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Abstract - The dual boundary element method (DBEM) and the time domain

method are applied for the determination of dynamic stress intensity factors

(DSIF) for a general mixed-mode crack problem. The DBEM generates a distinct

set of boundary integral equations by applying the displacement equation to one

of the crack surfaces and the traction equation to the other. The present method

does not require any domain discretisation. The boundary of the body is divided

into quadratic elements and quarter-point elements (QPE) are used near the crack

tips. The temporal variations of the boundary quantities are either piecewise

constant or piecewise linear. The DSIF are calculated using the crack opening

displacements of the QPE and a least-square error minimization. The method

is applied to two problems. The solution for the first example is compared with

the solutions obtained by using other methods and shows good agreement. The

second example, a dynamic analysis of a pin-loaded cracked lug is an application
of the method to a new mixed-mode problem.

Introduction

The determination of dynamic stress intensity factors (DSIF) plays an important

role in fracture mechanics. Peak values of the DSIF are usually much higher

than the static values, and accurate methods are needed to calculate them. The

application of the boundary element method and the time domain approach to

dynamic fracture mechanics has been presented in many works [1-6]. Usually

symmetric problems are analyzed, where only a half or a quarter of the struc-

ture and one of the crack surfaces need to be discretized. For mixed-mode crack

problems the structure is divided into subdomains along the crack surfaces and

the subdomains are assembled using equilibrium and compatibility conditions.

The application of the dual boundary element method in static fracture mechan-

ics was presented by Portela, Aliabadi and Rooke [7]. This method uses two

different equations: the displacement and the traction boundary integral equa-

tion for coincident points on the crack surfaces. The DBEM can solve a general
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572 Localized Damage

mixed-mode crack problem by discretizing the boundary of the structure only.

The DBEM and the dual reciprocity approach in dynamic fracture mechanics

was presented by Fedelinski, Aliabadi and Rooke [8]. In the present paper the

DBEM and the time domain app-oach are presented. The displacement and the

traction boundary integral equation are formulated. Information about space

and time interpolation and integration are given. As the result of discretization

and integration the matrix equation of motion is obtained. The solution of this

system of equations gives the unknown displacements and tractions. The DSIF

are calculated by minimizing the difference between analytical and numerical

displacements of the QPE. Finally the method is applied to two problems.

Dual boundary integral equations and time-domain

approach

Consider a linear elastic homogeneous and isotropic body enclosed by the bound-

ary F. For a body which is not subjected to body forces and which has zero initial

displacements and velocities, the displacement of a point x' can be represented

by the following boundary integral equation:

(1)

- A /^(
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where {7,-j(x',£;x, r), T,-j(x',£;x,r) are fundamental solutions of elastodynamics;

MJ(X,T), £J(X,T) are displacements and tractions respectively, at the boundary;

c,j(x') is a constant which depends on the position of the collocation point x'; x

is the boundary point; t is the observation time.

The traction equation is obtained by differentiating the above equation, fol-

lowed by the application of Hooke's law and multiplication by the normal at the

collocation point. For a point which belongs to the smooth boundary the traction

equation is given by

(2)

where n,(x') are components of the outward normal at the collocation point x' and

C/jttj(x', Z; x, r), Tfc,j(x', <; x, r) are other fundamental solutions of elastodynamics.

Numerical formulation

The numerical solution of a general mixed- mode crack problem is obtained by

discretizing space and time. The boundary F of the body is divided into M

boundary elements with P nodes per element. Similarly, the observation time

t is divided into N time steps. The temporal variation of boundary quantities
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is specified by Q values within the time step. Displacements and tractions are

approximated within each element using interpolation functions N*({) and within

each time step using interpolation functions M?(r). After the approximation, the

displacement and the traction equation are:

M P N Qm r j\ v fl ft

W-EEEEK-/, [/"»•«.'
m=l p=l n=l 7=1 •'"I •/*"-!

(3)

EEEE
m = lp=l n=l o=l

(4)

where / = 1,2,...,Z; Z is the total number of nodes; J™ is the Jacobian and f is

the local coordinate.

In order to solve a general mixed-mode crack problem the following modelling

strategy is employed. The displacement equation (3) is applied for the collocation

points along the external boundary F* and along one of the crack faces F&, and

the traction equation (4) for the opposite surface of the crack F^ (see Fig. 1).

The boundary is divided into quadratic boundary elements. The displace-

ments and tractions are interpolated using: continuous elements for the external

boundary F&, semi-discontinuous elements at junctions with the cracks, straight

discontinuous elements on the crack faces F& and F^ The geometry is approxi-

mated by using continuous elements. At the crack tips the quarter-point elements

are used. For the displacement equation (3) the displacements are approximated

within each time step by using linear interpolating functions and the tractions

are piecewise constant (see [6]). For the traction equation (4), both, the displace-

ments and the tractions are assumed to be piecewise linear.

The fundamental solutions of elastodynamics have the same order of spatial

singularity as the elastostatic solutions. The coefficients c\- are calculated analyt-

ically [6]. The boundary integrals are integrated semi-analytically or analytically

when the collocation point belongs to the element and numerically for other el-

ements using Gaussian integration. The time integration along the time interval

is performed analytically as shown for the displacement equation in [6] and for
the stress equation in [4].

After the discretization and integration the following matrix equation is ob-
tained

7V-1
A7__ _ »r

(5)
n=l
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where u\ t** contain nodal values of displacements and tractions at the time

step n, Ĥ ", G^" depend on fundamental solutions and interpolating functions.

