TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 4, pp. 1189-1201, September 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

THE DUAL NOTION OF MULTIPLICATION MODULES

H. Ansari-Toroghy and F. Farshadifar

Abstract. Let R be a ring with an identity (not necessary commutative) and let M be a left R-module. In this paper we will introduce the concept of a comultiplication R-module and we will obtain some related results.

1. INTRODUCTION

Throughout this paper R will denote a ring with an identity (not necessarily commutative) and all modules are assumed to be left R-modules. Further " \subset " will denote the strict inclusion and \mathbb{Z} denote the ring of integers. Let M be a left R-module and let $S := End_R(M)$ be the endomorphism ring of M. Then M has a structure as a right S-module so that M is an R - S bimodule. If $f : M \to M$ and $g : M \to M$, then $fg : M \to M$ defined by m(fg) = (mf)g. Also for a submodule N of M,

$$I^N := \{ f \in S : Im(f) = Mf \subseteq N \}$$

and

$$I_N := \{ f \in S : N \subseteq Ker(f) \}$$

are respectively a left and a right ideal of S. Further a submodule N of M is called ([4]) an open (resp. a closed) submodule of M if $N = N^{\circ}$, where $N^{\circ} = \sum_{f \in I^N} Im(f)$ (resp. $N = \overline{N}$, where $\overline{N} = \bigcap_{f \in I_N} Ker(f)$). A left R-module M is said to be self generated (resp. self cogenerated) if each submodule of M is open (resp. closed).

Let M be an R-module. M is said to be a multiplication (resp. openly multiplication) R-module if for every submodule N of M there exists a two sided ideal I

Received August 3, 2005, accepted March 16, 2006.

Communicated by Shun-Jen Cheng.

²⁰⁰⁰ Mathematics Subject Classification: 13C99.

Key words and phrases: Endomorphism, Multiplication modules, Comultiplication modules, Closedly comultiplication modules.

of R such that N = IM (resp. $N^{\circ} = IM$). Recently a large body of research has been done about the left mutiplication R-modules haveing right $End_R(M)$ -modules structures.

Now let M be an R-module. The purpose of this paper is to introduce the concept of comultiplication (resp. closedly comultiplication) R-modules (the dual notion of multiplication or openly multiplication R-modules). M is said to be a comultiplication (resp. closedly comultiplication) R-module if for every submodule N of M there exists a two sided ideal I of R such that $N = (0 :_M I)$ (resp. $\overline{N} = (0 :_M I)$). It is clear that every comultiplication R-module is closedly comultiplication. It is shown that the converse is not true in general. Also we have shown that M is a comultiplication R-module if and only if for each submodule N of M, $N = (0 :_M Ann_R(N))$. Furthermore, we will obtain another characterization for comultiplication R-modules (see 3.10) and it is shown, among the other results, that every submodule of a comultiplication R-module is a comultiplication R-module is a comultiplication R-module is a comultiplication results, that every submodule of a comultiplication R-module is a comultiplication R-module (see 3.17) and that every cocyclic module over a commutative complete Noetherian ring is a comultiplication module (see. 3.17).

2. AUXILARLY RESULTS

In this section we will provide the definitions and results which is necessary in the next section.

Definition 2.1.

- (a) M is said to be (see [6]) a multiplication module if for any submodule N of M there exists a two sided ideal I of R such that IM = N.
- (b) Let N be a non-zero submodule of M. Then N is said to be (see [1]) large or essential (resp. small) if for every non-zero submodule L of M, N ∩ L ≠ 0 (resp. L + N = M implies that L = M).
- (c) M is said to be (see [1]) couniform if each of its non-zero submodules is small.
- (d) A submodule K of M is called fully invariant if $Kf \subseteq K$ for every $f \in End_R(M)$.
- (e) Let R be a commutative ring. The non-zero submodule N of M is said to be (see [10]) second submodule of M if for each a ∈ R the homothety N → N is either surjective or zero. This implies that Ann_R(M) = P is a prime ideal of R.
- (f) A non-zero module M over a ring R is said to be (see [2]) prime if the annihilator of M is the same as the annihilator of N for every non-zero submodule N of M.

