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Type I and type II interferons (IFN) are central to both combating virus infection and

modulating the antiviral immune response. Indeed, an absence of either the receptor

for type I IFNs or IFN-y have resulted in increased susceptibility to virus infection,

including increased virus replication and reduced survival. However, an emerging area of

research has shown that there is a dual nature to these cytokines. Recent evidence has

demonstrated that both type I and type II IFNs have immunoregulatory functions during

infection and type II immune responses. In this review, we address the dual nature of type

I and type II interferons and present evidence that both antiviral and immunomodulatory

functions are critical during virus infection to not only limit virus replication and initiate an

appropriate antiviral immune response, but to also negatively regulate this response to

minimize tissue damage. Both the activating and negatively regulatory properties of type

I and II IFNs work in concert with each other to create a balanced immune response that

combats the infection while minimizing collateral damage.
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INTRODUCTION

Type I and II interferons (IFN) are cytokines produced during virus infection that are integral
for regulating the immune response. Type I IFNs are well known for their ability to directly
induce an antiviral response within infected and surrounding cells through the upregulation of
molecules that can antagonize virus replication (1). As they are produced rather early on during an
infection, type I IFNs are also essential for activating the antiviral innate immune response, such
as natural killer (NK) cell effector functions (2). Type II IFN, known as IFN-γ, while sharing a
similar nomenclature to type I IFN, signals through a different receptor and has effects that are
independent from type I IFN. As a part of the innate immune response, they are predominantly
produced by natural killer cells during infection (2). IFN-γ, like type I IFN, promotes antiviral
immunity through its regulatory effects on the innate immune response and acts as a key link
between the innate immune response and activation of the adaptive immune response (3). Beyond
their antiviral effects, a growing amount of evidence suggests that type I and type II IFNs have
immunoregulatory functions that are critical for dampening immunopathogenic mechanisms and
minimizing collateral damage from the infection. Altogether, this review will build a framework
and provide evidence demonstrating that these two cytokines are both critical for limiting virus
replication and promoting a beneficial virus limiting response, while simultaneously dampening
immunopathology. If we consider the world outside of virus infections, however, this fundamental
duality of type I and II IFNs can be applied to numerous pathological processes, ranging from
allergy to autoimmune diseases.
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Type I and II IFN Production and Signaling
Type I IFNs consist of a group of structurally similar cytokines
and include 13–14 subtypes of IFN-α along with IFN-β,
IFN-ε, IFN-κ, IFN-ω, IFN-δ, IFN-ζ, and IFN-τ (4, 5). As
part of the innate immune antiviral response, these cytokines
are rapidly produced after pattern-recognition receptor (PRR)
stimulation (5). Current research suggests that an initial wave
of IFN-β and IFN-α4 is produced and dependent upon IRF3
phosphorylation and NFκb activation (6–8). The initial type I
IFNwave subsequently induces IRF7 phosphorylation and results
in a positive feedback loop of increasing type I IFN release.
Once produced, these cytokines all signal through the same
receptor, the type I IFN receptor (IFNAR). IFNAR is composed
of two subunits—IFNAR1 and IFNAR2—which when bound
to type I IFN are endocytosed and activate their associated
tyrosine kinases, Tyk2 and Jak1 (4, 9). The classical signaling
cascade results in phosphorylation of STAT2 and STAT1, which
forms a complex with IRF9, known as the IFN-stimulated gene
factor 3 (ISGF3) (4). ISGF3 then leads to expression of IFN-
stimulated genes (4). Beyond ISGF3, type I IFNs can also induce
phosphorylation and dimerization of STAT3, STAT4, STAT5,
and STAT6 and has been shown to induce activation of Rap1,
CrkL, Map kinases, IRS-1 and -2, Vav, RAC1, and PI3-kinase
signal transduction pathways (4, 10–14). Interestingly, IFN-β has
been shown to additionally signal through the IFNAR1 subunit
independent from IFNAR2 and carries through a non-canonical
signaling pathway (15).

