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THE DUAL RECIPROCITY BOUNDARY ELEMENT METHOD

FOR MAGNETOHYDRODYNAMIC CHANNEL FLOWS

HUANWEN LIU1 and SONGPING ZHU2

(Received 7 August, 1998; revised 15 July, 2001)

Abstract

In this paper, we consider the problem of the steadystate fully developed magnetohydrody

namic (MHD) flow of a conducting fluid through a channel with arbitrary wall conductivity

in the presence of a transverse external magnetic field with various inclined angles. The

coupled governing equations for both axial velocity and induced magnetic field are firstly

transformed into decoupled Poissontype equations with coupled boundary conditions.

Then the dual reciprocity boundary element method (DRBEM) [20] is used to solve the

Poissontype equations. As testing examples, flows in channels of three different cross

sections, rectangular, circular and triangular, are calculated. It is shown that solutions

obtained by the DRBEM with constant elements are accurate for Hartmann number up to

8 and for large conductivity parameters comparing to exact solutions and solutions by the

finite element method (FEM).

1. Introduction

The problem of magnetohydrodynamic (MHD) flow through channels has become

important because of its practical applications in nuclear reactors, MHD flow meters,

MHD generators, blood flow measurements, pumps, accelerators, and so on. Due to

the coupling of equations of fluid mechanics and electrodynamics, exact solutions are

out of the question for most practical cases. Therefore, it is always desirable to explore

for more efficient numerical methods which render accurate numerical solutions.

In [25, 26], Singh and Lal have obtained numerical solutions of steadystate MHD

flows through channels of triangular crosssections by using a finite difference method

(FDM) together with the Kantorovich technique [11]. Then, to overcome the drawback
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of the finite difference mesh in fitting arbitrary crosssections of the channel, they also

presented a finite element method (FEM) to solve steadystate [27, 28] and unsteady

state [29] MHD channel flow problems with arbitrary wall conductivity. But with

linear elements in the FEM they could only obtain results, at most, up to Hartmann

number M = 5. Later TezerSezgin and Koksal [33] improved the FEM results for

high Hartmann numbers by using quadratic elements for both velocity and magnetic

fields. To further improve the accuracy of the FEM results, Gardner and Gardner

[6] employed bicubic Bspline elements. However, their method is unavailable for

arbitrary crosssections of the channel.

To improve the computational efficiency, TezerSezgin [30] and TezerSezgin and

Dost [31, 32] adopted a boundary element method (BEM). In their papers, both the

coupled velocity and magnetic field equations are simplified into decoupled homo

geneous or inhomogeneous modified Helmholtz equations with coupled boundary

conditions and then solved by the conventional BEM [30, 31] or by using radial basis

functions [32].

However, one of the common problems appearing in all of the above mentioned

works is the imposed magnetic field being generally assumed to be perpendicular to

the direction of gravitational acceleration. Such an assumption simplified their models

and numerical calculations. However, it also significantly reduced the versatility of

their models.

In this paper, we present a more general case, in which the assumption that the

imposed magnetic field is perpendicular to the direction of gravitational acceleration

is no longer necessary. With an inclined imposed magnetic field, the coupled veloc

ity and magnetic field equations are firstly transformed into two decoupled Poisson

equations with coupled boundary conditions, and then solved by the dual reciprocity

boundary element method (DRBEM) [15, 20]. To show the accuracy of the DRBEM,

three different geometries, that is, the rectangle, circle and triangle, are taken as the

crosssection of the channel whose walls are arbitrarily conducting. Comparison is

made between DRBEM solutions and other solutions, including exact solutions and

numerical solutions obtained by using the FEM. Through the comparison, it is found

that the agreement between the DRBEM solutions and other solutions is good for Hart

mann numbers up to 8 although only the simplest constant elements in the DRBEM

are used.

2. Governing differential equations

Let � represent the crosssection of a channel, through which a conducting fluid

subject to a constant magnetic field flows, and 0 be the boundary of �. A Cartesian

coordinate is chosen such that the xyplane lies with a crosssection of the channel
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and the z direction points to the direction along which the fluid flows. The magnetic

field of strength M is applied in the direction lying in the xyplane but forming an

angle � with the yaxis.