- (g) A non-zero module M over a ring R is said to be (see [2]) coprime if the annihilator of M is the same as the annihilator of Q for every non-zero (left) quotient Q of M.
- (h) An *R*-module *M* is said to be distributive if the lattice of its submodule is distributive, i.e. $(X+Y) \cap Z = (X \cap Z) + (Y \cap Z)$ for any of its submodules *X*, *Y* and *Z*.
- (i) Let R be a commutative ring. An R-module L is said to be cocyclic (see [8] and [9]) if L ⊆ E(R/P) for some maximal ideal P of R.

Remark 2.2. (see [3]). Let R be a commutative Noetherian ring and let E be an injective R-module. Then we have $(0:_E (0:_R I)) = IE$.

Lemma 2.3. Let R be a commutative ring and M an R-module. Let $S = End_R(M)$ be a domain. Then $Ann_R(M)$ is a prime ideal of R.

Proof. Let I and J be ideals of the ring R and $IJ \subseteq Ann_R(M)$. Then IJM = 0. Now assume that $JM \neq 0$ and $IM \neq 0$. Hence there exist $a \in I$ and $b \in J$ such that $aM \neq 0$ and $bM \neq 0$. Consider the homotheties $M \xrightarrow{f_a} M$ and $M \xrightarrow{g_b} M$ defined respectively by $m \mapsto am$ and $m \mapsto bm$. Then

$$m(f_a g_b) = (mf_a)g_b = (am)g_b = bam = 0.$$

Hence $f_a g_b = 0$. Since S is a domain, $f_a = 0$ or $g_b = 0$. Therefore, aM = 0 or bM = 0. But this is a contradiction. Hence IM = 0 or JM = 0 so that $I \subseteq Ann_R(M)$ or $J \subseteq Ann_R(M)$.

3. MAIN RESULTS

Definition 3.1. An *R*-module *M* is said to be a comultiplication module if for any submodule *N* of *M* there exists a two sided ideal *I* of *R* such that $N = (0 :_M I)$.

Example 3.2. Let p be a prime number and consider the \mathbb{Z} -module $M = \mathbb{Z}(p^{\infty})$ (we recall that \mathbb{Z} is the ring of integers). Choose $N = \mathbb{Z}(1/p + \mathbb{Z})$ and Set $I = \mathbb{Z}p^i, i \geq 0$. It is clear that $N = (0 :_M I)$. Therefore, $M = \mathbb{Z}(p^{\infty})$ as a Z-module is a comultiplication module.

Definition 3.3. An *R*-module *M* is said to be a closedly comultiplication module if for any submodule *N* of *M* there exists a two sided ideal *I* of *R* such that $\overline{N} = (0:_M I)$.

Example 3.4 Let M be a duo R-module (i.e. every submodule of M is fully invariant). Now I_N is a two-sided ideal of S and it is easy to see that

 $\overline{N} = (0 :_M I_N)$. Hence M as a right S-module is a closedly comultiplication S-module.

Remark 3.5. It is clear that every comultiplication module is a closedly comultiplication module. But the following example shows that the converse is not true.

Example 3.6. As we will show in example 3.9, \mathbb{Z} as a \mathbb{Z} -module is not a comultiplication \mathbb{Z} -module. However since every non-zero endomorphism of \mathbb{Z} is a monomorphism, for every \mathbb{Z} -submodule N of \mathbb{Z} , we have $\overline{N} = 0$ or $\overline{N} = N$. This shows that \mathbb{Z} is a closedly comultiplication \mathbb{Z} -module.

Lemma 3.7. An R module M is a comultiplication module if and only if for each submodule N of M, $N = (0 :_M Ann_R(N))$.

Proof. The sufficiency is clear. Conversely, suppose that M is a comultiplication module. Then there exists a two sided ideal I of R such that $N = (0 :_M I)$. Then we have $I \subseteq Ann_R(N)$ so that $(0 :_M Ann_R(N)) \subseteq (0 :_M I) = N$. This implies that $N = (0 :_M Ann_R(N))$ as desired.

Example 3.8. Let R be a commutative semi-simple ring and let I be an ideal of R. Then it is clear that R is both injective and Noetherian as R-module. Hence by Remark 2.2, we have $(0:_R Ann_R(I)) = IR = I$. Thus every semi-simple ring as a module over itself is a comultiplication module by 3.7.

