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The Dual-Tree Complex  
Wavelet Transform 

[A coherent framework 

for multiscale signal and 

image processing] T
he dual-tree complex wavelet transform (CWT) is a relatively

recent enhancement to the discrete wavelet transform (DWT),

with important additional properties: It is nearly shift invariant

and directionally selective in two and higher dimensions. It

achieves this with a redundancy factor of only 2d for d-dimen-

sional signals, which is substantially lower than the undecimated DWT. The

multidimensional (M-D) dual-tree CWT is nonseparable but is based on a

computationally efficient, separable filter bank (FB). This tutorial discusses

the theory behind the dual-tree transform, shows how complex wavelets with

good properties can be designed, and illustrates a range of applications in sig-

nal and image processing. We use the complex number symbol C in CWT to
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avoid confusion with the often-used acronym CWT for the (dif-

ferent) continuous wavelet transform.

BACKGROUND

This article aims to reach two different audiences. The first is the

wavelet community, many members of which are unfamiliar

with the utility, convenience, and unique properties of complex

wavelets. The second is the broader class of signal processing folk

who work with applications where the DWT has proven some-

what disappointing, such as those involving complex or modulat-

ed signals (radar, speech, and music, for example) or higher-

dimensional, geometric data (geophysics and imaging, for exam-

ple). In these problems, the complex wavelets can potentially

offer significant performance improvements over the DWT.

THE WAVELET TRANSFORM 

AND MULTISCALE ANALYSIS

Since its emergence 20 years ago, the wavelet transform has

been exploited with great success across the gamut of signal

processing applications, in the process, often redefining the

state-of-the-art performance [102], [112]. In a nutshell, the

DWT replaces the infinitely oscillating sinusoidal basis functions

of the Fourier transform with a set of locally oscillating basis

functions called wavelets. In the classical setting, the wavelets

are stretched and shifted versions of a fundamental, real-valued

bandpass wavelet ψ(t). When carefully chosen and combined

with shifts of a real-valued low-pass scaling function φ(t), they

form an orthonormal basis expansion for one-dimensional (1-D)

real-valued continuous-time signals [27]. That is, any finite-

energy analog signal x(t) can be decomposed in terms of

wavelets and scaling functions via

x(t) =

∞
∑

n=−∞

c(n) φ(t − n)

+

∞
∑

j =0

∞
∑

n =−∞

d( j, n) 2 j/2 ψ(2 jt − n). (1)

The scaling coefficients c(n) and wavelet coefficients d( j, n) are

computed via the inner products

c(n ) =

∫ ∞

−∞

x(t) φ(t − n) dt, (2)

d( j, n) = 2 j/2

∫ ∞

−∞

x(t) ψ(2 jt − n) dt. (3)

They provide a time-frequency analysis of the signal by measur-

ing its frequency content (controlled by the scale factor j) at dif-

ferent times (controlled by the time shift n).

There exists a very efficient, linear time complexity algorithm

to compute the coefficients c(n) and d( j, n) from a fine-scale rep-

resentation of the signal (often simply N samples) and vice versa

based on two octave-band, discrete-time FBs that recursively

apply a discrete-time low-pass filter h0(n), a high-pass filter

h1(n), and upsampling and downsampling operations (see Figure

24) [27], [69]. These filters provide a convenient parameterization

for designing wavelets and scaling functions with desirable prop-

erties, such as compact time support and fast frequency decay (to

ensure the analysis is as local as possible in time frequency) and

orthogonality to low-order polynomials (vanishing moments)

[27]. See “Real-Valued Discrete Wavelet Transform and Filter

Banks” for more background on wavelets, FBs, and their design.

Why have wavelets and multiscale analysis proved so useful

in such a wide range of applications? The primary reason is

[FIG1] In the neighborhood of an edge, the real DWT produces
both large and small wavelet coefficients. In contrast, the
(approximately) analytic CWT produces coefficients whose
magnitudes are more directly related to their proximity to the
edge. Here, the test signal is a step edge at n = no,
x(n) = u(n − no). The figure shows the value of the wavelet
coefficient d(0, 8) (the eighth coefficient at stage 3 in “Real-
Valued Discrete Wavelet Transform and Filter Banks,” Figure 24)
as a function of no. In the top panel, the real coefficient d(0, 8) is
computed using the conventional real DWT. In the lower panel,
the complex coefficient d(0, 8) is computed using the dual-tree
CWT. (The filters used here are the same as those in Figure 2.)
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because they provide an

extremely efficient rep-

resentation for many

types of signals that

appear often in practice

but are not well matched

by the Fourier basis,

which is ideally meant

for periodic signals. In

particular, wavelets pro-

vide an optimal repre-

sentation for many

signals containing sin-

gularities (jumps and

spikes), the archetypal

example being a piece-

wise smooth function

consisting of low-order

polynomials separated

by jump discontinuities.

