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THE DUAL DYNAMIC PROGRAMMING

ANDRZEJ NOWAKOWSKI

(Communicated by Barbara L. Keyfitz)

Abstract. The dual approach to dynamic programming for the generalized

problem of Bolza is described. A suitable verification theorem is proved and a

dual optimal feedback control is introduced.

1. Introduction

We consider the optimal control problem of Bolza

(1) minimize J(x , u) = /   L(t, x(t), u(t))dt + l(x(b))
Ja

subject to

(2) x(t) = f(t, x(t), u(t))    a.e. in [a, b],

(3) u(t)£U(t),        t£[a,b],

(4) x(a) = c.

Here /: [a, b]xRn xRm -, Rn , L: [a, b] xR" xRm -, R, I: Rn ^Ru{+oo}

are given functions, c is a point in R" , U : [a, b] —► Rm is a multi-function

(i.e., U(t) is a subset of Rm for each t in [a, b]), x: [a, b] -, R" is an

absolutely continuous function, and u: [a, b] —» Rm is a Lebesgue measurable

function.
In order that problem (l)-(4) make sense, throughout the paper we assume

the following basis hypothesis:
For each s in Rn , the functions (t, u) —» L(t, s, u), (t, u) -* f(t, s, u)

are (L x Immeasurable, i.e., measurable with respect to the a-algebra of subsets
of [a, b] x Rm , generated by products of Lebesgue sets in [a, b] and Borel sets

in Rm . There exists functions Aq , ac2 in Lx(a, b) such that for t in [a, b],

u in U(t), and Sx , s2 in R" ,

\L(t,Sx, u)-L(t,s2, u)\ <kx(t)\sx -s2\,

\f(t,sx,u)-f(t,s2,u)\ <k2(t)\sx -52|-

The set {(/, u) £ [a, b] x Rm : u £ U(t)} is (L x Immeasurable. The

function / is lower semicontinuous and not identically +00 . A pair x(t), u(t)
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is admissible if it satisfies (2), (3), L(t, x(t), u(t)) is summable, and l(x(b)) is

finite; then the corresponding trajectory x(t) will simply be called admissible.

For that problem, in [7] two methods of construction of fields of extremals

(concourses of flights) were described and, as a consequence of this, sufficient

conditions for optimality in a form similar to Weierstrass's were formulated.

In remarks, there were given relations of these two theories to the dynamic

programming technique. The first (classical) is the following: (see, e.g., [1, 3,

4, 6]) define the value function S(t, x) in a set T c Rn+X (being a set covered

by graphs of trajectories of the field—concourse of flights) as

(5) S(t,x) = mflf L(t, x(t) , u(i)) dx + l(x(b))\

where the infimum is taken over admissible pairs x(t) , u(x), t g [t, b], whose

trajectories start at (t, x) e T and graphs are contained in T. By [7, Theorem

4], the existence of value function (5) is determined by the existence of a con-

course of flights (field of extremals). Further, it was concluded that if S(t, x)

is differentiable then it satisfies the partial differential equation

(6) Sl(t,x) + H(t,x,Sx(t,x)) = 0,

where H(t, x, y) = yf(t, x, u(t, x)) + L(t, x, u(t, x)) and u(t, x) is an

optimal feedback control, and the partial differential equation of dynamic pro-

gramming

(7) min^/, x)+Sx(t, x)f(t, x, u) + L(t, x, u) : u £ U(t)} = 0.

In [7, Remark 4.2] the author suggested the second nonclassical approach to

dynamic programming; the domain of exploration was carried out from the

(t, x)-space to the space of multipliers ((/, y°, y)-space). Then another func-

tion was defined—the dual value function—So(t, p) in a set P c Rn+2 of the

dual space (t, y°, y) = (t, p), y° < 0,

(8) SD(t,p) = infl-y° J L(x,x(x),u(x))dx-y°l(x(b))\

where the infimum is taken over admissible pairs x(t) , u(x), x £[t, b], whose

trajectories start at (t, x(t, p)) (x(t,p) will be defined below), and their

graphs are contained in T (defined above). By [7, Corollary 5'], the existence

of So(t,p) is determined by the existence of a concourse of flights. Next,

a new function was defined: V(t, p) = -So(t, p) - x(t, p)y - Vvo(t, p)y° +

Vy(t, p)y = Vp(t, p)p (SD(t,p) = Vyo(t,p)y°, -x(t, p) = Vy{t, p)), (t, p)
£ P, which satisfies the partial differential equation

