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Abstract: In this article, we introduce the dual index and dual core generalized inverse (DCGI). By applying
rank equation, generalized inverse, and matrix decomposition, we give several characterizations of the dual
index when it is equal to 1. We realize that if DCGI exists, then it is unique. We derive a compact formula for
DCGI and a series of equivalent characterizations of the existence of the inverse. It is worth noting that the
dual index of A is equal to 1 if and only if its DCGI exists. When the dual index of A is equal to 1, we study dual
Moore-Penrose generalized inverse (DMPGI) and dual group generalized inverse (DGGI) and consider the
relationships among DCGI, DMPGI, DGGI, Moore-Penrose dual generalized inverse, and other dual generalized
inverses. In addition, we consider symmetric dual matrix and its dual generalized inverses. Finally, two
examples are given to illustrate the application of DCGI in linear dual equations.

Keywords: dual core generalized inverse, dual index, dual Moore-Penrose generalized inverse, dual group
generalized inverse, Moore-Penrose dual generalized inverse, dual analog of least-squares solutions
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1 Introduction

The concept of dual number was introduced by Clifford in 1873 [1], and the name of the number is given by
Study in 1903 [2]. The dual number consists of a real unit 1 and a Clifford operator ε. The dual number contains
two real elements, i.e.,  = + ′a a εa , where the real elements a and ′a are called the real part and dual part of a ,
respectively. The rule is ≠ε 0, = =ε ε0 0 0, = =ε ε ε1 1 , and =ε 02 . When we discuss the geometry of directed
lines in space, we can take the angle “θ” as the real part and the vertical distance “s” as the dual part to form
the dual angle,  = +θ θ εs. As an extension of the concept of dual number, dual vector is to replace the real
elements of a real vector with dual numbers and is often used as a mathematical expression for helices.
A matrix with dual numbers as elements is called a dual matrix. Denote an ×m n dual matrix as A , which
is represented as follows:

 = +A A εB, (1.1)

in which �∈A m n, and �∈B m n, . The matrix A (B) is called the real(dual) part of the dual matrix A .
The symbol�m n, denotes the set of all ×m n dual matrices; Im is an m-order identity matrix; �( )A represents

the range of A . Furthermore, denote  = +A A εBT
T T . When  =A A

T , we say that A is symmetric.
Dual matrices are used in many fields today. In Kinematics, e.g., with the aid of the principle of trans-

ference [3], many problems can be initially stated under the condition of spherical motion and then extended
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to spiral motion after the dualization of the equation, which makes the dual matrix widely used in space
agency kinematics analysis and synthesis [4–8] and robotics [9–13]. Their presence is also felt in other areas
of science and engineering, which has raised interest in various aspects of linear algebra and computa-
tional methods associated with their use [14–18]. Keler [19], Beyer [20], and others have done pioneering
work in the engineering applications of dual algebra.

Pennestrì and Valentini [13] introduced the Moore-Penrose dual generalized inverse (MPDGI):

let  = +A A εB, then the MPDGI of A is denoted by A P and is displayed in the form  = −+ + +A A εA BA
P .

For a given dual matrix A , if there exists a dual matrix X satisfying

              ( ) ( ) ( ) ( ) ( ) ( )= = = =A X A A X A X X A X A X X A X A1 , 2 , 3 , 4 ,T T

then we call X the dual Moore-Penrose generalized inverse (DMPGI) of A , and denote it as +
A [17]. It is worth

noting that for any dual matrix, its MPDGI always exists, while its DMPGI may not exist. Furthermore, if X
satisfies    =A X A A , we call X a { }1 -dual generalized inverse of A and denote it as ( )

A
1 ; if X satisfies    =A X A A

and   ( ) =A X A XT , we call X a { }1, 3 -dual generalized inverse of A and denote it as ( )
A

1,3 . Recently, Wang has
given some necessary and sufficient conditions for a dual matrix to have the DMPGI, and some equivalent
relations between the DMPGI and the MPDGI in [21].

Lemma 1.1. [21] Let  �= + ∈A A εB m n, , then the following conditions are equivalent:

(i) The DMPGI +
A of A exists;

(ii) ( ) ( )− − =+ +I AA B I A A 0m n ;

(iii) ( )
⎛
⎝
⎡
⎣

⎤
⎦
⎞
⎠ =B A

A
Arank

0
2rank .

Furthermore, when the DMPGI +
A of A exists,

 ( ( ) ( ) ( ) ( ) )= − − − − −+ + + + + + + +A A ε A BA A A B I AA I A A B AA .m n
T T T T (1.2)

Lemma 1.2. [21] Let  �= + ∈A A εB m n, , then the DMPGI +
A of A exists, and  =+

A A
P if and only if

( )− =+I AA B 0m and ( )− =+B I A A 0.n

MPDGI and DMPGI are used in many aspects. For example, Pennestrì and Valentini, in their study [13],
applied MPDGI to various motions such as rigid body translation and dual angular velocity acquisition. In a
study by Pennestrì et al. [17], DMPGI is applied to kinematic synthesis of spatial mechanisms, and a series of
numerical examples about calculation and application of DMPGI to kinematic synthesis of linkage mechanisms
is given. In addition, MPDGI are also used in many inverse problems of kinematics and analysis of machines
and mechanisms in a study by de Falco et al. [4].

Next, Zhong and Zhang [22] introduced the dual group generalized inverse (DGGI): let A be an n-square
dual matrix. If there exists an n-square dual matrix G satisfying

          ( ) ( ) ( )= = =A GA A GA G G A G GA1 , 2 , 5 ,

then A is called a dual group generalized invertible matrix, and G is the DGGI of A , which is recorded as A #.
Zhong and Zhang [22] gave some necessary and sufficient conditions for a dual matrix to have DGGI and apply
DGGI to study linear dual equations.

Lemma 1.3. [22] Let  = +A A εB be a dual matrix with �∈A B, n n, and ( ) =AInd 1, then the DGGI of A exists
if and only if ( ) ( )− − =I AA B I AA 0n n

# # .
Furthermore, if the dual group inverse of A exists, then

 = +A A εR,
# # (1.3)
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where

( ) ( ) ( ) ( )= − + − + −R A BA A B I AA I AA B A .n n
# # # 2 # # # 2 (1.4)

Most applications of dual algebra in Kinematics require numerical solutions to linear dual equations.
Udwadia [23] introduced the norm of dual vector and used some properties of dual generalized inverses in
solving linear dual equations. Various dual generalized inverses are useful for solving consistent linear dual
equations or inconsistent linear dual equations. In particular, Qi et al., in their study [24], proposed both a total
order and an absolute value function for dual numbers. Then, they gave the definition of the magnitude of a
dual quaternion as a dual number. Furthermore, 1-norm,∞-norm, and 2-norm are extended to dual quaternion
vectors in their article. Furthermore, Qi et al. began to study a series of basic problems in [24–28], e.g., singular
value decomposition of dual complex matrices, low rank approximation of dual complex matrices, dual
quaternion vectors, generalized inverses of dual quaternion matrices, and others.

It is known that Moore-Penrose inverse and group inverse belong to generalized inverses in complex
fields. Other well-known generalized inverses are Drazin inverse, core inverse, and so on. The core inverse
means that when the index of �∈A n n, is 1, there is a unique matrix �∈X n n, , which satisfies =AXA A,

=AX X2 and ( ) =AX AXT . We call it the core inverse of matrix A, which is expressed as ⃝A # . Baksalary and
Trenkler, in their study [29], obtained ⃝ = +A A AA# # . The core inverse has good properties. It can be used to
solve many problems, especially in constrained least squares problem.

Although DMPGI, MPDGI, and DGGI are discussed in [21,22], the dual core generalized inverse (DCGI) and
the dual index have not been studied yet. On the basis of the above studies, the concepts of the dual index and
DCGI are introduced in this article. Furthermore, it is proved that when the dual index of dual matrix is 1, there
must be the DCGI of the dual matrix. The sufficient and necessary condition, namely the index is 1, is used to
identify the existence of DCGI, which makes the problem more concise and clear. At the same time, we also
give other equivalent conditions for the existence of DCGI and the compact formula for DCGI, as well as the
relations among DCGI, DGGI, DMPGI, and MPDGI of the dual matrix, and discuss some special dual matrices.
Finally, we solve two linear dual equations by applying DCGI.

2 Dual index 1

In complex (real) field, the index is necessary for studying generalized inverse and its related problems. For
example, it is known that the group (core) inverse of a matrix exists if and only if the index of the matrix is equal
to 1. Moreover, Wei et al. [30–32] considered singular linear structured system with index 1. In this section, we
introduce the dual index of a dual matrix. We provide some necessary and sufficient conditions for a dual matrix
with the dual index of 1. Furthermore, by using the dual index, we study the dual group generalized invertible
matrix.

Definition 2.1. Let A be an n-square dual matrix. If  � �( ) ( )=A A
2 , then the dual index of A is equal to 1, and it

is recorded as ( ) =AInd 1.