The wavelet representa-

tion is optimally sparse

for such signals, requir-

ing an order of magni-

tude fewer coefficients

than the Fourier basis to

approximate within the

same error. The key to

the sparsity is that since

wavelets oscillate locally,

only wavelets overlap-

ping a singularity have

large wavelet coeffi-

cients; all other coeffi-

cients are small.

The sparsity of the

wavelet coefficients of

many real-world signals

enables near-optimal sig-

nal processing based on simple thresholding (keep the large coef-

ficients and kill the small ones), the core of a host of powerful

image compression (JPEG2000 [98]), denoising, approximation,

and deterministic and statistical signal and image algorithms.

TROUBLE IN PARADISE: FOUR PROBLEMS 

WITH REAL WAVELETS

However, this is not the end of the story. In spite of its efficient com-

putational algorithm and sparse representation, the wavelet trans-

form suffers from four fundamental, intertwined shortcomings. 

PROBLEM 1: OSCILLATIONS

Since wavelets are bandpass functions, the wavelet coefficients tend

to oscillate positive and negative around singularities (see Figures 1

and 2). This considerably complicates wavelet-based processing,

making singularity extraction and signal modeling, in particular,

very challenging [22]. Moreover, since an oscillating function passes

often through zero, we see that the conventional wisdom that sin-

gularities yield large wavelet coefficients is overstated. Indeed, as we

see in Figure 1, it is quite possible for a wavelet overlapping a singu-

larity to have a small or even zero wavelet coefficient.

PROBLEM 2: SHIFT VARIANCE

A small shift of the signal greatly perturbs the wavelet coeffi-

cient oscillation pattern around singularities (see Figure 2).

Shift variance also complicates wavelet-domain processing;

algorithms must be made capable of coping with the wide range

of possible wavelet coefficient patterns caused by shifted singu-

larities [34], [55], [59], [80], [83].

To better understand wavelet coefficient oscillations and shift

variance, consider a piecewise smooth signal x(t − t0) like the

step function

[FIG2] The wavelet coefficients of a signal x(n) are very sensitive to translations of the signal. For two
impulse signals x(n) = δ(n − 60) and x(n) = δ(n − 64) (a), we plot the wavelet coefficients d(j, n) at a
fixed scale j (b) and (c). (b) shows the real coefficients computed using the conventional real discrete
wavelet transform (DWT, with Daubechies length-14 filters). (c) shows the magnitude of the complex
coefficients computed using the dual-tree complex discrete wavelet transform (CWT with length-14 filters
from [58]). For the dual-tree CWT the total energy at scale j is nearly constant, in contrast to the real DWT.
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u(t) =

{

0 t < 0

1 t ≥ 0

analyzed by a wavelet basis having a sufficient number of van-

ishing moments. Its wavelet coefficients consist of samples of

the step response of the wavelet [80], [83]

d( j, n) ≈ 2−3 j/2�

∫ 2 jt0−n

−∞
ψ(t) dt,

where � is the height of the jump. Since ψ(t) is a bandpass

function that oscillates around zero, so does its step response

d( j, n) as a function of n (recall Figure 1). Moreover, the factor

2 j in the upper limit ( j ≥ 0) amplifies the sensitivity of d( j, n)

to the time shift t0, leading to strong shift variance.

PROBLEM 3: ALIASING

The wide spacing of the wavelet coefficient samples, or equivalent-

ly, the fact that the wavelet coefficients are computed via iterated

discrete-time downsampling operations interspersed with nonideal

low-pass and high-pass filters, results in substantial aliasing. The

inverse DWT cancels this aliasing, of course, but only if the wavelet

and scaling coefficients are not changed. Any wavelet coefficient

processing (thresholding, filtering, and quantization) upsets the

delicate balance between the forward and inverse transforms, lead-

ing to artifacts in the reconstructed signal.