Type II IFN is predominantly produced by NK cells during
the antiviral innate immune response (16). A multitude of
evidence has shown that type I IFN, IL-12, IL-15, and IL-18
are all capable of inducing IFN-γ production from NK cells
(17). NK cell IFN-γ is dependent upon STAT4 phosphorylation
for its production. Once released, IFN-γ signals through the
IFN-γ receptor (IFNGR), composed of IFNGR1 and IFNGR2
subunits. In the classical signaling pathway, ligation of IFN-γ
to the IFNGR leads to activation of JAK1 and JAK2, resulting
in homodimerization and phosphorylation of STAT1 (18).
However, like type I IFN, IFN-γ has also been shown to signal
through alternative pathways, including STAT4, Erk1/2, Pyk2,
and CrkL, among others (18).

Type I IFN: Mastering the Antiviral
Response
Type I IFN is one of the first cytokines produced during a virus
infection. In the context of HSV-2 infection, for example, there
is an initial wave of IFN-β production at 12 h post-infection,
followed by both IFN-β and IFN-α production at 48 h post-
infection (19, 20). This early production of type I IFN is critical
for induction of both an antiviral response within infected and
target cells, as well as activation of innate immune cells that
will ultimately serve to control virus replication and activate
the adaptive immune response to both clear the infection and
generate memory to create a rapid response against future
infections (21).

Type I IFN is a well-known stimulator of antiviral genes
targeted against preventing virus replication from within target

cells. When their production is stimulated by virus infection,
type I IFN can act in an autocrine, paracrine, or systemic
fashion. Their protective role during virus infection is highlighted
by the increased mortality observed in mice deficient in the
type I IFN receptor (Ifnar−/−) in comparison to their control
counterparts when infected with a virus (22, 23). Upon ligation
to its receptor, type I IFN has been shown to induce upwards
of 300 ISGs. Of these 300 genes, 51 were found to contribute
to host defense, while other genes contributed to inflammation,
signaling, transcription, and immunomodulation, among other
activities (24, 25). Further, De Veer et al. examined the ability
of specific ISGs or combinations of ISGs to inhibit virus
replication through overexpression of individual ISGs prior to
virus infection (24). They found that many ISGs were capable of
inhibiting virus replication, with some acting on a wide range of
viruses, while others were only effective against particular viruses
(24). Interestingly, they found that select ISGs enhanced virus
replication in their experimental system (24). Antiviral ISGs can
hinder virus replication through several mechanisms. Protein
kinase R, for example, inhibits cellular translational functions (1).
2′5 OAS and RNaseL, on the other hand, degrade RNA (26, 27).
Other ISG antiviral activities can prevent virion release, inhibit
virus entry, and inhibit virus transcription (28).

Apart from their induction of antiviral ISGs, type I IFNs are
key regulators of the innate immune response. Within the type
I IFN literature, a theme has emerged wherein acute type I IFN
production promotes beneficial antiviral responses, while chronic
type I IFN production can have a suppressive and deleterious
effect on the immune response. Within this section, we will
examine the ability of type I IFN to promote antiviral functions
in dendritic cells (DC), monocytes, and NK cells.

Dendritic cells are critical for activation of antiviral T-cells
(29). Type I IFN stimulation has been shown to enhance MHC
II expression and presentation of antigens as well as upregulate
co-stimulatory molecules and promote DC maturation (29–32),
Further evidence suggests that type I IFN is able to increase
differentiation of plasmacytoid DCs into myeloid-derived DCs to
increase T-cell activation (33).

Inflammatory monocytes are rapidly recruited to sites of
infection, where they can then stimulate local and migrating
immune cell antiviral function, promote inflammation, and
differentiate into macrophages and DCs (34). At sites of
inflammation, type I IFNs induce production of CCL2 to recruit
inflammatory monocytes (2, 34). Type I IFN produced during
vaginal HSV-1 infection induces tissue resident macrophages
and DCs to produce CCL2 to recruit and initial population
of inflammatory monocytes, which then enact a positive
feedback loops to produce more CCL2 to attract further
inflammatory monocytes (35). A similar phenomenon has been
observed during vaginal HSV-2 infection, influenza infection,
and inflammatory monocyte recruitment to the brain during
LPS-induced systemic inflammation (2, 36, 37), With influenza
infection, absence of IFNAR resulted in differentiation of
Ly6C intermediate expressing monocytes rather than Ly6Chi

inflammatory monocytes, which additionally had a different
phenotype (36). Further, Seo et al. demonstrated that Ifnar−/−

bone marrow had a significantly decreased differentiation of
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hematopoietic cells into inflammatory monocytes in the presence
of influenza infection (38). In regards tomacrophages, Type I IFN
has more of a suppressive function and will be discussed below.