Next, we discuss the equivalent characterization of  � �( ) ( )=A A
2 , where  = +A A εB.  � �( ) ( )⊆A A

2

is constant, which means that  � �( ) ( )=A A
2 if and only if  � �( ) ( )⊆A A

2 , i.e., there exists  = +X X εX1 2, which
makes

  =A X A .
2

Put  = +A A εB and  = +X X εX1 2 into the above equation to obtain

( ) ( ) ( ( ) )+ = + + = + + +A εB A εB X εX A X ε A X AB BA X ,2
1 2

2
1

2
2 1

i.e.,

( )

⎧
⎨
⎩

= ( )
+ + = ( )

A X A

A X AB BA X B

, 2.1a

. 2.1b

2
1

2
2 1
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From equation (2.1a), we see that =A X A2
1 is consistent if and only if

( ) ( )=A Arank rank ,2 (2.2)

i.e., the index of real matrix A is equal to 1. It is obvious that ( ) ( )=A A2 # # 2 and ( ) =A A AA2 # 2 #. Therefore, we can
obtain the general solution to equation (2.1a) as follows:

( ) ( ( ) ) ( )= + − = + −X A A I A A Y A I A A Y ,n n1
2 # 2 # 2 # # (2.3)

where Y is arbitrary.
By substituting equation (2.3) into equation (2.1b), we obtain ( )( ( ) )= + + + −B A X AB BA A I A A Yn

2
2

# # .
From ( ( ) )+ − =A A I A A Y AAn

# # #, it follows that ( ( ) )= + + − +B A X AB A I A A Yn
2

2
# # = + +BAA A X ABA# 2

2
#

( )− +AB I A A Y BAAn
# #. Therefore,

( )[ − ]⎡⎣
⎤
⎦ = − −A AB I A A

X

Y
B ABA BAA .n

2 # 2 # # (2.4)

By applying, (2.2), we obtain (2.4) if and only if

( ) ( )([ − − − ]) = ([ − ])A AB I A A B ABA BAA A AB I A Arank rank .n n
2 # # # 2 # (2.5)

Since

( )
( )

[ − ]⎡
⎣⎢

− − ⎤
⎦⎥

= [ ]A AB I A A
I A B I A A

I
A

0
0 ,n

n n

n

2 #

# #

2

by applying equation (2.2), we obtain

( ) ( ) ( ) ( )

( )

( )

= = ([ − − + ])
= ([ − + ])
= ([ − − ])
= ([ − ])
= ([ − ])

A A A AB I A A B AB BA A

A B AB BA A

A B ABA BAA

A B BAA

A B I AA

rank rank rank

rank

rank

rank

rank .

n

n

2 2 # #

#

# #

#

#

Then, the consistency of equation (2.4) is equivalent to

( ) ( )= ([ − ])A A B I AArank rank .n
# (2.6)

According to equations (2.2) and (2.6), the dual index of A is equal to 1, which is equivalent to

( ) ( ) ( )= = ([ − ])A A A B I AArank rank rank .n
2 # (2.7)

Therefore, we have the following theorem.

Theorem 2.1. Let  �= + ∈A A εB n n, and ( ) =A rrank , then the dual index of A is equal to 1, which is equivalent
to ( ) =AInd 1, and

( ) ( )= ([ − ])A A B I AArank rank .n
# (2.8)

Next, we present a well-known matrix decomposition [33, Corollary 6] and several corresponding decom-
positions of generalized inverses, which will be used in the following part of this article. Let �∈A n n, with

( ) =A rrank , then

= ⎡
⎣

⎤
⎦A U

K L
U

Σ Σ

0 0
,T (2.9)

where �∈U n n, is unitary, nonsingular ( )= σ σΣ diag , …, r1 is the diagonal matrix of singular values of A,
≥⋯≥ >σ σ 0r1 , and �∈K r r, and �∈ −L r n r, satisfy

+ =KK LL I .r
T T (2.10)
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By applying the decomposition, Baksalary and Trenkler [29] obtain

= ⎡
⎣

⎤
⎦

+
−

−A U
K

L
U

Σ 0

Σ 0
.

T 1

T 1

T (2.11)

Especially, when the index of A is 1, the necessary and sufficient condition for the existence of ⃝A # is that K

is nonsingular. In [29], by applying equation (2.9) Baksalary and Trenkler also give characterizations of core
inverse and group inverse:

⃝ = +A A AA# # (2.12)

( )= ⎡
⎣⎢

⎤
⎦⎥

−
U

K
U

Σ 0

0 0
,

1

T (2.13)

= ⎡
⎣

⎤
⎦

− − − − −
A U

K K K L
U

Σ Σ

0 0
.#

1 1 1 1 1
T (2.14)

Based on the premise that the index of �∈A n n, is 1, we analyze equation (2.8). Let the decomposition of A

be of the form in equation (2.9). Then, we write

= ⎡
⎣⎢

⎤
⎦⎥B U

B B

B B
U ,

1 2

3 4

T (2.15)

where B1 is an r-square matrix and ( )=r Arank . By substituting equations (2.9), (2.14), and (2.15) into
( )−B I AAn

# , we obtain

( )− =
⎡
⎣⎢

− +
− +

⎤
⎦⎥

−

−B I AA U
B K L B

B K L B
U

0

0
.n

#
1

1
2

3
1

4

T

It follows from equations (2.8) and (2.9) that

⎜ ⎟
⎛
⎝
⎡
⎣

⎤
⎦
⎞
⎠ =

⎛

⎝
⎡
⎣⎢

− +
− +

⎤
⎦⎥
⎞

⎠

−

−
K L K L B K L B

B K L B
rank

Σ Σ

0 0
rank

Σ Σ 0

0 0 0
,

1
1

2

3
1

4

which implies that = −B B K L4 3
1 .

In summary, we obtain that ( ) ( )= ([ − ])A A B I AArank rank n
# if and only if = −B B K L4 3

1 . Therefore,
we have the following Theorem 2.2.

Theorem 2.2. Let  �= + ∈A A εB n n, , ( ) =A rrank , and A and B have the forms as in equations (2.9) and (2.15),
respectively. Then, the dual index of A is equal to 1, which is equivalent to ( ) =AInd 1 and = −B B K L4 3

1 .
Furthermore, since ( ) =AInd 1, applying equations (2.9) and (2.15), it is easy to check that

( ) ( )
⎛
⎝
⎡
⎣

⎤
⎦
⎞
⎠ =

⎛

⎝

⎜
⎜⎜

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎞

⎠

⎟
⎟⎟

= + − −B A

A

B B K L

B B

K L
A B B K Lrank

0
rank

Σ Σ

0 0

Σ Σ 0 0

0 0 0 0

2rank rank .

1 2

3 4
4 3

1

By applying Theorem 2.2, we have the following Theorem 2.3.

Theorem 2.3. Let  �= + ∈A A εB n n, and ( ) =A rrank , then the dual index of A is equal to 1, which is equivalent
to ( ) =AInd 1, and

( )
⎛
⎝
⎡
⎣

⎤
⎦
⎞
⎠ =B A

A
Arank

0
2rank .

In the following theorems, we give some equivalent characterizations with dual index 1.
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Theorem 2.4. Let  �= + ∈A A εB n n, , where ( ) =A rrank , then the dual index of A is 1 if and only if ( ) =AInd 1

and ( ) ( )− − =+ +I AA B I A A 0n n .

Proof. By applying equations (2.9) and (2.11), we obtain

− = ⎡
⎣

⎤
⎦

+
−

I AA U
I

U
0 0

0
,n

n r

T (2.16)

− =
⎡
⎣⎢

− −
− −

⎤
⎦⎥

+

−
I A A U

I K K K L

L K I L L
U .n

r

n r

T T

T T

T (2.17)

Then, by equation (2.15)

( ) ( )− − = ⎡
⎣⎢ − − − + −

⎤
⎦⎥

+ +I AA B I A A U
B B K K B L K B K L B B L L

U
0 0

.n n

3 3
T

4
T

3
T

4 4
T

T (2.18)

Let the dual index of A be equal to 1. According to Theorem 2.2, the index of A is 1 and = −B B K L4 3
1 . Substituting

= −B B K L4 3
1 into − −B B K K B L K3 3

T
4

T and − + −B K L B B L L3
T

4 4
T and applying equation (2.10), we obtain

− − = − −
= − − +
= − − + =

−

− −
B B K K B L K B B K K B K LL K

B B K K B K K B K KK K

B B K K B B K K 0

3 3
T

4
T

3 3
T

3
1 T

3 3
T

3
1

3
1 T

3 3
T

3 3
T

and

− + − = − + −
= − + − +
= − + − + =

− −

− − −

− −

B K L B B L L B K L B K L B K LL L

B K L B K L B K L B K KK L

B K L B K L B K L B K L 0.

3
T

4 4
T

3
T

3
1

3
1 T

3
T

3
1

3
1

3
1 T

3
T

3
1

3
1

3
T

Therefore, from equation (2.18), it follows that ( ) ( )− − =+ +I AA B I A A 0n n .
Conversely, let the index of A is 1 and ( ) ( )− − =+ +I AA B I A A 0n n . Applying equation (2.18) gives

⎧
⎨
⎩

− − =
− + − =
B B K K B L K

B K L B B L L

0,

0,

3 3
T

4
T

3
T

4 4
T

i.e.,

⎧
⎨
⎩

= − ( )
= − ( )

B L K B B K K

B K L B B L L

, 2.20a

. 2.20b

4
T

3 3
T

3
T

4 4
T

Since the index of A is 1, it is known that K is a nonsingular matrix. Post-multiplying both sides of equation
(2.20a) by −K L1 , we obtain

− =−B K L B K L B L L.3
1

3
T

4
T (2.21)

By substituting equation (2.20b) into (2.21), we obtain − + =−B K L B B L L B L L3
1

4 4
T

4
T , i.e., = −B B K L4 3

1 . In sum-
mary, the index of A is 1 and = −B B K L4 3

1 . It follows from Theorem 2.2 that the dual index of A is 1. □

Theorem 2.5. Let  �= + ∈A A εB n n, , where ( ) =A rrank , then the dual index of A is 1 if and only if ( ) =AInd 1

and ( ) ( )− − =I AA B I AA 0n n
# # .