PROBLEM 4: LACK OF DIRECTIONALITY

Finally, while Fourier sinusoids in higher dimensions correspond

to highly directional plane waves, the standard tensor product

construction of M-D wavelets produces a checkerboard pattern

that is simultaneously oriented along several directions. This

lack of directional selectivity greatly complicates modeling and

processing of geometric image features like ridges and edges. 

ONE SOLUTION: COMPLEX WAVELETS

Fortunately, there is a simple solution to these four DWT short-

comings. The key is to note that the Fourier transform does not

suffer from these problems. First, the

magnitude of the Fourier transform

does not oscillate positive and negative

but rather provides a smooth positive

envelope in the Fourier domain.

Second, the magnitude of the Fourier

transform is perfectly shift invariant,

with a simple linear phase offset

encoding the shift. Third, the Fourier

coefficients are not aliased and do not

rely on a complicated aliasing cancel-

lation property to reconstruct the sig-

nal; and fourth, the sinusoids of the

M-D Fourier basis are highly direc-

tional plane waves.

What is the difference? Unlike the

DWT, which is based on real-valued oscillating wavelets, the

Fourier transform is based on complex-valued oscillating sinusoids 

e j�t = cos(�t) + j sin(�t) (4)

with j =
√

−1. The oscillating cosine and sine components (the

real and imaginary parts, respectively) form a Hilbert transform

pair; i.e., they are 90◦ out of phase with each other. Together

they constitute an analytic signal e j�t that is supported on only

one-half of the frequency axis (� > 0). See “The Hilbert

Transform and Analytic Signal” for more background.

Inspired by the Fourier representation, imagine a CWT as

in (1)–(3) but with a complex-valued scaling function and

complex-valued wavelet

ψc(t) = ψr(t) + j ψi(t).

Here, by analogy to (4), ψr(t) is real and even and jψi(t) is

imaginary and odd. Moreover, if ψr(t) and ψi(t) form a Hilbert

transform pair (90◦ out of phase with each other), then ψc(t) is

an analytic signal and supported on only one-half of the fre-

quency axis. The complex scaling function is defined similarly.

See Figure 3 for an example of a complex wavelet pair that

approximately satisfies these properties.

Projecting the signal onto 2 j/2ψc(2
jt − n) as in (3), we

obtain the complex wavelet coefficient

dc( j, n) = dr( j, n) + j di( j, n)

with magnitude

|dc( j, n)| =
√

[dr( j, n)]2 + [di( j, n)]2

and phase

� dc( j, n) = arctan

(

di( j, n)

dr( j, n)

)

[FIG3] A q-shift complex wavelet corresponding to a set of orthonormal dual-tree filters of
length 14 [58].
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when |dc( j, n)| > 0. As with the Fourier transform, complex

wavelets can be used to analyze and represent both real-

valued signals (resulting in symmetries in the coefficients)

and complex-valued signals. In either case, the CWT enables

new coherent multiscale signal processing algorithms that

exploit the complex magnitude and phase. In particular, as we

will see, a large magnitude indicates the presence of a singu-

larity while the phase indicates its position within the support

of the wavelet [81], [83], [113], [117].

The theory and practice of discrete complex wavelets can be

broadly classed into two schools. The first seeks a ψc(t) that

forms an orthonormal or biorthogonal basis [9], [11], [37], [64],

[108], [114]. As we show below, this strong constraint prevents

the resulting CWT from overcoming most of the four DWT

shortcomings outlined above. The second school seeks a redun-

dant representation, with both ψr(t) and ψi(t) individually

forming orthonormal or biorthogonal bases. The resulting CWT

is a 2× redundant tight frame [26] in 1-D, with the power to

overcome the four shortcomings.

In this article, we will focus on a particularly natural

approach to the second, redundant type of CWT, the dual-

tree approach, which is based on two FB trees and thus two

bases [55], [57]. As we will see, any CWT based on wavelets

of compact support cannot exactly possess the Hilbert

transform/analytic signal properties, and this means that

any such CWT will not perfectly overcome the four DWT

shortcomings. The key challenge in dual-tree wavelet design

is thus the joint design of its two FBs to yield a complex

wavelet and scaling function that are as close as possible to

analytic. From Figure 3, we see that we can reach quite close

to the ideal even with quite short filters.