Type I IFN and antiviral NK cell functionality are tightly
interwoven, where type I IFN has emerged as a key NK cell
regulator. Like their monocyte counterparts, type I IFN has
been implicated in NK cell recruitment to sites of inflammation.
During a vaginal HSV-1 infection, type I IFN was required to
induce epithelium production of CCL3, CCL4, and CCL5 to
recruit NK cells to the vaginal mucosa (35). Further, type I
IFN has been implicated in the activation of NK cell antiviral
functions. During an infection, NK cells have several weapons
under their belt that they can utilize to combat infection. When
activated, they can release IFN-γ, cytotoxic granules, and induce
cell death of infected cells. Type I IFN has been implicated
in both NK cell cytotoxicity and NK cell IFN-γ production.
Mice deficient in STAT1, a key transcription factor downstream
of type I IFN receptor, have been shown to have decreased
NK cell cytotoxicity and increased virus-induced mortality in
comparison to control mice (39). In the context of NK cell IFN-
γ production, type I IFN is essential for this process in multiple
virus infections, including MCMV, adenovirus, vaccinia virus,
and HSV (2, 40–43). Type I IFN has been shown to act directly
on NK cells to induce their release of IFN-γ in the context
of adenovirus, vaccinia virus, and LCMV infections, whereas
other evidence suggests that type I IFN stimulates DCs to trans-
present IL-15 to activate NK cells in MCMV infection (2, 40–44).
Recently, we have provided evidence demonstrating that NK cell
IFN-γ production relies on type I IFN induction of IL-18 from
inflammatory monocytes, rather than DCs in a mucosal HSV-
2 infection (2). Our differing results may stem from the route
of infection, where previous evidence used in vitro systems or
non-mucosal routes of infection.

Type I IFN Negative Regulation: Beyond
Interfering With Infection
As more evidence emerges, there is a greater understanding and
appreciation for the suppressive and negative regulatory aspects
of type I IFN. Early on, studies had shown that type I IFN exerted
anti-proliferative effects on immune cells and cell lines (45, 46).
Recently, Thomas et al. elegantly demonstrated that while all type
I IFN subtypes were capable of inducing an intracellular antiviral
response, the affinity of an individual type I IFN subtype to the
type I IFN receptor largely determined the ability of type I IFN
to inhibit cellular proliferation (47). The antiproliferation effects
of type I IFN required higher binding affinities to IFNAR (47).
Beyond proliferation, type I IFN can suppress innate immune cell
functions as well.

While an acute infection and upregulation of type I IFN
is beneficial for enhancing DC activation of T-cell adaptive
functions, a chronic infection with sustained type I IFN
production has been shown to dampen DC expansion and
induce a suppressive phenotype. In chronic LCMV infection, a
persistent type I IFN signature prevented BM differentiation and
proliferation of conventional DCs (48, 49). Further, stimulation
of splenic DCs with IFN-β, in vivo, resulted in a decrease in total

CD11c+ cell number. In addition to reducing DC expansion,
a chronic type I IFN signature was shown to upregulate PD-L1
expression and IL-10 in both DCs and macrophages (50, 51).

Type I IFN largely has a suppressive effect on macrophages.
The literature largely suggests that it downregulates their
expression of the IFN-γ receptor, making them less sensitive to
IFN-γ stimulation (52). In certain bacterial infections, such as
francisella tularensis and mycobacterium tuberculosis, type I IFN
signaling is detrimental to the host (53–56). The ability of type I
IFN to downregulate the IFN-γ receptor on macrophages likely
contributes to this phenomenon.