It is wellknown that Maxwell equations of electromagnetism and the basic equa

tions of fluid mechanics lead to the coupled system of equations in the velocity and

magnetic field. These equations for a viscous and incompressible fluid can be put in

the following nondimensional form [24]:

∇2V + Mx

@ B

@x
+ My

@ B

@y
= −1;

∇2 B + Mx

@V

@x
+ My

@V

@y
= 0;

(1)

where

V = Vz

(

− b2

¹²

dp

dz

)−1

; Mx = B0xb

(

− ¦

¹²

)1=2

= M sin �;

B = Bz

(

− b2

¹²

dp

dz
¼0.¹²¦ /1=2

)−1

; My = B0yb

(

− ¦

¹²

)1=2

= M cos �;

M = .M2
x + M 2

y /1=2 = B0b.−¦=¹²/1=2;

and ¹, ² and ¦ are, respectively, the kinematic viscosity, density and electric conduc

tivity of the fluid, ¼0 is the magnetic permeability in vacuum, dp=dz is the constant

axial pressure gradient, B0 is the strength of the applied magnetic field, B0x and B0y

are respectively the x and y components of the applied magnetic field, Vz and Bz are

respectively the z components of velocity and induced magnetic field. Here V , B

and M are called axial velocity, induced magnetic field and the Hartmann number,

respectively.

A general form of the boundary conditions can be written as

V = 0 on 0; (2)

@ B

@n
+ ½B = 0 on 0; (3)

where n is the outward normal unit vector of the boundary and ½ is the conductivity

parameter given by ½ = ¦ a=.¦ ′h/, where a is a characteristic length, ¦ and ¦ ′ are the

electrical conductivity of the fluid and of the walls, respectively, and h is the thickness

of the walls.

There are two special cases as far as the wall conductivity is concerned. For a

nonconducting wall, ¦ ′ = 0 or ½ = ∞, condition (3) reduces to B = 0 on @�.

On the other hand, for a perfectly conducting wall, ¦ ′ = ∞ or ½ = 0, condition (3)

becomes @ B=@n = 0 on @�.
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Equations (1) may be decoupled by the introduction of two new variables W1 and

W2 defined as W1 = V + B and W2 = V − B. Under these new variables, the

decoupled differential system now has the form

∇2W1 + Mx

@W1

@x
+ My

@W1

@y
= −1;

∇2W2 − Mx

@W2

@x
− My

@W2

@y
= −1;

(4)

subject to the coupled boundary conditions

W1 = −W2;
@W1

@n
+ ½W1 = @W2

@n
+ ½W2:

Furthermore, if we set u1 = W1e.x Mx +y My/=2 and u2 = W2e−.x Mx +y My/=2, (4) can then be

rewritten as

∇2u1 = M 2

4
u1 − e.x Mx +y My/=2; ∇2u2 = M 2

4
u2 − e−.x Mx +y My/=2; (5)

subject to the boundary conditions

u1 = −u2ex Mx+y My ;

@u1

@n
+ ½u1 − u1

2
.Mx ; My/ · n =

(

@u2

@n
+ ½u2 + u2

2
.Mx ; My/ · n

)

ex Mx +y My ;

or

u1 = −u2ex Mx +y My;
@u1

@n
=
(

@u2

@n
+ 2½u2

)

ex Mx +y My : (6)

The boundary conditions (6) can be decoupled only for a special case when the

boundary wall is nonconducting. Because of this, analytical solution is generally

unavailable and thus numerical solutions must be resorted to. Therefore, it is always

desirable to search for more efficient as well as accurate numerical methods. It

is worth indicating that (5) are in fact the modified Helmholtz equations with an

inhomogeneous term. TezerSezgin and Dost [32] solved them by using radial basis

functions. In this paper, we shall treat (5) as Poisson equations and solve them by

using the DRBEM [4, 20, 36].

3. The dual reciprocity boundary element method

The BEM is now a wellestablished numerical technique for solving boundaryvalue

problems that involve linear as well as certain types of nonlinear partial differential
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equations (PDEs) [1]. The basic idea of the technique is to find an integral equation

equivalent to the original PDE, and to solve this integral equation using a discreti

sation procedure as with any other numerical approach. For certain types of linear

and homogeneous PDE, only a boundary discretisation is necessary; this reduction

in the dimensionality of the problem permits accurate solutions to be obtained very

efficiently, and is the main attraction of the BEM approach. However, for an inhomo

geneous PDE, the integral equation involves a domain integral, and the reduction in

dimensionality is apparently lost. Unfortunately, the Poissontype equations (5) to be

dealt with in this paper fall into this category.