Proof. Let ( ) =AInd 1. By applying equations (2.9), (2.14), and (2.15), we can obtain

( ) ( )

− = ⎡
⎣⎢

− ⎤
⎦⎥

− − =
⎡
⎣⎢

−
− +

⎤
⎦⎥

−

−

− − −

−

I AA U
K L

I
U

I AA B I AA U
K LB K L K LB

B K L B
U

0

0
,

0

0
.

n

n r

n n

#
1

T

# #

1
3

1 1
4

3
1

4

T

(2.22)
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If the dual index of A is 1, from Theorem 2.2, we can obtain the index of A is 1 and = −B B K L4 3
1 . Therefore,

− =− − −K LB K L K LB 01
3

1 1
4 and − + =−B K L B 03

1
4 . It follows from equation (2.22) that ( ) ( )− − =I AA B I AA 0n n

# # .
Conversely, let the index of A is 1 and ( ) ( )− − =I AA B I AA 0n n

# # . Applying equation (2.22) gives = −B B K L4 3
1 .

To sum up, the index of A is 1 and = −B B K L4 3
1 . Furthermore, according to Theorem 2.2, we obtain that the dual

index of A is 1. □

By applying Lemma 1.3 and Theorem 2.5, we obtain the following Theorem 2.6 that discusses the relation-
ship between DGGI and dual index 1.

Theorem 2.6. Let  �= + ∈A A εB n n, , then the dual index of A is 1 if and only if A # exists.

Proof. From Lemma 1.3, we see that the DGGI of A exists if and only if ( ) =AInd 1 and ( ) ( )− − =I AA B I AA 0n n
# # .

From Theorem 2.5, we see that the dual index of A is 1 if and only if ( ) =AInd 1 and ( ) ( )− − =I AA B I AA 0n n
# # .

Therefore, we obtain that the dual index of A is 1 if and only if A # exists. □

By applying Theorem 2.4, we see that the dual index of A is 1 if and only if ( ) =AInd 1 and
( ) ( )− − =+ +I AA B I A A 0n n . By applying Lemma 1.1, we see that the DMPGI +

A of A exists if and only if
( ) ( )− − =+ +I AA B I A A 0m n . Therefore, we obtain the relationship between dual index 1 and DMPGI in the
following Theorem 2.7.

Theorem 2.7. Let  �= + ∈A A εB n n, , then the dual index of A is 1 if and only if ( ) =AInd 1 and +
A exists.

Theorem 2.8. Let  �= + ∈A A εB n n, and ( ) =AInd 1, then +
A exists if and only if ( ) ( )= ([ − ])A A B I AArank rank n

# .

Proof. “⇒” If +
A exists, then ( )

⎛
⎝
⎡
⎣

⎤
⎦
⎞
⎠ =B A

A
Arank

0
2rank is known by the Lemma 1.1. Therefore, when the index

of A is 1, the dual index of A is equal to 1 from Theorem 2.3. It is also known from Theorem 2.1
that ( ) ( )= ([ − ])A A B I AArank rank n

# .
“⇐” Let ( ) ( )= ([ − ])A A B I AArank rank n

# . When the index of A is 1, the dual index of A is equal to 1 from

Theorem 2.1. So ( )
⎛
⎝
⎡
⎣

⎤
⎦
⎞
⎠ =B A

A
Arank

0
2rank from Theorem 2.3. By conditions (i) and (iii) of Lemma 1.1, we know

that +
A exists. □

3 DCGI

It is well known that amatrix is group invertible if and only if its index is 1 and is core invertible in�n n, . In Section 2,

we obtain that the dual index of  = +A A εB is 1 if and only if A # exists. In this section, we introduce DCGI,
give some properties and characterizations of the inverse, and consider relationships among DCGI, DGGI, and dual
index 1. Meanwhile, we also give characterizations of some other interesting dual generalized inverses.

3.1 Definition and uniqueness of DCGI

Definition 3.1. Let A be an n-square dual matrix. If there exists an n-square dual matrix G satisfying

         ( ) ( ) ( ) ( )= ′ = =A GA A A G G A G A G1 , 2 , 3 ,
2 T (3.1)

then A is called a dual core generalized invertible matrix, and G is the DCGI of A , which is recorded as  ⃝
A

# .

The dual index and dual core generalized inverse  7



Theorem 3.1. Let  �= + ∈A A εB n n, , then the existence of the DCGI of A is equivalent to the existence of G

and R, which meet the following requirements: ⃝=G A # and

( )
⎪

⎪
⎧
⎨
⎩

+ + = ( )
+ + = ( )

+ = + ( )

BGA ARA AGB B

AGR ARG BG R

AR BG AR BG

, 3.2a

, 3.2b

. 3.2c

2

T

Furthermore,  = +G G εR is the DCGI of A .

Proof. From  = +A A εB,  = +G G εR, and






 




( )( )( ) ( )

( )( ) ( )

( ) (( )( )) ( ) ( )

⎧

⎨
⎪

⎩⎪

= + + + = + + +

= + + = + + +
= + + = + +

A GA A εB G εR A εB AGA ε BGA ARA AGB

A G A εB G εR AG ε AGR ARG BG

A G A εB G εR AG ε AR BG

,

,

,

2 2 2 2

T T T T

we obtain that   =A GA A ,   =A G G
2 , and   ( ) =A G A GT are, respectively, equivalent to

( ) ( )
⎪

⎪
⎧
⎨
⎩

= + + =
= + + =

= + = +

AGA A BGA ARA AGB B

AG G AGR ARG BG R

AG AG AR BG AR BG

, ,

, ,

, .

2 2

T T

Since =AGA A, =AG G2 , and ( ) =AG AGT , we have ⃝=G A # . Therefore, if the DCGI of A exists and  = +G G εR

is the DCGI of A , then ⃝=G A # and equations (3.2a), (3.2b) and (3.2c) are established.
Conversely, let  = +G G εR satisfy equations (3.2a), (3.2b), (3.2c) and ⃝=G A # . By applying Definition 3.1,

it is easy to check that G is the DCGI of A . So, the DCGI of A exists. □

According to Theorem 3.1, we can see that the existence of the core inverse of A is only a necessary
condition for the dual core generalized invertibility of A , that is to say, even though the real part of a dual
matrix is core invertible, it may be also a dual matrix without DCGI.

Example 3.1. Let

 = + =
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

A A εB

a

b ε

b b b

b b b

b b b

0 0

0 0

0 0 0

,

11 12 13

21 22 23

31 32 33

(3.3)

where a b, , and b33 are not 0 and ( )= =b i j1, 2, 3, 1, 2ij , b13, and b23 are arbitrary real numbers. It is obvious that
the real part A is core invertible and

⃝ =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A

a

b

1
0 0

0
1

0

0 0 0

.# (3.4)

Let  ⃝= +G A εR# , where

=
⎡

⎣
⎢

⎤

⎦
⎥R

r r r

r r r

r r r

.

1 2 3

4 5 6

7 8 9

(3.5)

According to Theorem 3.1, if G is the DCGI of A , then R is a suitable matrix of order n and satisfies
equations (3.2a), (3.2b), and (3.2c). Equation (3.2a) requires
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⃝ ⃝= + + − =BA A A R A AA B BΔ 0.

S S S

S

# #

1 2 3

123

(3.6)

Now we will prove that for any A constructed by A and B in equation (3.3), equation (3.6) does not satisfy
any three-order matrix R. Therefore, we need to prove − ≠S B 0123 . As shown below, from equations
(3.3)–(3.5), we have

⃝

⃝

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + + =
⎡

⎣

⎢
⎢

+ +
+ +

⎤

⎦

⎥
⎥

= − =
⎡

⎣

⎢
⎢

+ +
+ +

−

⎤

⎦

⎥
⎥

S BA A

b b

b b

b b

S AA B

b b b

b b b

S ARA

a r abr

abr b r

S S S S

a r b b abr b

b abr b b r b

b b

S B

a r b b abr

b abr b b r

b

0

0

0

,

0 0 0

,

0

0

0 0 0

,

2 2

2 2

0

,

Δ

0

0

0 0

.

1
#

11 12

21 22

31 32

2
#

11 12 13

21 22 23

3

2
1 2

4
2

5

123 1 2 3

2
1 11 12 2 13

21 4 22
2

5 23

31 32

123

2
1 11 12 2

21 4 22
2

5

33

If b33 is not 0, then Δ is not 0 no matter what the matrix R is. Therefore, the core inverse condition (3.2a) is not
satisfied, and A of the set has no DCGI.

In the following Theorem 3.2, we consider the uniqueness of DCGI.

Theorem 3.2. The DCGI of any dual matrix is unique if it exists.

Proof. Let  �= + ∈A A εB n n, , ( ) =A rrank , and  ⃝ ⃝= +A A εR
# # . Suppose that T is any DCGI of A , from

Theorem 3.1 and the uniqueness of the core inverse of a real matrix, we can denote T as  ͠⃝= +T A εR# .
Furthermore, we write

͠= −X R R .

Next, we prove =X 0.
From equation (3.2a), it can be seen that

͠

⃝ ⃝

⃝ ⃝

⎧
⎨
⎩

= + +
= + +

B BA A ARA AA B

B BA A AR A AA B

,

.

# #

# #
(3.7)

Through the first equation minus the second equation in (3.7), we obtain

( )͠= − =A R R A AXA0 . (3.8)

From equation (3.2b), we have

( )

( )͠ ͠ ͠

⃝ ⃝ ⃝

⃝ ⃝ ⃝

⎧
⎨
⎩

= + +
= + +

R AA R ARA B A

R AA R AR A B A

,

.