Example 3.9. Let $M = \mathbb{Z}$ (as a \mathbb{Z} -module). For a submodule $2\mathbb{Z}$ of \mathbb{Z} we have $(0 : Ann_{\mathbb{Z}}(2\mathbb{Z})) = \mathbb{Z}$. Therefore, \mathbb{Z} is not a comultiplication module.

Theorem 3.10. Let M be an R-module. Then the following are equivalent.

- (a) M is a comultiplication module.
- (b) For every submodule N of M and each two sided ideal C of R with $N \subset (0:_M C)$, there exists a two sided ideal B of R such that $C \subset B$ and $N = (0:_M B)$.
- (c) For every submodule N of M and each two sided ideal C of R with $N \subset (0:_M C)$, there exists a two sided ideal B of R such that $C \subset B$ and $N \subseteq (0:_M B)$.

Proof. $(a) \Rightarrow (b)$. Let N be a submodule of M and let C be a two sided ideal of R such that $N \subset (0:_M C)$. Since M is a comultiplication module, $N = (0:_M Ann_R(N))$. We set $B = C + Ann_R(N)$. Since $N = (0:_M Ann_R(N)) \subset (0:_M C)$, $Ann_R(N) \not\subset C$. Hence $C \subset B$ and we have

1192

 $(0:_M B) = (0:_M C + Ann(RN)) = (0:_M C) \cap (0:_M Ann_R(N)) = N.$ The implication $(b) \Rightarrow (c)$ is obvious.

 $(c) \Rightarrow (a)$. Let N be a submodule of M and let

 $H = \{D : D \text{ is a two sided ideal of } R \text{ and } N \subset (0:_M D)\}$

Clearly $0 \in H$. Let $\{B_i\}$, $i \in I$, be any non-empty collection of two sided ideals in H. By assumption, $\sum_{i \in I} B_i \in H$. By the Zorn's Lemma, H has a maximal member C so that $N \subseteq (0 :_M C)$. Assume that $N \neq (0 :_M C)$. Then by part (c), there exists a two sided ideal B with $C \subset B$ and $N \subseteq (0 :_M B)$. But this is a contradiction by the choice of C. Thus we have $N = (0 :_M C)$. This shows that M is a comultiplication R-module.

Theorem 3.11. Let R be a commutative ring and let M be a comultiplication R-module. Then

- (a) M is a self-cogenerated R-module
- (b) If N is a submodule of M such that $Ann_R(N)$ is a prime ideal of R, then N is a second submodule of M.

Proof.

(a) Let N be submodule of a comultiplication R-module M. Then there exists an ideal I of R such that $N = (0 :_M I)$. For each $a \in I$, define the map $f_a : M \to M$ by $m \mapsto am$. Since R is a commutative ring, f_a is an Rendomorphism. It is clear that for each $a \in I$, $N \subseteq Ker(f_a)$ and we have

$$\bar{N} = \bigcap_{f \in I_N} Ker(f) \subseteq \bigcap_{a \in I} Ker(f_a) = N.$$

Hence $N = \overline{N}$ as desired.

(b) Set P = Ann_R(N). Since M is a comultiplication R-module, N = (0 :_M P). Let φ_a : N → N be the non-zero R-homomorphism defined by n → an. Let K = Imφ_a = aN. It is clear that 0 ≠ K ⊆ N. By Theorem 3.10, there exists a two sided ideal B of R such that P ⊂ B and K = (0 :_M B). It follows that Ba ⊆ Ann_R(N). Since Ann_R(N) is a prime ideal of R and P ⊂ B, we have a ∈ Ann_R(N) so that aN = 0. This is a contradiction and the proof is completed.

Corollary 3.12. Let R be a commutative ring and let M be an R-module. Then M is a comultiplication module if and only if it is self cogenerated and closedly comultiplication R-module.

Proof. This is an immediate consequence of 3.11 (a) and 3.5.

Corollary 3.13. Let R be a commutative ring and let M be a comultiplication R-module. Further let N be a submodule of M. Then The following are equivalent.

- (a) N is second submodule of M.
- (b) $Ann_R(N)$ is a prime ideal of R.

Proof. Use 3.11 (b) and 2.1 (e).

Proposition 3.14. Let M be a comultiplication R-module.