Among various methods for converting domain integrals into boundary integrals in

the BEM for inhomogeneous PDEs, the most successful one is the socalled DRBEM,

which was first proposed by Nardini and Brebbia [15] in 1982 and later improved

by many others [19, 21, 40, 35]. While many variations, such as the Laplace trans

form dual reciprocity method (LTDRM) [38, 37, 39], the separation of variablesdual

reciprocity method (SOVDRM) [3] and the perturbation DRBEM [12, 13], have been

proposed since its birth, the DRBEM is still evolving and many researchers are cur

rently actively involved in this area of research. The main idea of the DRBEM is to

divide the solution into two parts: a known particular solution of the inhomogeneous

PDE plus a complementary solution of its homogeneous counterpart. Since particular

solutions to complex problems are very difficult or sometimes even impossible to ob

tain, the inhomogeneity is approximated by a series of simpler radial basis functions

(RBFs) for which particular solutions can be easily determined.

For the completeness of the current paper, we shall briefly describe the DRBEM

here. First of all, both terms on the righthand side of (5) are expanded as a series of

interpolation functions f j.x/ = f j.x; y/, that is,

M 2

4
u1 − e.x Mx +y My/=2 ≈

n
∑

j=1

Þ
.1/

j f j.x/;
M 2

4
u2 − e−.x Mx+y My/=2 ≈

n
∑

j=1

Þ
.2/

j f j.x/;

where Þ
.1/

j and Þ
.2/

j are the coefficients to be determined by the following interpolation

conditions at n = N + L collocation points xi = .xi ; yi/:

b
.k/

i =
n
∑

j=1

Þ
.k/

j f j.xi /; i = 1; : : : ; n; k = 1; 2; (7)

where

b
.1/
i = M 2

4
u1.xi ; yi / − e.xi Mx +yi My/=2; b

.2/
i = M 2

4
u2.xi ; yi / − e−.xi Mx +yi My /=2:

There are many ways of choosing the interpolation functions f j . Partridge and

Brebbia [19] showed that satisfactory results can usually be obtained if f j takes

the form
∑s

m=0
‖x − x j‖m . Moreover, they also pointed out that the use of s = 1
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giving f j = 1 + ‖x − x j‖ is generally sufficient. Then Duchon [5] demonstrated

that the socalled augmented thin plate splines (ATPS), which are a combination of

the thin plate splines (TPS), ‖x − x j‖2 log ‖x − x j‖, and some augmented linear

terms 1; x; y in R2 (1; x; y; z in R3), are the optimal interpolation functions in two

and three dimensional spaces respectively in the sense that they interpolate f in Rd

(d = 2; 3) with a minimised rotationinvariant seminorm. This theoretical work has

been strongly supported by some numerical results [2, 7, 38]. However, despite their

optimal properties, ATPS have some drawbacks. For example, they are only C1 in R2

and nondifferentiable in R3 and their convergence is slow (see [14, 22, 34]). Recently,

some researchers [8, 37] suggested that the family of multiquadrics 'þ.‖x − x j‖/ =
.c2 + ‖x − x j‖2/þ=2 can overcome the above drawbacks of ATPS. Here þ is an odd

integer and c is a parameter. However, others argued that the choice of the parameter

c still could affect the accuracy of the solution by several orders of magnitude [8]. For

the sake of simplicity, we shall still adopt the simplest RBF 1 +‖x − x j‖ in this paper.

The n collocation points xi , i = 1; : : : ; n, consist of N boundary collocation points

of the BEM and L internal nodes. To ensure the accuracy of the DRBEM solution,

some internal nodes normally have to be included. However, a new technique without

any internal collocation point, called the Multiple Reciprocity Boundary Element

Method (MRBEM), has been recently developed by Nowak and Brebbia and applied

to solve the Poisson equation [17] and the Helmholtz equation [18]. Then Neves

and Brebbia [16] and Itagaki and Brebbia [10] separately extended it to solve the

Navier equations of elasticity and the modified Helmholtz equations. The MRBEM

can be thought of as an extension of the idea of the DRBEM. However, instead of

approximating the source term by the set of RBFs, a sequence of functions related

to the fundamental solution is introduced. These functions constitute a set of higher

order fundamental solutions which permit the second Green’s identity to be applied

to each term of the sequence. As a result, the MRBEM leads, in the limit, to the

exact boundary only formulation of the domain integrals and therefore no internal

collocation points are needed. Indeed, the current problem may be solved by adopting

the MRBEM too if we treat (5) as inhomogeneous modified Helmholtz equations. But

this is beyond the scope of our current research and thus should not be discussed here.