# # # 2

# # # 2
(3.9)
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Through the first equation minus the second equation in (3.9), we have

͠ ⃝ ⃝= − = +X R R AA X AXA .# # (3.10)

Similarly, from equation (3.2c), it can be seen that R and R͠ satisfy

( )

( )͠ ͠

⃝ ⃝

⃝ ⃝

⎧
⎨
⎩

+ = +
+ = +

AR BA AR BA

AR BA AR BA

,

.

# T #

# T #
(3.11)

Through the first equation minus the second equation in (3.11), we have ( ( )) ( )͠ ͠− = −A R R A R RT , i.e.,

( ) =AX AX .T (3.12)

By post-multiplying both sides of equation (3.8) by ⃝A # , and by applying equation (3.12), we obtain

( ) ( ) ( ) ( ) ( )⃝ ⃝ ⃝ ⃝= = = = = = = =AXA AXAA AX AA X A A A X AA A X A AX AX0 ,# T # T T T # T T T # T T T T

i.e., =AX 0. Thus, the equation (3.10) is simplified as follows:

͠ ⃝= − =X R R AA X .# (3.13)

Let the decomposition of A be as in equation (2.9). We write

= ⎡
⎣⎢

⎤
⎦⎥X U

X X

X X
U ,

1 2

3 4

T (3.14)

where �∈X r r1 , . Substituting equations (2.9), (2.13), and (3.14) into equation (3.13), we obtain

( )⃝ = ⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣

⎤
⎦ = ⎡

⎣⎢
⎤
⎦⎥ =

−
AA X U

K L
U U

K
U U

X X

X X
U

U
I

U U
X X

X X
U

U
X X

U U
X X

X X
U X

Σ Σ

0 0

Σ 0

0 0

0

0 0

0 0
.

r

# T

1

T
1 2

3 4

T

T
1 2

3 4

T

1 2 T
1 2

3 4

T

Therefore, = =X X 03 4 , i.e.,

= ⎡
⎣

⎤
⎦X U

X X
U

0 0
.

1 2 T (3.15)

To make =X 0 hold, we only need to prove =X 01 and =X 02 .
By substituting equations (2.9) and (3.15) into equation (3.8), we obtain

= ⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

= ⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

= ⎡
⎣

⎤
⎦ =

AXA U
K L

U U
X X

U U
K L

U

U
KX KX

U U
K L

U

U
KX K KX L

U

Σ Σ

0 0 0 0

Σ Σ

0 0

Σ Σ

0 0

Σ Σ

0 0

Σ Σ Σ Σ

0 0
0.

T 1 2 T T

1 2 T T

1 1 T

Therefore,

⎧⎨⎩
= ( )
= ( )

KX K

KX L

Σ Σ 0, 3.16a

Σ Σ 0. 3.16b

1

1

Since A is core invertible, from Theorem 3.1, we see that K is nonsingular. Thus, from equations (3.15)
and (3.16a), we obtain =X 01 . So

= ⎡
⎣

⎤
⎦X U

X
U

0

0 0
.

2 T (3.17)
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Similarly, by substituting equations (2.9) and (3.17) into equation (3.12), we obtain

⎟⎜
⎛
⎝

⎡
⎣

⎤
⎦
⎡
⎣

⎤
⎦

⎞
⎠

= ⎡
⎣

⎤
⎦
⎡
⎣

⎤
⎦U

K L X
U U

K L X
U

Σ Σ

0 0

0

0 0

Σ Σ

0 0

0

0 0
,

2 T

T

2 T

i.e.,

⎟⎜
⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

= ⎡
⎣

⎤
⎦U

KX
U U

KX
U

0 Σ

0 0

0 Σ

0 0
.

2 T

T

2 T

Continue to simplify the above equation and obtain

( )

⎡
⎣⎢

⎤
⎦⎥ = ⎡

⎣
⎤
⎦U

KX
U U

KX
U

0 0

Σ 0

0 Σ

0 0
.

2
T

T 2 T

Thus, =KXΣ 02 . Considering that both Σ and K are nonsingular matrices, we obtain =X 0.2

To sum up, we obtain =X 01 , =X 02 , =X 03 , and =X 04 . From equation (3.14), we obtain =X 0, which can
also be understood as

͠=R R .

Therefore, R satisfying equations (3.2a), (3.2b), and (3.2c) is unique, i.e., if the DCGI of A exists, then the inverse
is unique. □

3.2 Characterizations and properties of DCGI

Theorem 3.3. Let  �= + ∈A A εB n n, , then its DCGI exists if and only if its dual index is 1.

Proof. Suppose that A is core invertible. Let the decomposition of A be as in equation (2.9), and the form of B

be as in equation (2.15). We write

= ⎡
⎣⎢

⎤
⎦⎥R U

R R

R R
U ,

1 2

3 4

T (3.18)

where R1 is an r-square matrix and ( )=r Arank .

“⇒” Assuming that the dual core inverse  ⃝ = +A G εR
# of the dual matrix  = +A A εB exists, it can be seen

from Theorem 3.1 that the real part matrix A is core invertible and ⃝=G A # , so the index of A is 1.
Since the DCGI exists, then equation (3.2a) holds. Substituting equations (2.9), (2.13), (2.15), and (3.18) into
+ + =BGA ARA AGB B, we obtain

( ) ( )⎡
⎣⎢

⎤
⎦⎥ =

⎡
⎣⎢

+ + + + + + ⎤
⎦⎥

−

−U
B B

B B
U U

B KR LR K B B K L KR LR L B

B B K L
U

Σ Σ Σ Σ Σ Σ
.

1 2

3 4

T
1 1 3 1 1

1
1 3 2

3 3
1

T

So we have = −B B K L4 3
1 .

To sum up, from Theorem 2.2, when the index of A is 1 and = −B B K L4 3
1 , the dual index of A is 1.

“⇐” Let the dual index of A be 1. According to Theorem 2.2, the index of A is 1 and = −B B K L4 3
1 . It follows

from equation (2.15) that

= ⎡
⎣⎢

⎤
⎦⎥−B U

B B

B B K L
U .

1 2

3 3
1

T (3.19)

From equations (3.19) and (2.9), we obtain

 = + = ⎡
⎣

⎤
⎦ + ⎡

⎣⎢
⎤
⎦⎥−A A εB U

K L
U εU

B B

B B K L
U

Σ Σ

0 0
.T

1 2

3 3
1

T

The dual index and dual core generalized inverse  11



Denote

 ( ) ( ) ( ) ( ) ( )

( )
= + = ⎡

⎣⎢
⎤
⎦⎥ +

⎡
⎣⎢
− − ⎤

⎦⎥
− − − − − − − −

−G G εR U
K

U εU
K LB K K B K K B K

B K
U

Σ 0

0 0

Σ Σ Σ Σ

Σ 0
.

1

T

1
3

2 1
1

1 1 2
3

1 T

3
2

T (3.20)

Then,






 





( )

( )

( )

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

⎟

⎟

⎜

⎜

⎟⎜

= + + +

= ⎡
⎣

⎤
⎦ +

⎛

⎝
⎡
⎣⎢

⎤
⎦⎥

+ ⎡
⎣⎢
− − ⎤

⎦⎥ + ⎡
⎣

⎤
⎦

⎞

⎠

= ⎡
⎣

⎤
⎦ + ⎡

⎣⎢
⎤
⎦⎥

= + =

= + + +

= ⎡
⎣⎢

⎤
⎦⎥ +

⎛
⎝
⎡
⎣⎢
− − ⎤

⎦⎥
⎞
⎠

+
⎛

⎝
⎡
⎣⎢
− ⎤

⎦⎥ +
⎡
⎣⎢

⎤
⎦⎥
⎞

⎠

= ⎡
⎣⎢

⎤
⎦⎥ +

⎡
⎣⎢
− − ⎤

⎦⎥

= + =

−

−

−

−

− − − − − − − −

− −

−

− − − − − − − −

−

A GA AGA ε BGA ARA AGB

U
K L

U ε U
B B K L

B B K L
U U

B B K L
U U

B B
U

U
K L

U εU
B B

B B K L
U

A εB A

A G AG ε AGR ARG BG

U
K

U εU
K LB K K B K K B K

U

εU
B K B K

B K
U

U
K

U εU
K LB K K B K K B K

B K
U

G εR G

Σ Σ

0 0

Σ Σ

Σ Σ

Σ Σ

0 0 0 0

Σ Σ

0 0

,

Σ 0

0 0

Σ Σ Σ Σ

0 0

Σ 0

0 0

Σ 0

Σ 0

Σ 0

0 0

Σ Σ Σ Σ

Σ 0

T
1 1

1

3 3
1

T 1 1
1

T 1 2 T

T
1 2

3 3
1

T

2 2 2

1

T

1
3

2 1
1

1 1 2
3

1 T

T

1
2

1
2

3
2

T

1

T

1
3

2 1
1

1 1 2
3

1 T

3
2

T

and








( ) ( ( ))

( )

( )

( )

⎟⎜⎟⎜

= + +

= ⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

+
⎛

⎝
⎡
⎣⎢

⎤
⎦⎥

⎞

⎠

= + + =

− −

−

A G AG ε AR BG

U
I

U ε U
B K

B K
U

AG ε AR BG A G

0

0 0

0 Σ

Σ 0

.

r

T T

T

T 1
3

1 T

3
1

T

T

Therefore, G is the DCGI of A , i.e.,   ⃝=G A
# by Definition 3.1. □

Theorem 3.4. Let  �= + ∈A A εB n n, . Then, the DCGI  ⃝
A

# of A exists if and only if ( ) =AInd 1 and
( ) ( )− − =+I AA B I AA 0n n

# .

Proof. Suppose that A is core invertible. Let the decomposition of A be as in (2.9), and the form of B be
as in (2.15).