As a result, the dual-tree CWT comes very close to mirror-

ing the attractive properties of the Fourier transform, includ-

ing a smooth, nonoscillating magnitude (see Figure 1); a

nearly shift-invariant magnitude with a simple near-linear

phase encoding of signal shifts; substantially reduced aliasing;

and directional wavelets in higher dimensions. The only cost

for all of this is a moderate redundancy: 2× redundancy in 1-D

(2d for d-dimensional signals, in general). This is much less

than the log2 N× redundancy of a perfectly shift-invariant

DWT [22], [63], which, moreover, will not offer the desirable

magnitude/phase interpretation of the CWT nor the good

directional properties in higher dimensions.

COMPLEX WAVELET COMPLEXITIES

The design of complex analytic wavelets raises several unique

and nontrivial challenges that do not arise with the real DWT. In

this section, we overview them and discuss a straightforward but

limited approach to the CWT that provides a jumping off point

for the dual-tree.

ANALYTICITY VERSUS FINITE SUPPORT

It is often desired in wavelet-based signal processing that the

wavelet be well localized in time. (In many applications, the

wavelet ψ(t) will actually have finite support.) Finitely sup-

ported wavelets are of special interest because, in this case,

the DWT can be easily implemented with finite impulse

response (FIR) filters. However, a finitely supported function

can never be exactly analytic, because the Fourier transform

of a finitely supported function can never be exactly zero on

an interval [A, B] with B > A (on any set of positive measure

to be exact) let alone on the entire positive or negative fre-

quency axis [77]. Thus, any exactly analytic wavelet must have

infinite support (and slow decay, in fact).

Thus, if we want finitely supported wavelets, then we must

accept wavelets that are only approximately analytic and a CWT

that is only approximately magnitude/phase, shift invariant, and

free from aliasing. We can relax the finite support condition, but

the resulting infinitely supported wavelets are beyond the scope

of this article. The design challenge will be to see how close we

can get to analyticity. Unfortunately, the standard approach to

designing and implementing wavelet transforms (with FIR or

infinite impulse response (IIR) filters) has basic limitations even

for approximately analytic wavelets, as we now illustrate.

ANALYTICITY VERSUS PERFECT RECONSTRUCTION

The question of how to design filters h0(n) and h1(n) satisfying

the perfect reconstruction (PR) conditions so that the wavelet

ψ(t) has short support and vanishing moments was answered

by Daubechies [25]. Note, however, that Daubechies’ wavelets

are not analytic. Can we design the filters hi(n) in Figure 24

such that the corresponding scaling function and wavelet given

by (60) and (59) are complex and (approximately) analytic?

While complex filters satisfying the PR conditions have been

developed [11], [42], [64], [123], those solutions do not give ana-

lytic wavelets and do not have the desirable properties of analyt-

ic wavelets described previously. (They do, however, have

desirable symmetry properties.) It turns out that the design of a

complex (approximately) analytic wavelet basis is more difficult

than the design of a real wavelet basis. If we follow the standard

approach for wavelet design, then problems arise when we

require the wavelet to be analytic.

So that the dyadic dilations and translations of a single func-

tion ψ(t) (the wavelet) constitute a basis for signal expansion,

ψ(t) must satisfy certain constraints. Unfortunately, these con-

straints make it difficult to design a wavelet ψ(t) that is also

analytic. Specifically, analytic solutions are not possible because

the PR conditions (see “Real-Valued Discrete Transform and

Filter Banks”) require that

H0

(
e j ω

)
H̃0

(
e j ω

)
+ H1

(
e j ω

)
H̃1

(
e j ω

)
= 2

for −π ≤ ω ≤ π. Suppose that h1(n) is (approximately) ana-

lytic. Then H1(e j ω) ≈ 0 for −π < ω < 0, which in turn

implies that H0(ej ω) H̃0(ej ω) ≈ 2 for −π < ω < 0.That is, nei-

ther H0(z) nor H̃0(z) is a reasonable low-pass filter and, conse-

quently, the dilation equation does not have a well-defined

solution. Therefore, the wavelet corresponding to the usual

DWT cannot be approximately analytic.



IEEE SIGNAL PROCESSING MAGAZINE [128] NOVEMBER 2005

CWT VIA DWT POST-PROCESSING

A natural and straightforward approach towards an invertible

analytic CWT splits each output of the FB [see Figure 24(a)] into

its positive and negative frequency components using a complex

PR FB acting as a Hilbert transformer [9], [36]–[39], [108], [109],

[114]. But this approach turns out to have a basic limitation.