System (7) can be written in matrix form as











b
.i/

1

b
.i/

2

:::

b.i/
n











=











f11 f12 · · · f1n

f21 f22 : : : f2n

:::
:::

: : :
:::

fn1 fn2 · · · fnn





















Þ
.i/

1

Þ
.i/

2

:::

Þ.i/
n











or b.i/ = Fα.i/; i = 1; 2: (8)

The coefficients α.i/ can then be found simply by inverting the matrix in (8) to produce

α.i/ = F−1 b.i/; i = 1; 2: (9)
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Let u∗ denote the fundamental solution of the Laplace equation:

u∗.x/ = 1

2³
ln

1

‖x − ξ‖ ;

which satisfies ∇2u = −Ž.x − ξ/. Applying the usual boundary element technique,

(5) are now multiplied by the fundamental solution u∗ and integrated over the domain

� to yield

∫

�

(

∇2ui

)

u∗ d� =
n
∑

j=1

Þ
.i/
j

∫

�

f j u
∗ d�; i = 1; 2: (10)

Now, integrating by parts in (10) produces, with (8) being utilised,

cξuiξ −
∫

0

.u∗qi −q∗ui/ d0 =
n
∑

j=1

Þ
.i/
j

(

cξ ûξ j −
∫

0

.u∗q̂ j − q∗û j /

)

d0; i = 1; 2; (11)

where û j = ‖x − x j‖2=4 + ‖x − x j‖3=9, j = 1; : : : ; n, is a particular solution of

the equation ∇2u = f j and ξ is a source point of u∗ which can be any point within

the domain or on the boundary; uξ and ûξ j are the values of u and û j at point ξ ,

respectively; and q1, q2, q∗ and q̂ j are the normal derivatives of u1, u2, u∗ and û j ,

respectively. The term cξ in (11) depends upon the location of the source point ξ :

cξ =
{

Þ.ξ/=2³; if ξ is a boundary point of �;

1; if ξ is an interior point of �;

where Þ.ξ/ denotes the internal angle of the boundary at source point ξ . If we adopt

constant boundary elements, the discretised form of (11) can be written as

cξuiξ −
N
∑

k=1

.Gξkqi k − Ĥξkui k/=
n
∑

j=1

Þ
.i/

j

(

cξ ûξ j −
N
∑

k=1

.Gξk q̂k j − Ĥξk ûk j /

)

; i =1; 2: (12)

Applying (12) to all collocation points, one obtains a linear system of equations

ciumi −
N
∑

k=1

.Gi kqmk − Ĥi kumk/

=
n
∑

j=1

Þ
.m/
j

(

ci ûi j −
N
∑

k=1

.Gi k q̂k j − Ĥi kûk j /

)

; i = 1; : : : ; n; m = 1; 2;

which can be written in matrix form as:

HUm − GQm =
(

HÛ − GQ̂
)

α.m/; m = 1; 2; (13)
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with

H = .Hi j /n×n; G = .Gi j /n×N ; U1 = .u11; : : : ; u1n/T ; Q1 = .q11; : : : ; q1n/
T ;

Û = .ûi j /n×n; Q̂ = .q̂i j /N×n; U2 = .u21; : : : ; u2n/T ; Q2 = .q21; : : : ; q2n/
T ;

where ui , qi , ûi j and q̂i j are the values of u, q, û j and q̂ j at points xi , respectively, and

Hi j =























Þ.Xi/=.2³/; i = j = 1; : : : ; N ;

1; i = j = N + 1; : : : ; n;

Ĥi j ; i = 1; : : : ; n; j = 1; : : : ; N ; i 6= j ;

0; i = 1; : : : ; n; j = N + 1; : : : ; n; i 6= j;

where the definitions of Ĥi j and Gi j are as in [1].