(9) V,(t,p) + H(t,-Vy(t,p),p) = 0,

where H(t, v , p) = y°L(t, v , u(t, p)) + yf(t, v , u(t, p))  and  u(t, p)  isa

dual optimal feedback control, and the dual partial differential equation pro-

gramming (briefly, DPDEDP)

(10)
max{V,(t,p)+yf(t, -Vy(t, p), u) + y°L(t, -Vv(t, p), u) : u £ U(t)} = 0.

The aim of this article is to get some properties of the value function S(t, x)

by studying (8), (9), (10) directly, which to a certain degree is the opposite
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approach to that in [7] and wholly in the spirit of the dynamic programming

technique, though it is quite a new method in the study of the value function.

Note that when examining (8)—(10) instead of (5)-(7), we need not require

that the set T has nonempty interior, or that S(t, x) is differentiable in T.

Moreover, we do not require that y° = -1 or that the problem is calm, which is

essential in the classical setting (5)-(7) [2, 5]. This is very important for prob-

lems with constraints (see, e.g., [5]). Further, if problem (l)-(4) can be solved

using (6), (7), i.e., e.g., [6, Theorem 7.1, Chapter 4], then it can be solved also

by dual dynamic programming, i.e., Theorem 3.1 or Theorem 3.2. Indeed, T

then has nonempty interior and S(t, x) is of class C1 in an open subset Q of

T. Put P = {(t,p):a<t<b, p = (y°,y), -2 < y°<0, y=y°Sx(t,x),
(t, x) £ Q] and define x(t, p), (t, p) e P as the value of an optimal trajec-

tory starting at (t,x) for (t,p) = (t, y°,y°Sx(t,x)). Then -y°Vy0(t, p) =

SD(t,p) = -y°S(t,x(t,p)), Vl(t,p)=y°S,(t,x(t,p)), -Vy(t, p) = x(t, p).

Putting these values in (7) multiplied by y° , we find that V(t, p) = Vp(t, p)p
satisfies (10). Conversely if there exists a V(t,p) — Vp(t, p)p and satisfy-

ing (10) and such that closure of T = {(/,x) : x = -Vy(t, p), t £ [a, b],

(t, p) £ P) has nonempty interior in which S(t, x) is of class C1 and y° < 0,

then from (10) we analogously get (7).

2. The dual value function and the new function V(t, p)

Let T c R"+x denote a set covered by the graphs of all admissible trajec-

tories. We shall assume in this section, taking if necessary a smaller set T,

that S(t, x) defined in T by (5) does not take the value ±oc. Now T is,

in general, larger than that defined in §1. Let P c Rn+2 be a set of vari-

ables (t, y°, y) = (t, p), t £ [a, b], with y° < 0 and a nonempty interior.

Take a function x(t, p) defined on P such that (t, x(t, p)) £ T, (t, p) £ P ;

we assume that it is measurable, locally bounded, and that for each admissi-

ble trajectory x(t) lying in T there exists a function of bounded variation

p(t) = (y°, y(t)) lying in P such that x(t) = x(t, p(t)) and if all trajectories

x(t) start at the same (to, xn), then all the corresponding p(t) have the same

first coordinate y°.

Further, let So(t, p) be as in (8) but with T and x(t, p) defined here. We

see that SD(t, p) = -y°S(t, x(t, p)), (t, p) £ P . Following [6, Chapter IV.3]
(compare [4, Chapter 5.4]), we get a modification of the known proposition.