As mentioned previously, type I IFN has been shown to
be critical for inducing the antiviral functions of NK cells.
Conversely, and almost paradoxically, type I IFN has also been
shown to suppress the very functions that it enables. During
LCMV infection, Teijaro et al. found that blocking the type I IFN
receptor rescued IFN-γ production from NK cells (48). Further,
persistent type I IFN production can induce expression of PD-
L1 ligands, which is a mechanism that can suppress NK cell
antiviral function (48). Though administration of pegylated IFN-
α2 therapy resulted in an increased NK cell activation, TRAIL,
and CD107a receptor expression in HCV-infected individuals,
there was a concomitant reduction in IFN-γ+ NK cells within
the PBMC compartment (57, 58). This contradictory effect of
type I IFN may stem from the timing and magnitude of type I
IFN produced or a shift in transcription factor association with
the type I IFN receptor. In a listeria monocytogenes infection,
exogenous IFN-β administered at an earlier time point during
infection was able to activate NK cells and promote clearance of
the infection, whereas the endogenous IFN-β produced at 24 h
post-infection resulted in an impaired NK cell response (59).
Further, Marshall et al. found that stimulation of NK cells with
supernatants from CpG-stimulated pDCs in addition to IFN-α
suppressed IFN-γ release from NK cells (60). In a seminal study
fromMiyagi et al. they demonstrated that stimulation of NK cells
with type I IFN shifted the balance of transcription factors from
a STAT4 association with the type I IFN receptor, which upon
phosphorylation and nuclear translocation resulted in an initial
burst of IFN-γ, to a STAT1 association that subsequently led to
inhibition of NK cell IFN-γ production (61). Thus, as increasing
amounts of type I IFNs are released during infection, this leads to
an increasing shift in association between STAT1 and IFNAR and
ultimately inhibition of IFN-γ production from NK cells.

Along with promoting antiviral functions (and later limiting
these very same functions), type I IFN has been shown to limit
damaging immune responses that can lead to tissue pathology
and collateral damage. In a model of influenza infection, absence
of the type I IFN receptor resulted in significant virus-induced
immunopathology. Duerr et al. demonstrated that this pathology
was mediated by an upregulation of type 2 cytokines from
unregulated innate lymphoid type 2 cells (ILC2s) (62). Thus,
type I IFN suppresses ILC2 function during virus infection. Type
I IFN was also found to suppress pro-inflammatory NOS2+
Ly6Clo monocyte function (36). Moreover, type I IFN dampens
recruitment of neutrophils by suppressing epithelial CXCL1 and
CXCL2 production during virus infection (35, 38, 63). Not
only can neutrophils produce a multitude of molecules and
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proteases that can promote inflammation and tissue damage,
they have been shown to instigate rhinovirus-induced asthma
exacerbations in mice (64, 65). A table comparing the effects of
type I IFN on the innate immune response is summarized in
Table 1.

Unweaving the Dual Nature of Type I IFNs
Within the literature, various themes are emerging that provide
an explanation for this underlying dual functionality of type
I IFN. First, acute virus infections and transient type I IFN
production appears to promote antiviral responses from innate
immune cells, while chronic infections with persistent type I
IFN signatures result in a dampened antiviral response (66).
This is particularly evident in the cases of chronic LCMV, which
led to deterioration of the lymphoid architecture and T-cell
suppression mediated by increased PD-L1 expression on DCs
(48, 49). In simian immunodeficiency virus (SIV) infection, early
administration of type I IFN resulted in a reduction in viral
load, while chronic administration of type I IFN resulted in an
increased level of virus and CD4+ T-cell depletion (67, 68).
Second, the timing and magnitude of type I IFN produced can
result in differing type I IFN responses, as previously discussed.

A growing body of evidence has revealed that individual
subtypes of type I IFN can have differing effects, despite signaling

through the same receptor. Indeed, stimulation of DCs with
different subtypes of type I IFN resulted in varying profiles of
receptor expression and cytokine production (69). Additionally,
pre-treatment of influenza-infected mice with the same dose
of different type I IFN subtypes resulted in varying levels of
virus replication, with IFN-α5 and IFN-α6 having the greatest
reduction in viral load (70). Their differing affinities for the
type I IFN receptor, length of receptor binding, level of type
I IFN receptor expression, and innate cellular differences may
underlie the ability of these type I IFN subtypes to induce
different responses (71). This is outlined in greater and more
elegant detail in a review by Gideon Schreiber (71). In the context
of virus infection, however, we hypothesize that type I IFN
acts to optimize the antiviral response by both activating and
enhancing beneficial innate immune cell function, while limiting
detrimental and pathological immune responses that can cause
unnecessary tissue damage.

Type II IFN: An Antiviral State of Mind
IFN-γ is an important component of the innate antiviral response
and is predominantly produced by NK cells or innate lymphoid
type 1 cells (2, 72, 73). In the context of HSV-2 infection, absence
of IFN-γ production results in increased virus replication and
decreased survival (74, 75). Indeed, IFN-γ has been shown to

TABLE 1 | The role of type I IFN in regulating the antiviral innate immune response.