A complex FB that performs this frequency decomposition

can be derived directly from any real two-channel low-pass/high-

pass FB with filters h0(n), h1(n) by defining the positive frequen-

cy and negative frequency filters as

hp(n) = jn h0(n), hn(n) = jn h1(n). (5)

This corresponds to a rotation of both filters in the z-plane by

90°. If h0(n) and h1(n) satisfy the PR conditions, then so will

hp(n) and hn(n). For example, given the low-pass/high-pass fil-

ters h0(n), h1(n) illustrated in the frequency domain in Figure

25, the complex filters hp(n), hn(n) are illustrated in the fre-

quency domain in Figure 4. When used by itself, this complex

FB can effectively separate the positive and negative frequency

components of a signal; in a discrete-time sense, hp(n) and

hn(n) are approximately analytic.

When this complex FB is used to decompose each subband

signal of a real DWT, we obtain the FB structure illustrated in

Figure 5. Notice that the transform is critically sampled—the

total data rate of the subband signals is equal to the input data

rate (although the outputs are now complex).

Although this FB structure is perhaps the most natural

approach to developing an approximately analytic DWT, when we

examine the overall frequency response of each channel, it becomes

apparent that the structure suffers from a basic limitation.

Using z-transforms, consider the filter chain producing the

wavelet coefficients at the first level

x(n)−→ H1(z) −→ ↓ 2 −→ Hn(z) −→ ↓ 2 −→ c(n).

Using the noble identities [107], this is equivalent to

x(n) −→ H1(z) Hn(z2) −→ ↓ 4 −→ c(n).

The frequency response of this channel is thus

Htot(z) = H1(z) Hn(z2)

and in the Fourier domain

Htot

(
ejω

)
= H1

(
ejω

)
Hn

(
ej2ω

)
.

If H1(z) and Hn(z) have the frequency

responses shown in Figures 4 and 25,

then Htot(z) has the frequency response

shown in the second panel of Figure 6.

Observe in Figure 6 that, even

though the frequency response of each

channel is approximately single sided

(and thus approximately analytic), there

is a substantial bump on the opposite

side of the frequency axis. In fact, this

bump is unavoidable for the FB struc-

ture shown in Figure 5. It is possible to

reduce the width of the bump by

designing H1(z) and Hn(z) so that they

have narrower transitions bands, how-

[FIG4] Hilbert transform FB.  Magnitude frequency responses
|Hp(ejω)| (solid) and |Hn(e jω)| (dashed) corresponding to (5).
Hp(e jω) approximates Ha(ω) in (63), while Hn(ejω) approximates
Ha(−ω).
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ever, then the impulse responses of these filters (and thus the

wavelets) will grow longer and they will have a greater degree

of ringing. This is contrary to one of the primary goals in

wavelet design: short support. Moreover, no matter how long

the filters and wavelets are, the height of the bump will never

diminish. As a consequence of the PR conditions, the bump

will always have a height of exactly 1 at ω = 0.5 π no matter

what filters are used. Figure 6 also illustrates that the problem

persists in later FB stages as well.

Even though it has an unavoidable bump on the wrong side

of the frequency axis, the CWT generated by the FB in Figure 5

may still be useful for some applications: the frequency response

of each channel is largely single sided, the transform is simple to

implement, and no new filter design is needed. 

However, the undecimated DWT can be easily converted

into an approximately analytic wavelet transform by using

this approach. By decomposing each subband signal of the

undecimated DWT with the same complex FB considered

here, the unwanted bump can be eliminated. (Note that if the

critically sampled DWT is used and only the down-sampling

following the complex positive/negative filters is omitted,

then the frequency responses shown in Figure 5 remain

unchanged; i.e., the bumps will remain.) The down-sampling

following the real low-pass/high-pass filters must be omitted

for the bump artifact to be eliminated. [In this case

H0(z2( j−1)

), H1(z2( j−1)

), Hn(z2( j−1)

), and Hn(z2( j−1)

) should be

used at stage j, for 1 ≤ j ≤ J.] Although this approach works

with the undecimated DWT, this transform is redundant by a

factor of J + 1, where J is the number of stages. (An N-point

input signal will lead to ( J + 1) N wavelet coefficients.) An

alternative is the use of the partially decimated wavelet trans-

form (PWT) described in [101] to lower the redundancy. The

dual-tree CWT, described below, also avoids the unwanted

bump and is also expansive, but by just a factor of 2 (for 1-D

signals), independent of the number of stages. 