(a) Let $\{M_{\lambda}\}, \lambda \in \Lambda$, be a family of submodule of module M with $\bigcap_{\lambda \in \Lambda} M_{\lambda} = 0$. Then for every submodule N of M, we have

$$N = \cap_{\lambda \in \Lambda} (N + M_{\lambda}).$$

(b) Let P be a minimal two sided ideal of R such that $(0:_M P) = 0$. Then M is cyclic.

Proof.

(a) Let N be a submodule of M. Then

$$N = (0:_M Ann_R(N)) = (\cap_{\lambda \in \Lambda} M_\lambda :_M Ann_R(N))$$
$$= \cap_{\lambda \in \Lambda} (M_\lambda :_M Ann_R(N)) \supseteq \cap_{\lambda \in \Lambda} (N + M_\lambda) \supseteq N.$$

It follows that

$$N = \cap_{\lambda \in \Lambda} (N + M_{\lambda}).$$

(b) Let $0 \neq m \in M$. Since M is a comultiplication R-module, there exists a two sided ideal I of R such that $Rm = (0:_M I)$ and hence

$$Rm = (0:_M I) = ((0:_M P):_M I) = (0:_M PI).$$

Now since P is a minimal ideal of R and $0 \subseteq PI \subseteq P$, we have PI = 0 or PI = P. If PI = P, then

$$Rm = (0:_M PI) = (0:_M P) = 0.$$

This implies that m = 0 which is a contradiction. Hence we have PI = 0 so that Rm = M as desired.

Lemma 3.15. Let M be a faithful comultiplication module over a commutative ring R. Then W(M) = Z(R), where

 $W(M) = \{a \in R : \text{ the homothety } M \xrightarrow{a} M \text{ is not surjective}\}$

(here Z(R) denotes the set of zero divisors of R).

Proof. Let $a \in W(M)$ and suppose that the homothy $M \xrightarrow{a} M$ defined by $m \mapsto am$ is not surjective. Then Since M is a comultiplication R-module, there exists a two sided ideal I of R such that $aM = (0 :_M I)$. Hence we have IaM = 0 so that $Ia \subseteq Ann_R(M) = 0$. Thus Ia = 0. It follows that $a \in Z(R)$. Conversely let $a \in Z(R)$. Then there exists $0 \neq b \in R$ such that ab = 0. Thus we have (ab)M = (bR)(aM) = 0. This implies that $aM \subseteq (0 :_M bR) \neq M$ because M is faithful R-module. Therefore, $aM \neq M$ so that $a \in W(M)$.

Lemma 3.16. Let R be a ring such that the lattice of two sided ideals of R is distributive and let M be a comultiplication R-module such that for any two sided ideal B and C of R, $(0:_M B) + (0:_M C) = (0:_M B \cap C)$. Then M is a distributive module.

Proof. Let X, Y, and Z be three submodules of M. Since M is a comultiplication module, there exist two sided ideals B, C and D of R such that $X = (0:_M B)$, $Y = (0:_M C)$ and $Z = (0:_M D)$. Then

$$(X + Y) \cap Z = ((0:_M B) + (0:_M C)) \cap (0:_M D) = (0:_M B \cap C) \cap (0:_M D)$$
$$= (0:_M (B \cap C) + D) = (0:_M (B + D) \cap (C + D)) = (0:_M B + D) + (0:_M C + D)$$
$$= ((0:_M B) \cap (0:_M D)) + ((0:_M C) \cap (0:_M D)) = (X \cap Z) + (Y \cap Z).$$

Theorem 3.17. Let M be a comultiplication R-module. Then the following assertions hold.

- (a) Every submodule of M is fully invariant.
- (b) If R is a commutative ring, then $End_R(M)$ is a commutative ring.
- (c) If M is faithful, then M is divisible.
- (d) Every submodule of M is a comultiplication module.
- (e) If R is a complete Noetherian local ring, then every cocyclic R-module is a comultiplication R-module.

Proof.

(a) Let N be a submodule of a comultiplication R-module M. Then there exists a two sided ideal I of R such that $N = (0:_M I)$. Suppose that $f: M \to M$ be an endomorphism. Since IN = 0, $I \subseteq Ann_R(Nf)$ so that

$$(0:_M Ann_R(Nf)) \subseteq (0:_M I) = N.$$

This implies that $Nf \subseteq N$.