Substituting (9) into (13), we obtain

HUm − GQm =
(

HÛ − GQ̂
)

F−1b.m/; m = 1; 2;

or

HUm − GQm = S

(

M 2

4
Um − E.m/

)

; m = 1; 2;

with S =
(

HÛ − GQ̂
)

F−1 and

E.1/ =
(

e.x1 Mx +y1My /=2; : : : ; e.xn Mx +yn My /=2
)T

;

E.2/ =
(

e−.x1 Mx +y1 My /=2; : : : ; e−.xn Mx +yn My/=2
)T

:

So a final 2n × 2n linear system of equations

(

H − M 2

4
S

)

Um − GQm = −SE.m/; m = 1; 2; (14)

is obtained. Upon imposing the boundary conditions (6), such a linear system can be

readily solved. After all the unknown values ui or qi are found by solving the linear

system (14), a desired solution for any interior point ξ can be evaluated from (12).

4. Numerical examples

In this section, as numerical examples for the DRBEM applied to solve MHD flow

problems, three different crosssections of the channel, that is, rectangular, circular

and triangular, are considered. Though these three crosssections of the channel are

also studied by Singh and Lal using the FDM [25] (only the triangular case) and the
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FIGURE 1. Profiles of the axial velocity along the xaxis of a rectangular channel in the presence of

the magnetic field applied to the channel with various angles � for a nonconducting wall; (a) M = 2,

(b) M = 5.
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FIGURE 2. Profiles of the axial velocity along the yaxis of a rectangular channel in the presence of

the magnetic field applied to the channel with various angles � for a nonconducting wall; (a) M = 2,

(b) M = 5.

FEM [27] (all three cases), the applied magnetic field is generally assumed to act in

the direction being perpendicular to the yaxis only, that is, � = ³=2. In this paper, we

are able to present more general cases; those problems subject to an inclined applied

magnetic field with an arbitrary angle � can now be calculated with the presence of

both conducting and nonconducting walls.

4.1. Rectangular channel The crosssection of an infinitely long rectangular chan

nel is oriented with its two perpendicular sides parallel to the x and yaxes, respec

tively and the origin of the coordinates at the geometric centre of the crosssection.

Both the channel width and height are taken to be unity. For all the results presented

in this section, 160 constant elements are used and 169 internal collocation points are

evenly distributed in the interior of the rectangular domain. Here, we shall show the

results of various cases.

Case (i): ½ = ∞ and � can be arbitrary. But we shall only present the results of

six different � values, � = ³=2, ³=3, ³=4, ³=6, ³=12, 0. For M = 2; 5, DRBEM
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FIGURE 3. Profiles of the induced magnetic field −B along the xaxis of a rectangular channel in the

presence of the magnetic field applied to the channel with various angles � for a nonconducting wall;

(a) M = 2, (b) M = 5.
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FIGURE 4. Profiles of the induced magnetic field −B along the yaxis of a rectangular channel in the

presence of the magnetic field applied to the channel with various angles � for a nonconducting wall;

(a) M = 2, (b) M = 5.

solutions of the axial velocity along the x and yaxes are plotted in Figures 1–

2 respectively and DRBEM solutions of the corresponding induced magnetic field

along the x and yaxes are plotted in Figures 3–4. In the case of � = ³=2, the exact

solutions from Shercliff [24] are also plotted. As we can see in Figures 12, when the

applied magnetic field inclines more towards the yaxis, that is, � decreases, the axial

velocity decreases slightly along the xaxis but increases slightly along the yaxis.

A similar behaviour can be observed in Figures 3–4 for the induced magnetic field

−B. However, the changes in axial velocity are not significant in comparison with

those changes in the induced magnetic field although the changes in axial velocity do

become more noticeable when M is increased from 2 to 5.