Cell type Positive Regulation Negative Regulation

DCs T-cell activation:

– Increases surface expression of CD40, CD80, CD86, OX40L, and

MHC II (29, 31)

– Stimulation of terminal DCs enhances MHC II and B-7

expression (32)

– Sustains Ag processing and MHC II expression (30)

Suppressive functions:

– Chronic type I IFN stimulation increases expression of IL-10 and

PD-L1 (50, 51)

Differentiation:

– pDC conversion into mDC (33)

Differentiation/proliferation:

– Chronic type I IFN stimulation reduces BM-derived cDC

differentiation and proliferation (48, 49)

– Stimulation during the differentiation process inhibits CD11c,

MHC-II, and B-7 expression (32)

Inflammatory

monocytes

Recruitment:

– Induction of CCL2 for inflammatory monocyte recruitment

(2, 34, 36, 37)

Differentiation:

– Absence of IFNAR leads to decreased Ly6Chi inflammatory

monocyte differentiation and results in increased levels of

Ly6Cintermediate monocytes (36)

Function:

– Downregulation of IFNγR expression and subsequently NOS2

expression (36)

Macrophages Function:

– Upregulation of IL-10 and PD-L1 (50, 51)

Function:

– Downregulation of IFNγR expression (52)

Neutrophils No evidence of activation Recruitment:

– Suppresses CXCL1 and CXCL2 production (35, 38, 63)

NK cells Recruitment:

– Induction of CCL3, CCL4, CCL5 for NK cell recruitment (35)

Activation:

– Implicated in STAT-1-mediated cytotoxicity (39)

– Required for IFN-γ production (2, 40–43)

Suppression of IFN-γ due to:

– Chronic type I IFN (48, 57, 58)

– Increased levels of type I IFN (60)

– Timing of type I IFN—early release results in activation, late

results in inhibition (59)

ILC2 No evidence of activation Proliferation:

– Reduces ILC2 proliferation (62)

Function:

– Reduces expression of IL-5, IL-6, and IL-13 (62)
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induce NO production, a potent inhibitor of virus replication,
from surrounding cells (72, 76). As well, IFN-γ can induce
intracellular antiviral programs, including PKR, as a resultant
overlap in their gene expression with type I IFNs (77). Beyond
that, however, IFN-γ itself has been demonstrated to impact
the function of the surrounding innate immune cells, including
macrophages and DCs.

The impact of antiviral IFN-γ on antigen presenting cells
(APCs) is to enhance stimulation of the adaptive antiviral
response to both clear the infection and generate memory as
a safe-guard for future infections (78, 79). Thus, it is a critical
propellant of the Th1 response. IFN-γ stimulation enhances
the antigen presentation process during T-cell priming. It has
been shown to increase various aspects of antigen presentation,
including efficiency, quantity, quality, and diversity of peptides
being loaded into the MHC I receptor (80). Along with MHC I,
IFN-γ increases MHC II expression and maturation of DCs (81).
Further, it induces the expression of IL-12 and co-stimulatory
CD80 in antigen-presenting cells, which is a critical component
of Th1 polarization (82–84).

With respect to macrophages, IFN-γ induced NO production
from these cells not only inhibits virus replication, but also
potently vasodilates blood vessels to decrease blood flow and
allow for increased extravasation of recruited immune cells to the
site of infection and inflammation (80). Further, IFN-γ has been
shown to “prime”macrophages to release reactive oxygen species,
through the upregulation of cellular components required for
this function (85). IFN-γ also appears to increase macrophage
receptor-mediated phagocytosis through the upregulation of
complement receptors, though this has been observed more so
in bacterial infections, rather than viral (86). Further, IFN-γ
promotes polarization of macrophages to an M1 phenotype and

primes these cells to produce pro-inflammatory cytokines IL-12,
TNF-α, and IL-1β (87, 88).

Type II IFN Negative Regulation: An
Emerging Role
IFN-γ has many overlapping features with type I IFNs, including
suppression of type 2 immune responses and inhibition of
proliferation. In the context of virus infection, however, we
believe that IFN-γ released during the innate immune response
has more of a supportive role in this respect as it is less potent
in its effects in comparison to type I IFNs. Aside from type I IFN,
IFN-γ has a number of immunoregulatory functions that serve to
optimize the antiviral response and limit overzealous responses
that could lead to collateral damage.