“⇒” Let the DCGI  ⃝
A

# of A exists, then we have the index of A as 1, and = −B B K L4 3
1 from Theorem 3.3.

Thus, we obtain equation (3.19). Substituting equations (2.9), (2.11), (2.14), and (3.19) into ( ) ( )− −+I AA B I AAn n
# ,

we obtain

( ) ( )− − = ⎡
⎣

⎤
⎦
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

− ⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

− ⎤
⎦⎥

= ⎡
⎣⎢ − +

⎤
⎦⎥ =

+
− −

−

−

−

−

−

− −

I AA B I AA U
I

B B

B B K L

K L

I
U

U
B B K L

K L

I
U

U
B K L B K L

U

0 0

0

0

0

0 0 0

0

0 0

0
0.

n n
n r n r

n r

#
1 2

3 3
1

1
T

3 3
1

1
T

3
1

3
1

T

(3.21)

“⇐” Let ( ) ( )− − =+I AA B I AA 0n n
# . Since A# exists, the index of A is 1. Substituting equations (2.9), (2.11),

(2.14), and (2.15) into ( ) ( )− −+I AA B I AAn n
# , we obtain
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( ) ( )− − = ⎡
⎣

⎤
⎦
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

− ⎤
⎦⎥

= ⎡
⎣

⎤
⎦
⎡
⎣⎢

− ⎤
⎦⎥

= ⎡
⎣⎢ − +

⎤
⎦⎥

+
−

−

−

−

−

−

I AA B I AA U
I

B B

B B

K L

I
U

U
B B

K L

I
U

U
B K L B

U

0 0

0

0

0

0 0 0

0

0 0

0
.

n n
n r n r

n r

#
1 2

3 4

1
T

3 4

1
T

3
1

4

T

(3.22)

It follows from ( ) ( )− − =+I AA B I AA 0n n
# that = −B B K L4 3

1 . Then, there is equation (3.20) from Theorem 3.3.
According to Definition 3.1, DCGI exists. □

Theorem 3.5. Let  �= + ∈A A εB n n, , then the DCGI  ⃝
A

# of A exists if and only if ( ) =AInd 1 and ( )⃝−I AAn
#

( )⃝− =B I A A 0n
# .

Proof. In the real field, it is known that ⃝= =A A AA A A# # # and ⃝=+AA AA # . According to Theorem 3.4, the DCGI
 ⃝
A

# of A exists if and only if ( ) =AInd 1 and ( ) ( )⃝ ⃝− − =I AA B I A A 0n n
# # . □

Next, we further discuss the characterizations of the existence of DCGI.

Theorem 3.6. Let  �= + ∈A A εB n n, , then the following conditions are equivalent:

(1) The DCGI of A exists;
(2) The index of A is equal to 1, and + + =BA A AXA AA B B# # is consistent;
(3) The index of A is equal to 1, and + + =+ +BA A AXA AA B B is consistent;
(4) The index of A is equal to 1, and ⃝ ⃝+ + =BA A AXA AA B B# # is consistent.

Proof. From Theorems 2.6, 2.7, and 3.3, we know that the existence of DCGI is equivalent to the existence of
DGGI; the existence of DGGI is equivalent to the existence of DMPGI with ( ) =AInd 1. Therefore, condition (1)
indicates that DCGI exists or DGGI exists or DMPGI exists with ( ) =AInd 1.

“( ) ( )⇒1 2 ” Let DCGI exists, then  = +A A εP
# # of  = +A A εB exists, so the index of A is 1 and   =A A A A

# ,
i.e., + + =BA A APA AA B B# # . Therefore, + + =BA A AXA AA B B# # is consistent.

“( ) ( )⇐1 2 ” Let the index of A be 1 and + + =BA A AXA AA B B# # be consistent. By applying equations (2.9),
(2.10), (2.14), and (2.15) into + + =BA A AXA AA B B# # , we obtain

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣

⎤
⎦
⎡
⎣

⎤
⎦ + ⎡

⎣
⎤
⎦
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣

⎤
⎦

+ ⎡
⎣

⎤
⎦
⎡
⎣

⎤
⎦
⎡
⎣⎢

⎤
⎦⎥ = ⎡

⎣⎢
⎤
⎦⎥

− − − − −

− − − − −

U
B B

B B

K K K L K L
U U

K L X X

X X

K L
U

U
K L K K K L B B

B B
U U

B B

B B
U

Σ Σ

0 0

Σ Σ

0 0

Σ Σ

0 0

Σ Σ

0 0

Σ Σ

0 0

Σ Σ

0 0
,

1 2

3 4

1 1 1 1 1
T

1 2

3 4

T

1 1 1 1 1
1 2

3 4

T
1 2

3 4

T

(3.23)

where = ⎡
⎣⎢

⎤
⎦⎥X U

X X

X X
U

1 2

3 4

T, B1 is an r-square matrix, and ( )=r Arank .

By simplifying equation (3.23), we obtain

⎡
⎣⎢

⎤
⎦⎥ = ⎡

⎣⎢
+ + + +

+ + + + ⎤
⎦⎥

−

− −

−

U
B B

B B
U U

B KX K LX K B K LB

B

B K L KX L LX L B K LB

B K L
U

Σ Σ Σ Σ

Σ Σ Σ Σ
.

1 2

3 4

T 1 1 3 1
1

3

3

1
1

1 3 2
1

4

3
1

T

Therefore, = −B B K L4 3
1 .

To sum up, if ( ) =AInd 1 and = −B B K L4 3
1 , then the dual index of A is 1 from Theorem 2.2. By Theorem 3.3,

we obtain that the DCGI of A exists.
Similarly, conditions (1) and (3) are equivalent, and conditions (1) and (4) are equivalent. □

The dual index and dual core generalized inverse  13



3.3 Compact formula for DCGI

The following is a compact formula for DCGI.

Theorem 3.7. Let  �= + ∈A A εB n n, and the DCGI of A exists, then

  ⃝ = +
A A A A

# # (3.24)

( ( ) ( ) ( ) )⃝ ⃝ ⃝ ⃝ ⃝= + − + − + − + −+ + + +A ε A BA A BA A BA A BA I AA I AA BA A .n n
# # # # # # T # # # (3.25)

Proof. According to Theorems 2.6, 2.7, and 3.3, if  ⃝
A

# exists, then A # and +
A exist. Write   = +

X A A A
# . It is easy

to check that

        = = =+ +
A X A A A A A A A A A A ,

# (3.26)

            = = = = =+ + + + + +
A X A A A A A A A A A A A A A A A A A A X .

2 # # # # # (3.27)

Since     ( ) ( ) ( )= = =+ + +
A X A A A A A A A AT # T T and     = =+ +

A X A A A A A A
# , we obtain

  ( ) =A X A X .T (3.28)

To sum up, we obtain   ⃝ = = +
A X A A A

# # .
Substituting equations (1.2) and (1.3) into equation (3.24) gives (3.25). □

In addition, substituting equations (2.9), (2.10), (2.11), (2.13), (2.14), and (3.19) into equation (3.25), we obtain
the following Theorem 3.8.

Theorem 3.8. Let the DCGI of  �= + ∈A A εB n n, exists, A and B be as forms in equations (2.9) and (2.15),
respectively. Then,

 ( ) ( ) ( ) ( ) ( )

( )

⃝ = ⎡
⎣⎢

⎤
⎦⎥ +

⎡
⎣⎢
− − ⎤

⎦⎥
− − − − − − − −

−A U
K

U εU
K LB K K B K K B K

B K
U

Σ 0

0 0

Σ Σ Σ Σ

Σ 0
.

#
1

T

1
3

2 1
1

1 1 2
3

1 T

3
2

T (3.29)

3.4 Relationships among some dual generalized inverses

The MPDGI is a very interesting inverse, which is useful for solving different kinematic problems [4].
Obviously, when the real part of a dual matrix is a nonsingular matrix, its MPDGI is equal to its DMPGI.

Similarly, we consider the laws and properties of DCGI in the form of  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # and DGGI

in the form of  = −A A εA BA
# # # #, as well as relationships among those dual generalized inverses.