Proposition 2.1. (i) For each function of bounded variation p(t) = (y°, y(t)),

t £ [tx, b], a < t\ < b, lying in P such that x(t) = x(t, p(t)), t £ [t{, b],

is an admissible trajectory lying in T, the function W(t, p(t)) = So(t, p(t)) +

y° jt L(s, x(s), u(s)) ds is nondecreasing in [tx, b]. If p(t) = (y°, y(t)), t £

[tx, b], is absolutely continuous and is such that x(t) = x(t, p(t)), t £ [tx, b],

is an optimal trajectory on [t\, b] with x(t\) = x(t\, p(t\)), then W(t, p(t))

is constant in [tx, b].

(ii) Let W(t, p) = -y°Z(t, x(t, p)) be a real-valued function in P such that

W(b, p) — -y°l(x(b, p)). Let (to, xn) £ T be a given initial condition. Sup-

pose that for each function of bounded variation p(t) = (y°, y(t)), t £ [to, b],

with graph lying in P, the mapping t -, x(t) - x(t, p(t)), t £ [to,b],

x(to) — xo, is an admissible trajectory lying in   T  and that   W(t,p(t)) +
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y0 ft L(s, x(s), u(s))ds (u(t) is feasible for x(t)) is nondecreasing on [to,b].

If p(t) = (y°, y(t)), t £ [to, b], is absolutely continuous and if x(t)-x(t,p(t)),

t £ [t0, b], x(ifj) = x0, is an admissible trajectory in T, and is such that

W(t,p(t)) + y° ft L(s,x(s),H(s))ds is constant in [to,b], then x(t) is an

optimal trajectory and W(to,p(to)) — So(to,p(to)) where u(t) is a control

corresponding to x(t).

Proof. We only show part (ii). For any function p(t), t £ [t0, b], described

above, -y°Z(to, Xn) < -y° jt L(s, x(s), u(s))ds - y°l(x(b)) where u(t) isa

control feasible for x(t). For the function p(t),

,b

-y°Z(t0, xo) = -f /   L(s, x(s), u(s)) ds - fl(x(b)),
Jta

so W(to, p(to)) = So(to,P{to)) and x(i), u(t) is an optimal pair for the

problem

min I -y° Í L(s, x(s), u(s))ds -y°l(x(b)) : x(t), u(t),  t£[t0,b],

admissible pairs with x(in) = Xo and x(a) lying in T > .

Now, assume the triplet P, x(t,p),T can be chosen in such a way that

if we put Vyo(t, p) - S(t, x(t, p)), Vy(t, p) = -x(t, p), then there exists a

function V(t,p) in P satisfying

V(t,p) = Vp(t,p)p = Vy0(t,p)y° + Vy(t,p)y

= y°S(t,x(t,p))-yx(t,p)

with the convention: if y° = 0 then V(t, p) = Vy(t, p)y . In [7] it was shown

that such a function can exist (see §1).

Proposition 2.2. Assume in addition to (H) that U = U(t), t £ [a, b], is a

fixed subset of Rm and L, f are continuous in [a, b]x R" x Rm . Moreover,

suppose that if an admissible trajectory x(t) is of class Cx in a subinterval of

[a, b] then the corresponding p(t) (x(t) = x(t,p(t))) is also of class Cx on

this subinterval. Let (to, po) — (to, ^o > ̂ o) be an interior point of P at which

the function V(t, p) is differentiable and such that at (to ,x(to, Po)) admissible

trajectories under constant controls lying in T may start. Then V(t,p) satisfies

at (to,Po) the dual partial differential inequality

(12) V,(t0, po) + yof(toi -Vy(to, Po), v) + ylL(to, -Vy(t0,Po),v)<0

for all v £ U .
If there is an optimal pair x(t),ü(t), t £ [to,b], for the problem

S(to, x(to, Po)) (see (5)), with u(t) being continuous on some [to,to + k],

then the DPDEDP

(13) max{V,(to,Po)+yof(to, -Vy(t0, p0), v) + y^L(tQ, -Vy(t0, p0), v)} = 0
veu

is satisfied.
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Proof. Let v £ U be any constant control used over an interval [to, to+k] with