(b) Let f and g be two endomorphisms of M and let $m \in M$. Then we have $mf \in (Rm)f$ and $mg \in (Rm)g$. But by part (a), $Rm(f) \subseteq Rm$ and $Rm(g) \subseteq Rm$. Thus, $mf, mg \in Rm$. So there exist elements $a, b \in R$ such that mf = am and mg = bm. Hence we have

$$m(fg - gf) = mf(g) - mg(f) = am(g) - bm(f)$$
$$= bam - abm = abm - abm = 0.$$

It follows that $End_R(M)$ is a commutative ring.

- (c) Let c be a regular element. Then since M is a comultiplication R-module, there exists a two sided ideal I of R such that $cM = (0 :_M I)$. Since M is a faithful R-module, we have IcM = 0 so that Ic = 0. This implies that I = 0 because c is a regular element. Therefore, cM = M.
- (d) Let M be a comultiplication R- module and let N be a submodule of M. Let K be a submodule of N. Then there exists a two sided ideal I of R such that $K = (0 :_M I)$. But we have $K = (0 :_M I) = (0 :_N I)$. Therefore, N is a comultiplication module.
- (e) Let P be the unique maximal ideal of R. Since every cocyclic R-module is a submodule of E_R(R/P), by using part (d), it is enough to prove that E_R(R/P) is a comultiplication R-module. Now by using 3.7, it is enough to prove that for every submodule L of E_R(R/P), L = (0 :_{E_R(R/P)}Ann_R(L)). To see this, set R
 = R/Ann_R(L), P
 = P/Ann_R(L), E
 = E_RE(R/P), and H
 = (0 :_{E_R(R/P)} Ann_R(L)). Then H
 has a structure as R
 -module and as such is isomorphic to E
 . Now, as R and R
 module, L ⊆ H
 and L is a faithful R
 -module. Hence by applying Hom_R(-, E
) to the exact sequence

$$0 \to L \to H \to H/L \to 0$$

one can see, as in the proof of [6, 2.3], that

$$Hom_{\bar{B}}(\bar{H}/L,\bar{E})=0.$$

This implies that H/L = 0 as desired.

Proposition 3.18. Let M be an R-module. Then the following assertions hold.

- (a) If M is a comultiplication prime R-module, then M is a simple module.
- (b) If M is a multiplication coprime R-module, then M is a simple module.
- *(c)* Let *R* be a domain and let *M* be a faithful multiplication and comultiplication *R* module. Then *M* is simple.

1196

Proof.

(a) Let N be a non-zero submodule of M. Since M is a prime module, we have $Ann_R(N) = Ann_R(M)$. Thus $(0 :_M Ann_R(N)) = (0 :_M Ann_R(M))$. Now by using Lemma 3.7 we have

$$N = (0:_M Ann_R(N)) = (0:_M Ann_R(M)) = M.$$

Therefore, M is a simple module.

- (b) Let M be a proper submodule of M. Since M is a coprime module, we have $Ann_R(M) = Ann_R(M/N)$. Thus $Ann_R(M)M = Ann_R(M/N)M$. But $Ann_R(M/N)M = N$ by [5]. Hence M is a simple module.
- (c) Let N be a submodule of a faithful multiplication and comultiplication Rmodule M. Then, there exist two sided ideals I and J of R such that $N = (0 :_M J)$ and N = IM. It follows that JN = 0 so that JIM = 0. This implies that $JI \subseteq Ann_R(M) = 0$. So we have JI = 0. Since R is a domain, I = 0 or J = 0. Therefore, N = M or N = 0.

Theorem 3.19. Let M be a closedly comultiplication R-module and $S = End_R(M)$. Then we have the following.

- (a) If N is a non-zero fully invariant second submodule of M, then I_N is a prime ideal of S.
- (b) If S is a domain and N is a closed submodule of M, then $I^N = S$ or I^N is a prime ideal of S.

Proof.