PERFORMING THE HILBERT TRANSFORM FIRST

Another approach to implement an expansive CWT first applies

a Hilbert transform to the data. The real wavelet transform is

then applied to both the original data and the Hilbert trans-

formed data, and the coefficients of each wavelet transform are

combined to obtain a CWT [3], [5], [13], [14]. However, note

that the ideal Hilbert transform is represented by an infinitely

long impulse response that decays very slowly. The use of the

ideal (or near ideal) Hilbert transform in conjunction with the

wavelet transform effectively increases the support of the

wavelets. For the wavelets to have short support, an approximate

Hilbert transform more localized in time should be used

instead. However, the accuracy of the approximate Hilbert trans-

form should depend on the scale of the wavelet transform

(coarse scales should be accompanied by a more accurate

Hilbert transform). When the Hilbert transform is applied first

to the data, a single Hilbert transform is applied to wavelet coef-

ficients at all scales, and hence, it cannot be optimized for all

scales simultaneously. On the other hand, we shall see that
[FIG6] Frequency response for stages 1, 2, and 3 of DWT FB with
invertible complex postfiltering as in Figure 5.
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when the Hilbert transform is built into the wavelet transform

as in the dual-tree implementation, the Hilbert transform scales

with the wavelet scale, as desired.

THE DUAL-TREE CWT

As shown in the previous section, the development of an invert-

ible analytic wavelet transform is not as straightforward as

might be initially expected. In particular, the FB structure illus-

trated in Figure 24 that is usually used to implement the real

DWT does not lend itself to analytic wavelet transforms with

desirable characteristics. 

DUAL-TREE FRAMEWORK

One effective approach for implementing an analytic wavelet

transform, first introduced by Kingsbury in 1998, is called

the dual-tree CWT [54], [55], [57]. Like the idea of

positive/negative post-filtering of real subband signals, the

idea behind the dual-tree approach is quite simple. The dual-

tree CWT employs two real DWTs; the

first DWT gives the real part of the

transform while the second DWT gives

the imaginary part. The analysis and

synthesis FBs used to implement the

dual-tree CWT and its inverse are

illustrated in Figures 7 and 8.

The two real wavelet transforms use

two different sets of filters, with each

satisfying the PR conditions. The two

sets of filters are jointly designed so

that the overall transform is approxi-

mately analytic. Let h0(n), h1(n) denote

the low-pass/high-pass filter pair for the

upper FB, and let g0(n), g1(n) denote

the low-pass/high-pass filter pair for the

lower FB. We will denote the two real

wavelets associated with each of the two

real wavelet transforms as ψh(t) and

ψg(t). I n  a d d i t i o n  t o  s a t i s f y i n g

t h e PR conditions, the filters are

designed so that the complex wavelet

ψ(t) := ψh(t) + j ψg(t) is approxi-

mately analytic. Equivalently, they are

designed so that ψg(t) is approximately

the Hilbert transform of ψh(t) [denoted

ψg(t) ≈ H{ψh(t)}].

Note that the filters are themselves

real; no complex arithmetic is required

for the implementation of the dual-tree

CWT. Also note that the dual-tree CWT

is not a critically sampled transform; it is

two times expansive in 1-D because the

total output data rate is exactly twice the

input data rate.

The inverse of the dual-tree CWT is as

simple as the forward transform. To invert

the transform, the real part and the imaginary part are each

inverted—the inverse of each of the two real DWTs are used—to

obtain two real signals. These two real signals are then averaged

to obtain the final output. Note that the original signal x(n) can

be recovered from either the real part or the imaginary part alone;

however, such inverse dual-tree CWTs do not capture all the

advantages an analytic wavelet transform offers.

If the two real DWTs are represented by the square matrices

Fh and Fg, then the dual-tree CWT can be represented by the

rectangular matrix

F =
[

Fh

Fg

]
.

If the vector x represents a real signal, then wh = Fh x repre-

sents the real part and wg = Fg x represents the imaginary

part of the dual-tree CWT. The complex coefficients are given

by wh + j wg. A (left) inverse of F is then given by

[FIG8] Synthesis FB for the dual-tree CWT.

[FIG7] Analysis FB for the dual-tree discrete CWT.
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F
−1 =

1

2

[

F
−1
h

F
−1
g

]

,

as we can verify

F
−1 · F =

1

2

[

F
−1
h

F
−1
g

]

·
[

Fh

Fg

]

=
1

2
[I + I] = I.