Ac small enough. Let x(t), t £ [to, to + k], be a trajectory corresponding to v ,

starting at x(íVj , p0) and lying in T. Let p(t) = (y°, y(t)), t £ [t0, t0 + k], be

a suitable function for x(t), lying in P. Denote by x(t), t £ [to + k, b], an

admissible trajectory starting at x(to + k) and lying in T; ü(t), t e[to + k, b],
is its control. Put

x (t) = Í X^'    t°-t-to + k'
I x(t),    t0 + k < t < b,

u 11) = { v '        t0<t<to + k,

Uk[ '     \ü(t),    t0 + k<t<b,

and let pk(t) = (y°, yk(t)), t £ [to,b], be the corresponding function, i.e.,

xk(t) = x(t, Pk(t)), t£[to,b]. By Proposition 2.1 (i),

t -, W(t,p(t)) = -y°kS(t, x(t,pk(t)))+y°k [ L(x,xk(x),uk(x))dx
Jt

is nondecreasing, and so (d/dt)W(t, p(t)) > 0 for any value of t for which

this derivative exists. Since (d/dt)xk(t) exists at t — to, by the assumption on

p(t), t £ [t0, r0 + ac] ,_and (11), there exists (d/dt)S(t, xlt^^t))) at t = t0

and thus also (d/dt)W(t, p(t)) at t = t0. Hence (d/dt)W(to, p(to)) > 0.
Calculating the last derivative, using (11) and the relation (d/dt)x(to, Pk{to)) =

f(to,x(to,pk{to)),v),we get (12).
If x(t), u(t), t £ [to, b], is an admissible optimal pair for ^(io, x(to, Po)),

then for p(t) corresponding to x(t) = x(t,p(t)), t £ [to, b], W(t,p(t)) is

constant in [/0, b] ; thus (d/dt)W(t, p(t)) = 0 at t = to, and so Vt(t0, Po) +

yof(to, -Vy(to, Po), u(to)) + yoL(to, -Vy(to, Po), u(t0)) = 0. This and (12)
yield (13).

Remark 2.1. To prove this proposition, we do not require the differentiability

of S(t,x).

3. A VERIFICATION THEOREM AND A DUAL OPTIMAL FEEDBACK CONTROL

In this section we give an answer to the question: "When does a solution

V(t,p) of the DPDEDP satisfy the sufficient conditions for optimality in

Proposition 2.1 (ii)?"

Theorem 3.1. Let V(t, p),  (t, p) £ P, t £ [a, b], be a Lipschitz solution of
DPDEDP (10). Let E denote a subset of [a, b] such that if t0 £ E, then for
all (to, p) £ P,  Vp(t, p) exists. We assume that meas E = b - a, b £ E, and

that  V(t,p) satisfies the boundary condition y°Vy0(b,p) — y°l(-Vy(b, p)),
(b, p) £ P, and the relation

(14) V(t,p)=Vp(t,p)p,        t£E,  (t,p)£P.

Let x(t), u(t) be an admissible pair whose graph of the trajectory x(t) is con-

tained in the closure T of T = {(t, x) : x = -Vy(t, p), t £ E, (t, p) £ P}

and such that there is a function of bounded variation p(t) = (y°, y(t)) ly-

ing in P and satisfying x(t) = -Vy(t,p(t)) for t £ E. Assume further that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1094 ANDRZEJ NOWAKOWSKI

then Vt(t, p(t)) exists for almost every t. Then W(t,p(t)) = -y°Vyo(t,p(t)) +

y° ft L(s, x(s), u(s)) ds is a nondecreasing function of t. Let x(t), u(t), t £

[a, b], x(a) = c, be an admissible pair with x(t) lying in T and let p(t) =

(F°> y(0)> t £ [a, b], be a nonzero absolutely continuous function lying in P

such that x(t) = -Vy(t, p(t)) for all t £ E. Suppose that for almost all t in

[a,b],

(15) Vt(t,p(t))+y(t)f(t,-Vy(t,p(t)),ü(t))+y°L(t,-Vy(t,p(t)),ü(t)) = 0.