Case (ii): ½ is arbitrary but � is fixed to ³=2. The axial velocity and the induced

magnetic field along the xaxis are calculated for conducting walls with ½ = 1; 10 and

∞ when M = 2, 5, respectively. A comparison between the present results and FEM

results [28] is made and plotted in Figures 5–6. Exact solutions for nonconducting
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FIGURE 5. The present DRBEM solutions and FEM solutions [28] of the axial velocity V along the xaxis

for a conducting wall with � = ³=2; (a) M = 2, (b) M = 5.
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FIGURE 6. The present DRBEM solutions and FEM solutions [28] of the induced magnetic field −B

along the xaxis for a conducting wall with � = ³=2; (a) M = 2, (b) M = 5.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(a)

M=6, Exact M=6, DRBEM

M=7, Exact M=7, DRBEM

M=8, Exact M=8, DRBEM

M=9, Exact M=9, DRBEM

M=10, Exact M=10, DRBEM

A
x
ia

l
v
el

o
ci

ty
:

V

X

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

(b)

M=6 Exact� M=6 DRBEM�

M=7 Exact� M=7 DRBEM�

M=8 Exact� M=8 DRBEM�

M=9 Exact� M=9 DRBEM�

In
d
u
ce

d
m

ag
n
et

ic
fi

el
d

-B

�

X

FIGURE 7. (a) Profiles of V along the xaxis of the rectangular channel with � = ³=2 and ½ = ∞ for

M = 6; 7; 8; 9; 10; (b) profiles of −B along the xaxis of the rectangular channel with � = ³=2 and

½ = ∞ for M = 6; 7; 8; 9.
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FIGURE 8. Profiles of the axial velocity V along the xaxis of a circular channel for ½ = 1; 10 and ∞ and

for � = ³=2; (a) M = 2, (b) M = 5.
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FIGURE 9. Profiles of the induced magnetic field −B along the xaxis of a circular channel for ½ = 1; 10

and ∞ and for � = ³=2; (a) M = 2, (b) M = 5.

walls from Shercliff [24] are also plotted in these figures to provide a comparison

for the case when ½ = ∞. Clearly our DRBEM solution offers excellent agreement

with the exact solution when ½ = ∞. Such an excellent agreement for the case

when ½ = ∞ also gives us confidence in the accuracy level of our results for other

cases where there are no analytical solutions to compare with. The FEM results

obtained by Singh and Lal [28] seem to have underestimated the axial velocity while

overestimating the induced magnetic field along the xaxis as shown in Figures 5–6.

In fact, such a disagreement between our current solutions and the FEM solutions

worsens when M is larger and ½ is smaller.

It is also interesting to observe that the axial velocity increases with the increased

conductivity parameter ½, whereas the induced magnetic field −B behaves in a quite

opposite way; at every x point, the strength of the induced magnetic field −B decreases

as ½ increases.

Finally, the DRBEM is tested for relatively high Hartmann numbers M = 6, 7,

8, 9 and 10. Profiles of both the axial velocity and the induced magnetic field along

the xaxis for the nonconducting wall from the DRBEM and from Shercliff [24] are
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FIGURE 10. Profiles of the axial velocity V along the xaxis of a circular channel in the presence of the

magnetic field applied to the channel with various angles �; (a) M = 2, (b) M = 5.
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FIGURE 11. Profiles of the induced magnetic field −B along the xaxis of a circular channel in the

presence of the magnetic field applied to the channel with various angles �; (a) M = 2, (b) M = 5.

plotted in Figure 7. As we can see, the DRBEM is accurate for Hartmann number up to

8. If M is increased beyond 8, the error near the boundary reaches an intolerable level.

This suggests that the adoption of highorder elements such as linear and quadratic

elements may become necessary for high Hartmann numbers.

4.2. Circular channel When the crosssection of a channel is circular, we place the

origin of the coordinate system at the geometric centre of the crosssection and take

the radius as the characteristic length. In our calculation, 60 boundary elements were

used and 64 internal collocation points were evenly distributed on four inner circles

with the radii being 1=3, 1=2, 2=3 and 14=15, respectively.

In order to compare with Singh and Lal’s FEM solution [28], we calculated the axial

velocity and the induced magnetic field along the positive xaxis using the present

DRBEM for ½ = 1, 10 and ∞ when M = 2, 5, respectively, for a fixed � = ³=2.

The results are plotted in Figures 8–9. As can be seen from these figures, the overall

agreement between the present DRBEM results and the FEM results is very good.