(a) Since Id_M ∈ S and Id_M ∉ I_N, I_N ≠ S. Further since N is a fully invariant submodule of M, I_N is a two sided ideal of S. Now let fSg ⊆ I_N, where f, g ∈ S. Then fg ∈ I_N. There exist two sided ideals I and J of R such that Kerf = (0 :_M I) and Kerg = (0 :_M J). Now fg ∈ I_N implies that N ⊆ Kerfg. so that N(fg) = 0. Hence Nf ⊆ Kerg = (0 :_M J). It follows that 0 = J(Nf) so that

$$JN \subseteq Kerf = (0:_M I).$$

This implies that IJN = 0 so that $IJ \subseteq Ann_R(N)$. So we have $J \subseteq Ann_R(N)$ or $I \subseteq Ann_R(N)$ because $Ann_R(N)$ is a prime ideal of R by 2.1 (e). From this we have

$$N \subseteq (0:_M J) = Kerg \ or \ N \subseteq (0:_M I) = Kerf.$$

Therefore, $f \in I_N$ or $g \in I_N$ as desired.

(b) Let $I^N \neq S$. Then we show that I^N is a prime ideal of S. To see this let $fSg \subseteq I^N$. Since $1 \in S$, $fg \in I^N$. It implies that $(M)fg \subseteq N$. Also there exist two sided ideals I, J, and K of R such that $N = (0 :_M I)$, $Ker(f) = (0 :_M J)$, and $Ker(g) = (0 :_M K)$. Hence we have

$$M(fg) \subseteq N = (0:_M I).$$

Thus I(M(fg)) = ((IM)f)g = 0. This implies that

$$(IM)f \subseteq Ker(g) = (0:_M K).$$

Hence we have (KIM)f = 0 so that

$$(KIM) \subseteq Ker(f) = (0:_M J).$$

It follows that $JKI \subseteq Ann_R(M)$. Since S is a domain, $Ann_R(M)$ is a prime ideal of R so that $I \subseteq Ann_R(M)$ or $J \subseteq Ann_R(M)$ or $K \subseteq Ann_R(M)$. Hence N = M or $(0:_M J) = M$ or $(0:_M K) = M$. So we have $I^N = S$ or Ker(f) = M or Ker(g) = M. Since $I^N \neq S$, we have Ker(f) = Mor Ker(g) = M. If Ker(f) = M, then $Mf = 0 \subseteq N$, so $f \in I^N$. If Ker(g) = M, then $Mg = 0 \subseteq N$, so $g \in I^N$. Hence I^N is a prime ideal of S.

Corollary 3.20. Let M be a closedly comultiplication second R-module. Then $S = End_R(M)$ is a prime ring.

Proof. It is enough to prove that the zero ideal of S is a prime ideal. But by Theorem 3.19, $I_M = 0$ is a prime ideal of S as desired.

Corollary 3.21. Let R be a commutative ring and M be a comultiplication R-module. Then the following are equivalent.

- (a) $S = End_R(M)$ is a domain.
- (b) $Ann_R(M)$ is a prime ideal of R.

Proof. Use 2.3, 3.20 and 3.17 (b).

Definition 3.22. Let M be a comultiplication R-module and let I is a two sided ideal of R. Then $(0:_M I)$ is said to be coidempotent if $(0:_M I) = (0:_M I^2)$.

Example 3.23. Let R be a Noetherian ring and I be an ideal of R. Then there exists a positive integer h such that $(0:_R I^h) = (0:_R I^{h+i})$ for all $i \ge 0$. Set $I^h = J$. Then we have $(0:_R J) = (0:_R J^2)$. Hence R has a coidempotent R-submodule.

Theorem 3.24. Let M be a comultiplication R-module and let $S = End_R(M)$ be a domain. Then we have the following.

1198

- (a) Each non-zero endomorphism of M is an epimorphism.
- (b) M doesn't have any nontrivial open submodule.
- (c) If R is a commutative ring, then M is a couniform R-module.
- (d) Each closed maximal submodule of M is coidempotent.

Proof.

(a) Let $0 \neq f : M \to M$ be an endomorphism of M. Then there exist two sided ideals I and J of R such that $Mf = (0:_M I)$ and $Ker(f) = (0:_M J)$. So we have

$$0 = I(0:_M I) = I(Mf) = (IM)f.$$

This implies that

$$IM \subseteq Ker(f) = (0:_M J).$$

Therefore, $JIM \subseteq (0:_M J)J = 0$ so that $JI \subseteq Ann_R(M)$. Since S is a domain by 2.3, we have $J \subseteq Ann_R(M)$ or $I \subseteq Ann_R(M)$. Now by using 3.7, $Ker(f) = (0:_M J) = M$ or $Mf = (0:_M I) = M$. Since $f \neq 0$, Mf = M.

