//simile/

[18] Smith, MacKenzie, Barton, Mary, Bass, Mick,

Branschofsky, Margret, MacClellan, Greg, Stuve, David,

Tansley, Robert and Walker, Julie H: DSpace: An Open

Source Dynamic Digital Repository. D-Lib Magazine 9, 1

(January 2003).

http://www.dlib.org/dlib/january03/smith/01smith.html

[19] Staples, Thornton and Wayland, Ross: Virginia Dons

FEDORA: A Prototype for a Digital Object Repository. D-

Lib Magazine 6, 7/8 (July/August 2000).

http://www.dlib.org/dlib/july00/staples/07staples.html

[20] W3C Resource Description Framework (RDF).

http://www.w3.org/RDF/

Proceedings of the 2003 Joint Conference on Digital Libraries (JCDL’03)

0-7695-1939-3/03 $17.00 © 2003 IEEE