The columns of matrices Ĥ ,̂ G^^ are reordered according to the boundary

conditions. Finally the following system of equations is obtained

AX" = F^ (6)

where A contains the reordered matrices, X" is a vector of unknown displace-

ments and tractions, F" depends on the reordered matrices multiplied by the

known boundary conditions and the last term of equation (5), which corresponds

to the known displacements and tractions at previous steps. In each time step

only the matrices, which correspond to the maximum difference N — n are com-

puted. The matrix A is the same at each time step. The rest of the matrices is

known from the previous steps. The system of equations (6) is solved step-by-step

giving the unknown displacements and tractions at each time step.

- continuous element

- semi-discontinuous element

- discontinuous element

Crock
mouth

x- element end point

o- element node

Figure 1: Modelling of the boundary Figure 2: Modelling of the crack us-

ing the quarter-point elements

More information about the numerical implementation of the method will be

presented in [9].

Dynamic stress intensity factors

The dynamic stress intensity factors (DSIF) are determined by using the crack

opening displacements (COD). In order to improve the accuracy of displacements

near the crack tip the quarter-point elements (QPE) have been implemented. For

the QPE the local coordinate f ( — !<(<!) isa square-root function of the

distance r from the crack tip

'= 1- (7)

where / is the length of the element and the crack tip is at £ = 1. When the

mid-node is placed at a quarter of the length of the straight element the square-
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root behaviour of displacements near the crack tip is better represented. The

position of the nodes of the QPE is shown in Fig. 2. The DSIF are calculated by

minimizing the sum of squared differences between the analytical and numerical

values of crack opening displacements for two pair of nodes near the crack tip.

The least-square minimization gives the following expressions for the DSIF

(8)

where « = 3 - 4v for plane strain and K = (3 — is) /(I H- v) for plane stress, and u\

and U2 are, respectively, the displacement along and perpendicular to the crack;

B, C , D and E are nodes on the crack faces, defined in Fig. 2.

Numerical examples

The method presented in the previous sections is used to solve two problems.

The solution of the first example is compared with the available solutions. The

second example is a new application of the method.

2h

_1

/•) §

Figure 3: Rectangular plate with an inter-

nal crack

Figure 4: Pin-loaded lug with

an edge crack

Rectangular plate with a central crack

A rectangular plate with a central crack, shown in Fig. 3, is instantaneously

loaded by a uniform tensile stress GO at time t = 0. The plate has the following

dimensions: the length 26 = 40 mm; the width 2/i = 20 mm; and the half

crack length a = 2.4 mm. The plate has the following material properties:

the shear modulus /j, = 76.92 • 10^ Pa; Poisson's ratio v = 0.3; and the density

p = 5000 kgm~^. A state of plane strain is assumed. The boundary is divided into

32 boundary elements and the time step At = 0.4 /is. The DSIF is normalized

with respect to

(10)
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The results are presented in Fig. 5 and compared with those of Chen [10], who

used the finite difference method, and Dominguez and Gallego [5], who used a

subregion technique in the BEM; good general agreement is obtained.

Pin-loaded lug with a single edge crack

The straight lug with a cracked hole shown in Fig. 4 is considered. The hole is

of radius r (r/R = 0.4) and is concentric with the circular end. The width of

the lug is 2R and the distance of the centre of the hole from the lug base is h

(h/R = 2). The radial crack of length a is perpendicular to the lug symmetry

axis. The radius of the circular end is R = 20 mm. The upper half of the

hole is loaded by a suddenly applied, at t = 0, normal pressure a with a sine

distribution a = <JoSina. The lug base is constrained with rollers. The material

properties of the lug are: Young's modulus E = 0.2 • 10*̂  Pa; the mass density

p = 8000 kgm~^\ Poisson's ratio v — 0.3 and plane strain is assumed. The

boundary of the lug is divided into 41 boundary elements (for a long crack 43

elements are used) and the time step is taken to be At = 0.8 /zs. The DSIF are

calculated for three different lengths of the crack (a/r — 0.2, 0.5, 0.8).

The results are normalized with respect to the static SIF for the crack of

length 2(r + a) in an infinite sheet with forces P = <7o?rr/2 acting on the opposite

faces at the centre of the crack

(11)
^ '

The dynamic and the static SIF are shown in Fig. 6. The values of the static

SIF are obtained by using the present method and assuming a very small mass

density of the material. They agree very well with those given by Rooke and

Aliabadi [11]. The peak values of DSIF are about twice the static ones. The time

dependence is similar for different configurations. For longer cracks the peaks

occur at later times. The mode // static and dynamic SIF are much smaller

than the mode / SIF.

Conclusions

The dual boundary element method and the time domain approach are applied

to determine the dynamic stress intensity factors. They are calculated using the

crack opening displacements of the quarter-point elements. In this formulation,

only the boundary of the structure needs to be discretized. Two problems have

been solved showing that the method can be used efficiently. The static and

dynamic SIFs were calculated for the pin- loaded lug with an edge crack. The

static SIFs were obtained by using the present method and by assuming small

mass density of the material. It has been shown that the peak values of dynamic

SIFs for this particular lug are twice static ones.
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Figure 5: Normalized dynamic stress intensity factor KI/KQ

plate with an internal crack
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the rectangular
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Figure 6: Normalized dynamic stress intensity factors K/Ko for the pin-loaded

lug with a single edge crack
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