(b) Suppose that N be a non-zero open submodule of M. Then we have

$$N = N^{\circ} = \sum_{f \in I^N} Im(f).$$

Since $0 \neq N$, there exists $0 \neq f \in S$ such that $0 \neq Mf \subseteq N$. But by part (a) Mf = M. So N = M.

(c) Let N + K = M, where, N and K are proper submodule of M. But since every comultiplication module over a commutative ring is a self cogenerated by 3.11 (a), there exist $0 \neq f, g \in S$ such that $N \subseteq Ker(f)$ and $K \subseteq Ker(g)$. Now we have $fg \neq 0$ because S is a domain and $f, g \neq 0$. Now we have

$$(N+K)(fg) = N(fg) + K(fg) = M(fg).$$

It follows that K(fg) = M(fg) so that

$$M(fg) = K(fg) \subseteq Kg = 0.$$

So we have fg = 0. But this is a contradiction. Hence N = M or K = M as desired.

(d) Let N be a closed maximal submodule of M. Then we have,

$$M \neq N = N = \cap_{f \in I_N} Ker(f).$$

So there exists $0 \neq f \in S$ such that $N \subseteq Ker(f)$. But $Ker(f) \neq M$ implies that N = Ker(f) because N is a maximal closed submodule of M. On the

other hand $Kerf \subseteq Kerf^2 \subseteq M$ yields that $Kerf^2 = M$ or $Kerf^2 = Kerf$. But since S is a domain, $Kerf^2 \neq M$. Thus, $Kerf^2 = Kerf$. Now suppose that I is a two sided ideal of R such that $Kerf = (0:_M I)$. Then we have $Kerf^2 = (0:_M I^2)$ because

$$\begin{split} m \in Kerf^2 \Leftrightarrow m(f^2) = 0 \Leftrightarrow mf \in Kerf = (0:_M I) \Leftrightarrow \\ I(mf) = 0 \Leftrightarrow Im \subseteq Kerf \\ \Leftrightarrow I^2m = 0 \Leftrightarrow m \in (0:_M I^2). \end{split}$$

Hence $(0:_M I) = Kerf = Kerf^2 = (0:_M I^2)$. This implies that N is a coidempotent submodule of M.

Question 3.25. Let R a commutative ring and let M be a cocyclic R-module. Is M a comultiplicatin R-module?

REFERENCES

- 1. W. Anderson and K. R. Fuller, *Rings and categories of modules*, Springer-Verlag, New York-Heidelberg-Berlin, 1914.
- 2. S. Annin, *Associated and attached primes over noncommutative ring*, PhD. thesis, University of California at Berkeley, 2002.
- 3. H. Ansari-Toroghy, Associated and coassociated primes, *Commun. Algebra*, **26**(2) (1998), 453-466.
- Soon-Sook Bae, On submodule inducing prime ideals of endomorphism ring, *East Asian Math.*, 16(1) (2000), 33-48
- 5. Z. A. El-Bast and P. F. Smith, Multiplication modules, *Commun. Algebra*, **16(4)** (1988), 755-779.
- 6. Christian Lomp, Prime elements in partially ordered groupoid applied to modules and Hopfain algebra actions, *Commun. Algebra*, to appear.
- R. Y. Sharp, A method for study of Artinian modules, with an application to asymptotic behaviour, in *Commutative Algebra, Math Sciences Research Inst. Publ. No.* 15, Springer Verlag, New York, 1986, pp. 443-464.
- 8. S. Yassemi, Coassociated primes, Commun. Algebra, 23 (1995), 1473-1498.
- S. Yassemi, Coassociated primes of modules over commutative rings, Math. Scand. 80 (1997), 175-187.
- 10. S. Yassemi, The dual notion of prime modules, Arch. Math (Brno), **37** (2001), 273-278.

H. Ansari-Toroghy and F. Farshadifar Department of Mathematics,Faculty of Science,Guilan University,P. O. Box 1914,Rasht, IranE-mail: ansari@guilan.ac.ir