An optimal antiviral response involves both activating

beneficial immune responses, while simultaneously inhibiting
impractical and potentially damaging responses. In the context of

virus infection, IFN-γ is a prototypical Th1 promoting cytokine.

Further, evidence from Kang et al. demonstrates that IFN-γ plays
a critical role in not only polarizing macrophages to an M1

phenotype, but actively suppresses the M2 polarization pathway

(87). However, recent evidence has revealed that type I IFN is
capable of suppressing type 2 immunity. Independently, both
Duerr et al. and Moro et al. demonstrated that, similar to type
I IFN, IFN-γ is able to suppress ILC2 proliferation and type
2 cytokine production (62, 89). Indeed, in vivo administration
of IFN-γ potently suppressed IL-33-induced ILC2 proliferation,
which was dependent upon STAT1 signaling (62). In the
context of RSV infection, Stat1−/− mice, a transcription factor
downstream of both type I and type II IFNs, led to increased
lung pathology because of increased cytokine production from

TABLE 2 | The role of IFN-γ in regulating the antiviral innate immune response.

Cell type Positive Regulation Negative Regulation

APCs T-cell activation:

– Promotes DC maturation (81)

– Increases MHC I and MHC II expression (80, 81)

– Enhances efficiency, quantity, quality, and diversity of MHC I

Ag-loading (30)

– Increases expression of IL-2 and CD80 (82–84)

No evidence of negative regulation

Macrophages Function:

– Induces NO production (80)

– Primes macrophages for ROS release (85)

– Increases phagocytosis (86)

– Polarization to M1 phenotype (87, 88)

No evidence of negative regulation

Neutrophils Function:

– Increases PD-L1 expression (93)

No evidence of negative regulation

MDSC Function:

– Upregulation of PD-L1 (92)

Differentiation:

– Enhances differentiation of MDSCs (92)

No evidence of negative regulation

ILC2 No evidence of activation Proliferation:

– Reduced ILC2 proliferation (62, 89)

Function:

– Reduced expression of IL-5, IL-6, and IL-13 (62, 89)

– Reduced expression of amphiregulin (89)
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FIGURE 1 | The role of IFNs in the innate immune response to HSV-2 infection. (1) IFN-β is produced at 12 h post-infection and through autocrine and paracrine

signaling places surrounding cells into an antiviral state. (2) The IFN-β produced at 12 h post-infection also increases production of CCL2 between days 1 and 2

post-infection, which results in inflammatory monocyte recruitment and has been implicated in NK cell recruitment. (3) The recruited inflammatory monocytes result in

release of IL-18, which stimulates NK cells to produce IFN-γ at 48 h post-infection. (4) A second wave of type I IFNs, including both IFN-α and IFN-β, are detected at

48 h post-infection. (5) Both IFN-γ and the type I IFNs produced at 48 h post-infection enhance APC antigen presentation capacities to stimulate a Th1 adaptive

immune response. (6) Simultaneously, the type I IFNs at 48 h inhibit ILC2-mediated virus-induced immunopathology. IFN-γ, supporting the negative regulatory effects

of type I IFN, also suppresses ILC2-mediated immunopathology.

ILC2s and ILC3s (90). Further, in a mouse model of influenza
infection, administration of IFN-γ suppressed ILC2 function
while deficiency of IFN-γ led to increased IL-5 and amphiregulin
release from ILC2s. These authors ultimately found that the
suppressive effects of IFN-γ on ILC2 function led to increased
lung pathology (91).

Along with dampening immune responses, there is
evidence demonstrating that IFN-γ can indirectly induce
immunoregulatory effects through the upregulation of PD-L1
and differentiation of myeloid derived suppressive cells. In
conjunction with GM-CSF, IFN-γ was shown to differentiate
monocytes into myeloid derived suppressor cells (MDSCs) in
vitro (92). In a mouse model of endotoxemia, IFN-γ has also
been shown to upregulate PD-L1 on neutrophils (93). A table
comparing the effects of IFN-γ on the innate immune response
is summarized in Table 2.