However, as far as the velocity field is concerned, the difference between these two

sets of results becomes slightly larger when ½ = ∞ for the case of M = 5. On the
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FIGURE 12. Profiles of the axial velocity V along the yaxis of a triangular channel for arbitrary wall

conductivity and � = ³=2; (a) M = 0, (b) M = 2.
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FIGURE 13. Profiles of the axial velocity V along the yaxis of a triangular channel for arbitrary wall

conductivity and � = ³=2; (a) M = 5, (b) M = 8.

other hand, the major difference, although not very large, between the two sets of

results for the induced magnetic field along the positive xaxis is mainly observed for

the case of a smaller M value and small ½ as shown in Figure 9.

In the case of a nonconducting wall, the exact solution is available in [9] and is also

plotted. It is shown that the agreement between the present DRBEM, the FEM and

the exact solution is good. In addition, for a nonconducting wall, different angles of

inclination of the applied magnetic field with � being ³=2, ³=3, ³=4, ³=6, ³=12 and

0 are also considered. We see from Figures 10–11 that both the axial velocity V and

the induced magnetic field −B along the xaxis decrease with the applied magnetic

field inclining towards the yaxis (that is, � decreasing), respectively. For M = 2,

the velocity distribution is not sensible to the change of the inclination angle of the

applied magnetic field at all, whereas when M is increased to a larger value (M = 5),

a larger inclination angle makes a significantly larger downstream velocity.

4.3. Equilateral triangular channel Now, with a channel of triangular cross

section, we place the origin of the coordinate system at the midpoint of the base

and the xaxis along the base with the length of a side as the characteristic length.
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FIGURE 14. Profiles of (a) the axial velocity V and (b) the induced magnetic field −B along the yaxis

of a triangular channel in the presence of the magnetic field applied to the channel with various angles �

for ½ = ∞ and M = 2.
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FIGURE 15. Profiles of (a) the axial velocity V and (b) the induced magnetic field −B along the yaxis

of a triangular channel in the presence of the magnetic field applied to the channel with various angles �

for ½ = ∞ and M = 5.
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FIGURE 16. Profiles of (a) the axial velocity V and (b) the induced magnetic field −B along the yaxis

of a triangular channel in the presence of the magnetic field applied to the channel with various angles �

for ½ = ∞ and M = 8.
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The boundary of � is then defined by the lines y = 0, y = ±
√

3.x ± 0:5/. In the

present method, we used 60 boundary elements and 28 internal collocation points.

The distribution of the 28 internal collocation points is the same as that in [27]. For a

fixed � (� = ³=2) and four different M values (M = 0, 2, 5 and 8), the results of the

axial velocity along the yaxis for ½ = 0; 1; 10; ∞ obtained from the present DRBEM

model are compared to FEM solutions [28] and exact solutions [28] (only for ½ = ∞)

in Figures 12–13. It is interesting to have observed from these figures that with small

Hartmann numbers (for example M = 2), the axial velocity does not seem to change

very much when the wall conductivity parameter ½ varies from one extreme (½ = 0)

to another (½ = ∞).

In the case of a nonconducting wall, the axial velocity and the induced magnetic

field along the yaxis for the inclined applied magnetic field with � being ³=2, ³=3,

³=4, ³=6, ³=12 and 0 are also calculated for M = 2, 5 and 8. It is found from

Figures 14–16 (a) that the effect of the inclination angle � on the axial velocity is not

significant. However, the induced magnetic field −B along the yaxis increases quite

significantly with the applied magnetic field inclining more towards the yaxis, as can

be seen from Figures 14–16 (b). In addition, as we can see from Figures 12–16, there

are some unexpected oscillations for both velocity and magnetic field in the small

interval [0:8;
√

3=2]. It is believed that the acute angle of the crosssection of the

triangular channel is the cause of these variations.

5. Conclusion

In this paper, DRBEM in conjunction with linear radial basis functions being

adopted as the interpolation functions is applied in the MHD steady channel flow to

obtain the numerical solution of the axial velocity and the induced magnetic field.

Comparisons between the DRBEM solutions and other solutions including the exact

solution and FEM solution are made. Through three numerical test examples with

different geometries of the crosssection of a channel, it is shown that a high nu

merical accuracy can be achieved with the DRBEM with simplest constant elements.

In addition, the results of more general cases with an inclined magnetic field with

arbitrary inclination angles being applied are presented too; the versatility of the cur

rent DRBEM model enables us to discuss the effect of inclined magnetic field on the

flow. Our computational results show that the influence of the inclination angle of the

applied magnetic field is far stronger on the induced magnetic field −B than on the

axial velocity.
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