Then x(t), Ti(t), t £ [a, b], is an optimal pair for ( 1 )-(4) relative to all admis-

sible pairs x(t), u(t), t £ [a,b], x(a) = c, whose graphs of trajectories are

contained in T and where the corresponding function p(t) = (y°, y(t)) (x(t) =

-Vy(t, p(t)), t £ E) is of bounded variation. Moreover, -y°S(t, x(t ,p(t))) =

~y°Vy0(t ,p(t)) with x(t, p) =-Vy(t, p) is the dual value function along p(t).

Proof. By (14), V,(t, p(t)) = y°(d/dt)Vyo(t, p(t)) + y(t)(d/dt)Vy(t, p(t)) a.e.
Since (d/dt)Vy(t,p(t)) = -f(t, -Vy(t, p(t)), u(t)) and (d/dt)y°Vy0(t, p(t)) =

-(d/dt)W(t,p(t)) - y°L(t, -Vy(t,p(t)),u(t)) a.e., from (10) we get that

(d/dt)W(t, p(t)) > 0 a.e. The above relations, written for p(t), together

with equation (15), imply that -y°Vy0(t, p(t)) = -y° Jt L(s, x(s), Ti(s)) ds -

y°l(-Vy(b,p(b))) for t £ E; thus we can extend -y°Vy0(t, p(t)) to all t £

[a, b]\E by assuming it equal to the right-hand side of the last equality. Hence

we get that W(t, p(t)) — -y°l(x(b)) is constant in [a, b]. This, together with

Proposition 2.1(h), implies the assertion of the theorem.

Remarks to Theorem 3.1. (i) If we also assume that Vvv ̂  0 exists and is

continuous, then for each admissible trajectory x(f) whose graph is contained

in T, we get that the corresponding p(t) = (y°, y(t)) is really of bounded

variation.

(ii) If F is a Lipschitz solution of (10) then it will be of form (14) when

VpP(t,p)p = 0, (t,p)£P.

(iii) Put x(t,p) = -Vy(t,p), S(t,x(t,p)) = Vyo(t,p). Then (14) means

that (y°, -y) is a normal to the epigraph of S(t, x) defined in T at the

point (x(î, p), S(t, x(t, p))). This generalizes the classical results (if S(t, x)

is smooth and y° = —1) that —y = Sx (see, e.g., [4, 6]).

(iv) We would like to stress that the x(t, p) of §2 which appeared in an

artificial way, in practice, is calculated from (10) and (14) by putting x(t, p) =

-Vy(t,p).
In the classical dynamic programming, another problem, whose solution is

even more useful in applications, is that of finding the optimal feedback or

optimal control synthesis u(t, x) (see §1). In §1 the concept of a dual feedback

control was mentioned, too. Now, we describe this concept more carefully.

Let a Borel measurable function u — u(t, p) from a set R c Rn+2 of the

points (t, p) = (t, y°, y), t £ [a, b], y° < 0, into U(t) be given. Then the

differential equation

(16) x = f(t,x,u(t,p))

has many solutions x(t, p) in P. We say that u = u(t, p) is a dual feedback

control if we can choose any solution x(t, p) of (16) such that for each ad-

missible trajectory x(/) lying in T - {(t, x) : x - x(t, p), (t, p) £ P}, there
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exists a function of bounded variation p(t) = (y°, y(t)) lying in P and satis-

fying x(t) — x(t, p(t)). A dual feedback u(t, p) will be called optimal if for

each (t, p) £ P there exists an absolutely continuous function p(s) = (y°, y(s)),

s £ [t,b], such that So(t,p) — -y° Jt L(s, x(s,p(s)), u(s,p(s)))ds -

y°l(x(b,p(b))) and for y°Vyo(t,p) = -SD(t, p), Vy(t,p) = -x(t, p), there
exists V(t,p) satisfying (14) with a suitable set E. To obtain an optimal

pair with an initial condition (A0, Xn) £ T, we have to find an absolutely con-

tinuous function p(t) = (y°,y(t)) lying in P such that x(to,p(h)) = xo,

(d/dt)x(t,p(t)) = f(t, x(t,p(t)), u(t,p(t))) and along it (14) is satisfied
with the above Vp and the set E. The pair defined by x(t) = x(t,p(t)),

Ti(t) = u(t, p(t)), t £ [to, b], will be an optimal pair.