Understanding the Dual Nature of IFN-γ:
Unraveling the Paradox
Similar to type I IFNs, IFN-γ has both seemingly paradoxical
activating and suppressive functions on the innate antiviral
response. These functions can be teased apart if we examine the
cell type that IFN-γ is acting upon and bring other cytokines
into the picture with IFN-γ. If we consider macrophages,
IFN-γ has complementary effects on inducing an antiviral
macrophage function. IFN-γ induces NO production, enhances

macrophage antigen presenting function, and an overall M1
phenotype while actively suppressing the M2 phenotype (72,
80, 87). Similar to macrophages, IFN-γ predominantly increases
antigen presentation function of DCs. Further, IFN-γ has a
predominantly suppressive effect on ILC2 cells (62).

IFN-γ as a cytokine rarely acts alone and its effects should
be considered in conjunction with other cytokines present in
the local microenvironment. The combinatorial effect between
IFN-γ and other cytokines likely plays a role in the ultimate
outcome of IFN-γ stimulation. Indeed, both IFN-γ and TNF-
α have been shown to synergize in the upregulation of iNOS
in macrophages. Salim et al. used mathematical modeling to
dissect out the roles of each cytokine and found that TNF-
α was largely responsible for the timing of iNOS induction
by inducing a rapid response, whereas IFN-γ impacted the
levels and concentrations of NO production (94). Further,
the role of IFN-γ in the in vitro differentiation process of
MDSCs required an initial priming with GM-CSF. Ribechini
et al. found that GM-CSF altered the signaling pathway of
IFN-γ allowing it to differentiate monocytes into MDSCs (92).
In a recent article by Zha et al. they found that IFN-γ was
able to suppress the functions of gp130 cytokines, particularly
the ability of OSM, to differentiate mesenchymal stem cells
through the upregulation of STAT1, concomitant decrease in
STAT3 activation, and internalization of the gp130 receptor
(95). Thus, IFN-γ can both be altered by additional cytokine
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signaling as well as regulate the signaling pathways of other
cytokines.

Putting the Pieces of the Puzzle Together
As we start to put the pieces of this type I and type II
IFN puzzle together, we can see that these two cytokines
act in concert with one another to limit virus replication
and encourage an antiviral adaptive immune response while
suppressing detrimental functions of other immune cells to limit
tissue pathology. Using vaginal HSV-2 infection as an example,
we find that there are multiple waves of type I IFN production,
starting with IFN-β at 12 h post-infection (20). This early wave of
IFN-β is likely responsible for the induction of MCP-1-mediated
inflammatory monocyte recruitment, ultimately leading to IL-
18-induced NK cell IFN-γ production (2). From there, we’ve
observed a second wave of type I IFN production, both IFN-α
and IFN-β, at 48 h post-infection (19). Along with type I IFN,
there’s a sharp increase in IFN-γ from NK cells at 48 h post-
infection (16). The IFN-γ released fromNK cells is also negatively
regulated by type I IFN, as NK cells lacking IFNAR have increased
IFN-γ production in the context of HSV-2 infection (2). This
second wave of type I and II IFNs likely work in concert with
each other to promote APC maturation, upregulation of co-
stimulatory molecules, and antigen processing and presentation
to promote Th1 polarization, while simultaneously suppressing
ILC2-mediated immunopathology (Figure 1).

Without type I IFN, and potentially type II IFN, there
is uncontrolled virus replication coupled with uncontrolled
inflammation that work together to cause tissue demise. On the
other hand, a chronic type I IFN signature is detrimental as it
can result in immunosuppression and increased virus replication.
Thus, we believe a balanced and appropriate type I IFN response
is required to regulate an optimal and advantageous antiviral
innate immune response.

Clinical Implications: Going Beyond
Infection
While the focus of this review has been on type I and
II IFNs and their ability to control the innate immune
response, IFNs have been implicated in several non-infectious
pathological conditions. Select autoimmune diseases, the most
prominent being systemic erythematous lupus (SLE), have
high type I IFN signatures associated with their pathology
(96). An antibody targeting human IFNAR has recently been
developed to block this signature with therapeutic benefit
(97). On the other hand, IFN-β therapy has had success
in treating multiple sclerosis (98). Indeed, the concepts
discussed in this review are relevant in the context of
pharmacotherapies targeting the type I and type II IFN pathways.
This begs the question: what is the role of type I IFN
outside of virus infection? A growing amount of evidence
has shown that type I IFN production is not isolated to
infectious disease stimuli, it can be produced during any
inflammatory insult. Thus, our fundamental understanding of
the innate immune response during virus infection has an
underlying application to many disease processes, beyond virus
infection.
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