Theorem 3.9. Let the DCGI  ⃝
A

# of  �= + ∈A A εB n n, exists, where ( ) =A rrank . Then  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # #

if and only if ( ) =AInd 1 and

( )− =+I AA B 0.n (3.30)

Proof. Suppose that A is core invertible. Let the decomposition of A be as in equation (2.9), and the form of B

be as in equation (2.15). Then,

( ) ( )⃝ ⃝− = ⎡
⎣⎢
− ⎤

⎦⎥
− −

A BA U
K B K

U
Σ Σ 0

0 0
,# #

1
1

1

T (3.31)

( ) ( )⃝− + = ⎡
⎣⎢

+ ⎤
⎦⎥

+ +
− − −

A BA A BA U
K K L B K B L

U
Σ Σ 0

0 0
,# #

1 1
3

T
4

T 1

T (3.32)
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( ) ( ) ( ) ( )⃝− = ⎡
⎣⎢
− − ⎤

⎦⎥
− − − − −

A BA U
K B K K K LB K

U
Σ Σ Σ Σ 0

0 0
,# #

1
1

1 1 1
3

1

T (3.33)

( ) ( )
( ) ( )⃝ − = ⎡

⎣⎢
+ ⎤

⎦⎥
+ +

− − −
A BA I AA U

K B K B L
U

0 Σ Σ Σ

0 0
,n

# T

1
3

T 1
4

T 1 T

T (3.34)

( )
( )

( )
⃝− =

⎡
⎣⎢
− ⎤

⎦⎥
− −

−I AA BA A U
K LB K

B K
U

Σ 0

Σ 0
,n

# # #

1
3

2

3
2

T (3.35)

( )− = ⎡
⎣

⎤
⎦
⎡
⎣⎢

⎤
⎦⎥ = ⎡

⎣
⎤
⎦

+
−

I AA B U
I

B B

B B
U U

B B
U

0 0

0

0 0
.n

n r

1 2

3 4

T

3 4

T (3.36)

“⇒” Let the DCGI  ⃝
A

# of  �= + ∈A A εB n n, exists and  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # . According to Theorem 3.3,

we obtain ( ) =AInd 1 and = −B B K L4 3
1 . To make  ⃝ ⃝ ⃝ ⃝= −A A εA BA

# # # # , from the compact formula for DCGI
(3.25), we obtain

( ) ( ) ( )⃝ ⃝ ⃝ ⃝ ⃝ ⃝= − + − + − + −+ + + +A BA A BA A BA A BA A BA I AA I AA BA A .n n
# # # # # # # T # # #

It follows from (3.31)–(3.35) that ( ) =−B KΣ 03
2 , so =B 03 . Since = −B B K L4 3

1 , then =B 04 . By applying equation
(3.36), =B 03 and =B 04 , we derive ( )− =+I AA B 0n . Thus, ( ) =AInd 1 and ( )− =+I AA B 0n are proved.

“⇐” Let ( ) =AInd 1 and ( )− =+I AA B 0n , then ( ) ( )− − =+I AA B I AA 0n n
# . According to Theorem 2.4, the

DCGI of A exists. We know that the real part of the DCGI is ⃝A # , i.e.,  ⃝ ⃝= +A A εR.
# # Put equations (2.9),

(2.11), and (2.15) into equation (3.36) to obtain ( )− =+I AA B 0n . From ( )− =+I AA B 0n , we have =B 03 and =B 04 .
Put =B 03 and =B 04 into equation (3.25) to obtain

( ) ( ) ( )

( ) ( )

⃝ ⃝ ⃝ ⃝

⃝ ⃝

= − + − + − + −

= ⎡
⎣⎢
− ⎤

⎦⎥ = −

+ + + +

− −

R A BA A BA A BA A BA I AA I AA BA A

U
K B K

U A BA
Σ Σ 0

0 0
.

n n
# # # # # T # # #

1
1

1

T # #
(3.37)

Therefore,  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # . □

Since it is well known that ( )− =+I AA B 0n if and only if ( )([ ]) =A B Arank rank , we obtain the following
Theorem 3.10.

Theorem 3.10. Let the DCGI  ⃝
A

# of  �= + ∈A A εB n n, exists, where ( ) =A rrank . Then,  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # #

is equivalent to ( ) =AInd 1 and ( )([ ]) =A B Arank rank .

Next, we continue to analyze DGGI in the form of  = −A A εA BA
# # # #.

Theorem 3.11. Let the DGGI A # of  �= + ∈A A εB n n, exists, where ( ) =A rrank . Then,  = −A A εA BA
# # # #

is equivalent to

( ) ( )− = − =B I AA and I AA B0 0.n n
# # (3.38)

Proof. Suppose that A is core invertible. Let the decomposition of A be as in equation (2.9), the decomposition
of A# be as in equation (2.14), and the form of B be as in equation (2.15). Then, we have

( ) ( )
( ) ( )− = ⎡

⎣⎢
− + − + ⎤

⎦⎥
− − − − −

A B I AA U
K B K L B K LB K L K LB

U
0 Σ

0 0
n

# 2 #

2
1

1
2

1
3

1 1
4 T

and

( ) ( )
( ) ( )

( ) ( )
− =

⎡
⎣⎢
− − ⎤

⎦⎥
− − − − −

− − −I AA B A U
K LB K K LB K K L

B K B K K L
U

Σ Σ

Σ Σ
.n

# # 2

1
3

2 1
3

2 1

3
2

3
2 1

T (3.39)
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“⇒” Let the DGGI A # of  �∈A n n, exists, then ( ) =AInd 1 from Theorem 3.3. Therefore, ( ) =AInd 1 and
= −B B K L4 3

1 from Theorem 2.2. Thus,

( ) ( )
( ) ( )− = ⎡

⎣⎢
− + ⎤

⎦⎥
− − −

A B I AA U
K B K L K B

U
0 Σ Σ

0 0
.n

# 2 #

2
1

1 2
2 T (3.40)

If  = −A A εA BA
# # # #, by equations (1.3), (3.39), and (3.40), we have ( ) ( )− =A B I AA 0n

# 2 # and ( ) ( )− =I AA B A 0n
# # 2 ,

so = −B B K L2 1
1 and =B 03 . It follows that

= ⎡
⎣⎢

⎤
⎦⎥

−
B U

B B K L
U

0 0
.

1 1
1

T (3.41)

Therefore, we have

( )

( )

− = ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

− ⎤
⎦⎥ =

− = ⎡
⎣⎢

− ⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ =

− −

−

−

−

−

B I AA U
B B K L

U U
K L

I
U

I AA B U
K L

I
U U

B B K L
U

0 0

0

0
0,

0

0 0 0
0,

n

n r

n

n r

# 1 1
1

T
1

T

#
1

T 1 1
1

T

i.e., (3.38) is established.
“⇐” Assuming ( )− =B I AA 0n

# and ( )− =I AA B 0n
# , it is easy to check that ( ) ( )− − =I AA B I A A 0n n

# # ,
( ) ( )− =A B I AA 0n

# 2 # , and ( ) ( )− =I AA B A 0n
# # 2 . According to Lemma 1.3, the DGGI of A exists. Therefore,

by using (1.3), we obtain  = −A A εA BA
# # # #. □

In Theorems 3.12, 3.13, and 3.14, we consider the relationships among  = −A A εA BA
# # # #,  = −+ + + +A A εA BA ,

and  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # .

Theorem 3.12. Let  �= + ∈A A εB n n, , then DGGI exists and  = −A A εA BA
# # # # if and only if ( ) =AInd 1,

DMPGI exists, and  = −+ + + +A A εA BA .

Proof. Suppose that A is group invertible. Let the decomposition of A be as in equation (2.9) and the form of B

be as in equation (2.15).
“⇒” Let DGGI exists and  = −A A εA BA

# # # #, then ( )− =B I AA 0n
# and ( )− =I AA B 0n

# from Theorem 3.11.
Substituting equations (2.9), (2.14), and (2.15) into ( )− =I AA B 0n

# , we obtain

( )− = ⎡
⎣⎢

− ⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥ = ⎡

⎣⎢
− − ⎤

⎦⎥
=

−

−

− −
I AA B U

K L

I

B B

B B
U U

K LB K LB

B B
U

0

0
0.n

n r

#
1

1 2

3 4

T

1
3

1
4

3 4

T

Therefore, =B 03 and =B 04 . Substituting equations (2.9) and (2.14) into ( )− =B I AA 0n
# , it follows that

( )− = ⎡
⎣

⎤
⎦
⎡
⎣⎢

− ⎤
⎦⎥ = ⎡

⎣⎢
− + ⎤

⎦⎥ =
−

−

−
B I AA U

B B K L

I
U U

B K L B
U

0 0

0

0

0

0 0
0,n

n r

# 1 2
1

T 1
1

2 T

i.e., = −B B K L2 1
1 .

Since =B 03 , =B 04 , and = −B B K L2 1
1 , we have

= ⎡
⎣⎢

⎤
⎦⎥

−
B U

B B K L
U

0 0
.

1 1
1

T (3.42)

Since + =KK LL Ir
T T , applying equations (2.16), (2.17), and (3.42), we have

( )

( ) ( )

− = ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

− −
− −

⎤
⎦⎥

= ⎡
⎣⎢

− − − − + − − ⎤
⎦⎥ =

+
−

−

− − −

B I A A U
B B K L

U U
I K K K L

L K I L L
U

U
B B K K B K I KK K B K L B K L B K I KK L

U

0 0

0 0
0

n

r

n r

r r

1 1
1

T

T T

T T

T

1 1
T

1
1 T

1
T

1
1

1
1 T

T
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and

( )− = ⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥ =+

−

−
I AA B U

I
U U

B B K L
U

0 0

0 0 0
0.n

n r

T 1 1
1

T

By applying Lemma 1.2, we can conclude that DMPGI exists and  = −+ + + +A A εA BA .

Because the DGGI exists, ( ) =AInd 1. To sum up, ( ) =AInd 1, DMPGI exists, and  = −+ + + +A A εA BA .