Theorem 3.2. Let u(t, p) be a dual feedback control in P. Then a sufficient con-

dition that u(t, p) be optimal is that the following hold: the function V(t, p) =

y° ftb L(s, x(s, p(s)), u(s, p(s))) ds -x(t, p)y + y°l(x(b, p(b))), for a set E c

[a, b] of full measure containing t = b, has the derivative Vp(t,p) for t £

E and (t,p) £ P with y°Vy0(t,p) = y° jtbL(s, x(s,p(s)), u(s,p(s)))ds +

y°l(x(b, p(b))), Vy(t, p) — -x(t, p), t £ E, (t, p) £ P, and is a Lipschitz
solution of DPDEDP (10) in P. p(s), s £ [t, b], is absolutely continuous and

is chosen, for each (t, p) £ P, in such a way that x(s) = x(s, p(s)), ti(s) =

u(s, p(s)), s £ [t, b], is an admissible pair and ( 15) is fulfilled in [t, b] a.e. with

V,(s, p(s)) = V,(s, p(s)), Vy(s, p(s)) = Vy(s, p(s)). If pit) = 0°, y(t)) is a
function of bounded variation lyingjn P and corresponding to some admissible

trajectory x(t) lying in T, then Vt(t,p(t)) exists for almost every t.

Proof. The proof is a direct consequence of the verification Theorem 3.1.

To demonstrate the value of the presented theory, we give an example that is

solved in [7] by the nonclassical field theory method and could not be treated by

any other known method. We show below that this example can also be solved

by using Theorem 3.2.

Example. Take in (l)-(4) a = -1, b = n, L(t, x(t), u(t)) = a(t)x2(t) +

b(t)u2(t), l(x(n)) = 0 if x(n) = 0 and +oc otherwise, f(t,x(t),u(t)) =

B(t)u(t), U(t) = [-l, 1], t£[-l,n], x(-l) = 0, where

a(t)

j= 1,2,3,  ac = 0, 1,...,   \J\Jlkj = (-l,0].
k=0j=X

To find an optimal dual feedback control, we help ourselves by resolving the

maximum principle (the necessary optimality conditions) for problem (l)-(4)
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y°= -e,

y°= -e,

u(t,y°,y) = { 0,

<y/y°),

(see [7, pp. 749, 750]). We calculate from it the following triplets x(t), u(t),

P(t) = (y°,y(t)):

y° = - e,    x(t, Ci) = Cisini,    y(t, ecx) — ecxcost,    u(t, Cx) = ex cost,

t£[0,n], cx £(-l, 1), e£ (±, §) ;

x(t,e) = 0,    y(t,e) = 0,     u(t,e) = 0,        i€[-l,*];

c    f°
x(i,c4) = -y /   B2(s)ds,    y(t,ec4) = ec4,

u(t,c4) = ^B(t),        *e [-1,0],  c4£(-l, 1).

Define

(17)
-(y/2y°)B(t),        re [-1,0], ^(-f,-!),

y 6 H. I),
t£[-l,7t],   y° G (-|, -i) ,   V = 0,

t£[0,JZ],   y°e(-3,-i),

|y| < f|cosi|, y = 0 for / = n/2.

Next, define x(t, y°, y) and F(i, y°, y) in the same sets of t and (y°, y),

respectively, as

" (y/2y»)fîB2(s)ds,
0,

I (-y/y°)tgt;

[ (-y2/4y°)/>2(5)^,

0,

. (y2/2yü)\gt.

The set £ = [-1, 7r]\{7r/2}. It is not difficult to check that all assumptions

of Theorem 3.2 are satisfied for the above u(t, p), x(t, p), V(t, p), and E .

Thus u(t,p) defined by ( 17) is an optimal dual feedback control and x(/) = 0,

u(t) = 0 is an optimal pair.
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