“⇐” Let ( ) =AInd 1, DMPGI exists, and  = −+ + + +A A εA BA . By applying Lemma 1.2, we know ( )− =+I AA B 0n

and ( )− =+B I A A 0n . Substituting equations (2.9), (2.11), and (2.15) into ( )− =+I AA B 0n , we obtain

( )− = ⎡
⎣

⎤
⎦
⎡
⎣⎢

⎤
⎦⎥ = ⎡

⎣
⎤
⎦ =+

−
I AA B U

I

B B

B B
U U

B B
U

0 0

0

0 0
0,n

n r

1 2

3 4

T

3 4

T

i.e., =B 03 and =B 04 .
Substituting equations (2.9), (2.11), and (2.15) into ( )− =+B I A A 0n and by applying =B 03 and =B 04 ,

we obtain

( )− = ⎡
⎣

⎤
⎦
⎡
⎣⎢

− −
− −

⎤
⎦⎥

= ⎡
⎣⎢

− − − + − ⎤
⎦⎥ =

+

−
B I A A U

B B I K K K L

L K I L L
U

U
B B K K B L K B K L B B L L

U

0 0

0 0
0.

n

r

n r

1 2
T T

T T

T

1 1
T

2
T

1
T

2 2
T

T

Therefore,

( )

( )

⎧
⎨
⎩

= + = + ( )
= + = + ( )

B B K K B L K B K B L K

B B L L B K L B L B K L

, 3.43a

. 3.43b

1 1
T

2
T

1
T

2
T

2 2
T

1
T

2
T

1
T

Since ( ) =AInd 1, K is nonsingular. Applying (3.43a) gives

+ = −B K B L B K .1
T

2
T

1
1 (3.44)

Substituting equation (3.44) into equation (3.43b), we have = −B B K L.2 1
1

Since =B 03 , =B 04 , and = −B B K L2 1
1 and by substituting equations (2.9) and (2.11) into ( )−B I AAn

#

and ( )−I AA Bn
# , we have ( )− =B I AA 0n

# and ( )− =I AA B 0n
# . According to Theorem 3.11, DGGI exists

and  = −A A εA BA
# # # #. □

Theorem 3.13. Let  �= + ∈A A εB n n, . If ( ) =AInd 1, DMPGI exists and  = −+ + + +A A εA BA , then DCGI exists

and  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # .

Proof. Since ( ) =AInd 1, DMPGI exists and  = −+ + + +A A εA BA , then ( )− =+I AA B 0n by applying Lemma 1.2.

According to Theorem 3.9, if ( ) =AInd 1 and ( )− =+I AA B 0n , then the DCGI  ⃝
A

# of A exists, and
 ⃝ ⃝ ⃝ ⃝= −A A εA BA .

# # # # □

Theorem 3.14. Let  �= + ∈A A εB n n, . If A # exists, and  = −A A εA BA
# # # #, then DCGI exists and

 ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # .

Proof. If A # exists, and  = −A A εA BA
# # # #, then ( ) =AInd 1, DMPGI exists and  = −+ + + +A A εA BA from Theorem

3.12. Then, DCGI exists and  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # from Theorem 3.13. □

Example 3.2. Let  = ⎡
⎣

⎤
⎦ + ⎡

⎣
⎤
⎦A ε

1 0

0 0

0 1

0 0
. By applying equations (1.2), (1.3), and (3.25), we have

   ⃝= ⎡
⎣

⎤
⎦ + ⎡

⎣
⎤
⎦ = ⎡

⎣
⎤
⎦ + ⎡

⎣
⎤
⎦ = ⎡

⎣
⎤
⎦ + ⎡

⎣
⎤
⎦ = ⎡

⎣
⎤
⎦

+
A ε A ε A ε

1 0

0 0

0 0

1 0
,

1 0

0 0

0 1

0 0
,

1 0

0 0

0 0

0 0

1 0

0 0

# #

The dual index and dual core generalized inverse  17



and

⃝ ⃝ ⃝− = ⎡
⎣

⎤
⎦ = − = ⎡

⎣
⎤
⎦ − = ⎡

⎣
⎤
⎦

+ + +A εA BA A A εA BA A εA BA
1 0

0 0
,

1 0

0 0
,

1 0

0 0
.# # # P # # #

It is easy to see that  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # ,  ≠+

A A
P, and  ≠ −A A εA BA

# # # #. This means that when DCGI

exists and  ⃝ ⃝ ⃝ ⃝= −A A εA BA
# # # # , there is not necessarily  = = −+ + + +A A A εA BA

P or  = −A A εA BA .
# # # #

3.5 Symmetric dual matrix

We know that in real field, the index of a symmetric matrix must be equal to 1, and its core inverse is equal
to its Moore-Penrose inverse and its group inverse. But it is not true for some symmetric dual matrices.
Even some symmetric dual matrices do not have DCGIs and DGGIs. For example,

Example 3.3.  = + =
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥A A εB

a

b ε

c

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0

, where a b, , and c are not 0. Because ( ) ( )= =A Arank rank 22 ,

( )([ − ]) =A B I AArank 33
# , and ≠2 3, we can obtain that the dual index of A is not 1, A does not satisfy

Theorems 2.6 and 3.3. Therefore, A has no DGGI and DCGI, as well as A no DMPGI from Theorem 2.8.

Theorem 3.15. If the dual matrix A is a symmetric dual matrix, and the dual index of A is 1, then

   ⃝= =+
A A A .

# # (3.45)

Proof. Let  �= + ∈A A εB n n, ,  =A A
T , ( ) =A rrank , and the dual index of A be 1. According to Theorems

2.6, 2.7, and 3.3, the DGGI, DMPGI, and DCGI of A exist simultaneously. Since  =A A
T, we obtain that A

is symmetrical, B is symmetrical, A2 is symmetrical, and ( ) ( ) ( ) ( )= = =+ + +A A AA A A2 # 2 T T . Therefore, we have

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= =
− = −

− = −

+ + +

+ +

+ +

A A A BA A BA

A A B I AA A B I A A

I A A B AA I AA B A

,

,

.

n n

n n

# # #

T T # 2 #

T T # # 2

Then, by applying equations (1.2) and (1.3), we derive that  = +
A A

# .

It follows from  = +
A A

# and   ⃝ = +
A A A A

# # in equation (3.24) that       ⃝ = = = =+ +
A A A A A A A A A

# # # # # .

Therefore,    ⃝= =+
A A A

# # . □

Theorem 3.16. If the DCGI  ⃝ ⃝= +A A εR
# # of  �= + ∈A A εB n n, exists, and A is a symmetric dual matrix, then

 ( ) ( ( ) ( ) ( ) ( ) )
⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝= = + − + − + −A A A ε A BA A B I AA I AA B A .n n

# # T # # # # 2 # # # 2 (3.46)

Proof. According to Theorems 2.6, 2.7, and 3.3, if the DCGI of A exists, then DGGI and DMPGI exist.

Then      ⃝ = = =+ + + +
A A A A A A A A

# # by equation (3.45). From  ( ) =+ +
A AT (see [23]), we have  ( )

⃝ ⃝=A A .
# T #

Since A is a symmetric dual matrix, we have =A AT and =B BT . Moreover, ( )⃝ ⃝= = = =+A A A A# # # T

( ) ( )= +A A .# T T

According to equation (3.25), we can obtain

 ( ( ) ( ) ( ) )

( ( ) ( ) ( ) )

( ( ) ( ) ( ) )

( ( ) ( ) ( ) )

( ( ) ( ) ( ) ( ) )

⃝ ⃝ ⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

= + − + − + − + −
= + − + − + −
= + − + − + −
= + − + − + −
= + − + − + −

+ + + +

+ +

A A ε A BA A BA A BA A BA I AA I AA BA A

A ε A BA A BA I AA I AA BA A

A ε A BA A BA I AA I AA BA A

A ε A BA A A B I AA I AA BA A

A ε A BA A B I AA I AA B A ,

n n

n n

n n

n n

n n

# # # # # # # T # # #

# # # # T # # #

# # # # # T # # # #

# # # # # T T # # # #

# # # # 2 # # # 2

i.e., (3.46). □
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Next, we consider some properties of DCGI, DGGI, and DMPGI in special forms when the research object
is a symmetric dual matrix.

Lemma 3.17. [34] Let �∈A n n, and �∈B n n, . Then, � �( ) ( )⊆B A if and only if ( )([ ]) =A B Arank rank .

Theorem 3.18. Let  = +A A εB be an n-order symmetric dual matrix. Then, the following conditions
are equivalent:

(1) The DCGI  ⃝
A

# of A exists, and    ⃝ = = = = −+ + + +A A A A A εA BA
# # P ;

(2) ( )− =+I AA B 0n or ( )− =I AA B 0n
# or ( )⃝− =I AA B 0n

# ;
(3) ( )([ ]) =A B Arank rank ;

(4) � �( ) ( )⊆B A ;
(5) ( )− =+B I AA 0n or ( )− =B I AA 0n

# or ( )⃝− =B I AA 0n
# .

Proof. Let  �∈A n n, , ( ) =A rrank , and  =A A
T . Since A is a symmetric dual matrix, then the real part A

is symmetric, and ⃝ = =+A A A# #. Therefore, condition (1) is  ⃝ = =A A
# #  = = − = − =+ + + +A A A εA BA A εA BA

P # # #

⃝ ⃝ ⃝−A εA BA# # # , and conditions (2) and (5) are equivalent.

“( ) ( )⇒1 2 ” Let    ⃝ = = = = −+
A A A A A εA BA

# # P # # #. From Theorem 3.11, we obtain ( )− =B I AA 0n
#

and ( )− =I AA B 0n
# . Therefore, we obtain ( )− =I AA B 0n

# . Since ⃝ = =+A A A# #, condition (2) is established.
“( ) ( )⇐ =1 2 ” Let ( )− =I AA B 0n

# . Since A is symmetrical, ( )− =B I AA 0n
# . Applying Theorem 3.11 gives that

DGGI A # of  = +A A εB exists and  = −A A εA BA
# # # #.

According to Theorems 2.6, 2.7, and 3.3, when A # exists,  ⃝
A

# and +
A exist, and the dual index of A is 1.

According to Theorem 3.15,   ⃝ = =+
A A A

# #. Then   ⃝ = = = −+
A A A A εA BA

# # # # #. Considering that A is a sym-
metric dual matrix, then ⃝ = =+A A A# #. Therefore, equation (1) is established.

According to Theorem 3.10, conditions (1) and (3) are equivalent. According to Lemma 3.17, conditions (3)
and (4) are equivalent. □

According to Theorems 3.15 and 3.16, it is easy to obtain the following Corollary 3.19.

Corollary 3.19. Let  �= + ∈A A εB n n, be a symmetric dual matrix. If the DCGI, DGGI, and DMPGI of A exist,
then they are symmetrical and equal.

4 Applications of DCGI in linear dual equations

In this section, we use two examples to illustrate some applications of DCGI in solving linear dual equations.
First, we consider solving a consistent linear dual equation by DCGI in Example 4.1. We give a general

solution to the consistent dual equation.

Example 4.1. Let  =A x b be a consistent equation, where

 = + = ⎡
⎣

⎤
⎦ + ⎡

⎣
⎤
⎦ = ⎡

⎣
+ ⎤

⎦A A εB ε
ε ε

ε

1 0

0 0

1 1

1 0

1

0
,

 = ⎡
⎣

⎤
⎦ + ⎡

⎣
⎤
⎦ = ⎡

⎣
+ ⎤

⎦b ε
ε

ε

1

0

1

1

1 , and  

= ⎡

⎣⎢
⎤
⎦⎥

= + ′ =x
x

x
x x εx i, , 1, 2i i i

1

2

.

It is easy to check that ( ) ( ) ( )= = ([ − ]) =A A A B I AArank rank rank 1n
2 # . By applying Theorem 2.1,

we obtain that the dual index of A is 1, i.e., the DCGI  ⃝
A

# exists. Applying (3.25) gives
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 ⃝ = + = ⎡
⎣

⎤
⎦ + ⎡

⎣
− ⎤

⎦ = ⎡
⎣

− ⎤
⎦A G εR ε

ε ε

ε

1 0

0 0

1 1

1 0

1

0
.

# (4.1)

Thus,

 ⃝ = ⎡
⎣

− ⎤
⎦
⎡
⎣

+ ⎤
⎦ = ⎡

⎣
⎤
⎦A b

ε ε

ε

ε

ε ε

1

0

1 1
.

#

Furthermore, let

     ( )
⃝ ⃝= + − = ⎡

⎣
⎤
⎦ + ⎡

⎣
−

−
⎤
⎦x A b I A A w

ε

ε

ε
w

1 0

1
,

#

2

# (4.2)

where w is an arbitrary n-by-1 dual column vector.
By substituting equation (4.2) into  =A x b , we can obtain

    

 

         ( ( ) ) ( )
⃝ ⃝ ⃝ ⃝− = + − − = − + −

= ⎡
⎣

+ ⎤
⎦
⎡
⎣

⎤
⎦ − = ⎡

⎣
+ ⎤

⎦ − = ⎡
⎣

+ ⎤
⎦ − ⎡

⎣
+ ⎤

⎦ =

A x b A A b I A A w b A A b b A A A A w

ε ε

ε ε
b

ε

ε
b

ε

ε

ε

ε

1

0

1 1 1 1
0,

#

2

# # #

i.e., (4.2) is the solution to  =A x b .

Meanwhile, let x be any solution to  =A x b . Pre-multiplying  =A x b by  ⃝
A

# , we obtain   ⃝ ⃝=A A x A b
# # ,

and then

          ( )
⃝ ⃝ ⃝ ⃝= + − = + − = ⎡

⎣
⎤
⎦ + ⎡

⎣
−

−
⎤
⎦x A b x A A x A b I A A x

ε

ε

ε
x

1 0

1
.

# # #

2

#

Therefore, each solution to  =A x b can be written as equation (4.2) in which  =w x .
To sum up, equation (4.2) is the general solution to  =A x b .

In order to solve inconsistent dual linear equation, Udwadia [23] introduced the norm of the dual vector.
Consider the m-by-1 dual vector  = +u p εqi i i

. We write

‖ ‖ ( ) ( ) ‖ ‖= + + = +u p εq p εq p εp q2 ,i i i i i i i i

2 T 2 T (4.3)

where ≠p 0
i

and‖ ‖ =p p p
i i i

2 T . By using the right-most expression in equation (4.3), one norm of the dual vector
ui is given as follows:

⟨ ⟩ ‖ ‖ ‖ ‖≔ +u p q .i i i
(4.4)

In equation (4.3), the dual norm is used to determine the magnitude of the error. Udwadia [23] introduced the

analog of the least squares solution of any inconsistent dual equation  =A x b and gives the corresponding

solution – analog of the least squares solution     ( )
( ) ( )= + −x A b I A A hn

1,3 1,3 , where h is an arbitrary dual

column vector and ( )
A

1,3 exists. It can be found that the real part x of the analog of the least squares solution

is the least squares solution to equation =Ax b, where A, b, and x are matched with the real parts of A , b ,
and x , respectively.

Example 4.2. Let the inconsistent equation be  =A x b , where  = + = ⎡
⎣

⎤
⎦ + ⎡

⎣
⎤
⎦ =A A εB ε

4 2

2 1

10 10

9 7

⎡
⎣

+ +
+ +

⎤
⎦

ε ε

ε ε

4 10 2 10

2 9 1 7
,  = ⎡

⎣
⎤
⎦ + ⎡

⎣
⎤
⎦ = ⎡

⎣
⎤
⎦b ε

ε0

1

1

0 1
, and  


= ⎡

⎣⎢
⎤
⎦⎥

= + ′ =x
x

x
x x εx i, , 1, 2i i i

1

2

, i.e.,




⎡
⎣

+ +
+ +

⎤
⎦
⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣

⎤
⎦

ε ε

ε ε

x

x

ε4 10 2 10

2 9 1 7 1
.

1

2

(4.5)

Then,

 = ⎡
⎣

− −
− +

⎤
⎦

+
A

ε ε

ε ε

0.1600 0.6880 0.0800 0.1840

0.0800 0.1440 0.0400 0.0080
.
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By applying the Result 12 of Udwadia in [23], the analog of the least squares solution of the inconsistent
equation is

     ( )= + − = ⎡
⎣

−
+

⎤
⎦ + ⎡

⎣
+ − −

− − −
⎤
⎦

+ +
x A b I A A h

ε

ε

ε ε

ε ε
h

0.0800 0.0240

0.0400 0.0880

0.2000 0.8000 0.4000 0.6000

0.4000 0.8000 0.8000 0.8000
,2

where h is an arbitrary n-by-1 dual vector. The norm of the error

   ⟨ ⟩ ⟨ ⟩ ⟨ ⟩= − = − =∗ +
e A x b A A b b 1.9715. (4.6)

According to Theorem 2.1, we have ( ) ( ) ( )= = ([ − ]) =A A A B I AArank rank rank 1n
2 # , i.e., the dual index

of A is 1. From Theorem 3.3, it can be seen that  ⃝
A

# exists. Then,

 ⃝ = + = ⎡
⎣

− −
− −

⎤
⎦A G εR

ε ε

ε ε

0.1600 0.6720 0.0800 0.1760

0.0800 0.1760 0.0400 0.0080

#

by the compact formula (3.25). Denote

     ( )
⃝ ⃝= + − = ⎡

⎣
−
+

⎤
⎦ + ⎡

⎣
+ − −

− − −
⎤
⎦x A b I A A w

ε

ε

ε ε

ε ε
w

0.0800 0.0160

0.0400 0.0720

0.2000 0.7200 0.4000 0.6400

0.4000 0.4400 0.8000 0.7200
,

# # (4.7)

where w is an arbitrary n-by-1 dual vector. The norm of the error is

     ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ∥ ∥ ∥ ∥
⃝= − = − = = + = ⎡

⎣−
⎤
⎦ + ⎡

⎣
⎤
⎦ =e A x b A A b b u m n

0.4000

0.8000

0.2800

1.0400
1.9715.

#

2 2 2 (4.8)

Therefore, from equations (4.6) and (4.8), we see that ⟨ ⟩ ⟨ ⟩= =∗e e 1.9715, i.e., equation (4.7) is also
the analog of the least-squares solution of equation (4.5).

The two examples in this section calculate the DCGIs of the two dual matrices through the compact
formula (3.25). When the dual index of any dual matrix is 1, its DCGI exists. On this basis, we can obtain
DCGI directly through the compact formula (3.25). However, in order to reduce the amount of calculation,
we can first consider equation (3.30) in Theorem 3.9. If the dual matrix satisfies equation (3.30), then
 ⃝ ⃝ ⃝ ⃝= −A A εA BA

# # # # . Otherwise, we have to use the compact formula (3.25).

5 Conclusion

The first part of this article provides some new findings about dual index 1 of dual matrices, including the
characterizations of the dual index 1. We obtain that DGGI exists if and only if the dual index is 1. Furthermore,
when the dual index is 1, DMPGI exists and the real part index of the dual Moore-Penrose generalized
invertible matrix is 1, and vice versa. The second part of this article explores DCGI systematically. Some results
from the second part of the article are as follows:

(1) If a DCGI of a dual matrix exists, it is unique.
(2) If DCGI exists, a compact formula for DCGI is given.
(3) We provide a series of equivalent characterizations of the existence of DCGI, e.g., the dual index is 1

if and only if DCGI exists.
(4) Relations among MPDGI, DMPGI, DCGI, and DGGI are proved.

In the third part, DCGI is applied to linear dual equations through a consistent dual equation and an incon-
sistent dual equation.
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