We can just as well share the factor of one half between the for-

ward and inverse transforms, to obtain

F :=
1

√
2

[

Fh

Fg

]

, F
−1 :=

1
√

2
[ F

−1
h

F−1
g ] . (6)

If the two real DWTs are orthonormal transforms, then the

transpose of Fh is its inverse Ft
h
· Fh = I and similarly for Fg. In

this case, the transpose of the rectangular matrix F is also a left

inverse Ft · F = I, where we have used (6). That is, the inverse of

the dual-tree CWT can be performed using the transpose of the for-

ward dual-tree CWT; it is self-inverting in the terminology of [96].

The dual-tree wavelet transform defined in (6) keeps the real

and imaginary parts of the complex wavelet coefficients sepa-

rate. However, the complex coefficients can be explicitly com-

puted using the following form:

Fc :=
1

2

[

I j I

I −j I

]

·
[

Fh

Fg

]

, (7)

F
−1
c :=

1

2

[

F
−1
h

F
−1
g

]

·
[

I I

−j I j I

]

. (8)

Note that the complex sum/difference matrix in (7) is unitary

(its conjugate transpose is its inverse)

1
√

2

[

I j I

I −j I

]

·
1

√
2

[

I I

−j I j I

]

= I.

(Note that the identity matrix on the right-hand side is twice the

size of those on the left-hand side). Therefore, if the two real

DWTs are orthonormal transforms, then the dual-tree CWT sat-

isfies F∗
c · Fc = I, where ∗ denotes conjugate transpose. If

[

u

v

]

= Fc · x,

then when x is real, we have v = u∗, so v need not be computed.

When the input signal x is complex, then v �= u∗, so both u and

v need to be computed.

When the dual-tree CWT is applied to a real signal, the out-

put of the upper and lower FBs in Figure 7 will be the real and

imaginary parts of the complex coefficients, and they can be

stored separately, as represented by (6). However, if the dual-tree

CWT is applied to a complex signal, then the output of both the

upper and lower FBs will be complex, and it is no longer correct

to label them as the real and imaginary parts. For complex input

signals, the form in (7) is more appropriate. For a real N-point

signal, the form in (7) yields 2N complex coefficients, but N of

these coefficients are the complex conjugates of the other N

coefficients. For a general complex N-point signal, the form in

(7) yields 2N general complex coefficients. Therefore, for both

real and complex input signals, the CWT is two times expansive.

When the two real DWTs are orthonormal and the 1/
√

2 fac-

tor is included as in (6), the dual-tree CWT gains a Parseval’s

energy theorem: the energy of the input signal is equal to the

energy in the wavelet domain

∑

j,n

(

|dh( j, n)|2 + |dg( j, n)|2
)

=
∑

n

|x(n)|2.

The dual-tree CWT is also easy to implement. Because there

is no data flow between the two real DWTs, they can each be

implemented using existing DWT software and hardware.

Moreover, the transform is naturally parallelized for efficient

hardware implementation. In addition, because the dual-tree

CWT is implemented using two real wavelet transforms, the use

of the dual-tree CWT can be informed by the existing theory

and practice of real wavelet transforms. For example, criteria for

wavelet design (such as vanishing moments) and wavelet-based

signal processing algorithms (such as thresholding of wavelet

coefficients) that have been developed for real wavelet trans-

forms can also be applied to the dual-tree CWT.

It should be noted, however, that the dual-tree CWT requires

the design of new filters. Primarily, it requires a pair of filter sets

chosen so that the corresponding wavelets form an approximate

[FIG9] The phase � A(e jω) of the maximally flat fractional-delay
all-pass system with τ = 0.5 and L = 1, 2, 3.
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Hilbert transform pair. Existing filters for wavelet transforms

should not be used to implement both trees of the dual-tree

CWT. For example, pairs of Daubechies’ wavelet filters do not

satisfy the requirement that ψg(t) ≈ H{ψh(t)}. If the dual-tree

wavelet transform is implemented with filters not satisfying this

requirement, then the transform will not provide the full advan-

tages of analytic wavelets described previously.

THE HALF-SAMPLE DELAY CONDITION

Translating wavelet properties into filter properties translates

the wavelet design problem into a filter design problem. For

example, it is well known that a wavelet ψ(t) has K vanishing

moments if the transfer function of the low-pass filter has the

form H0(z) = (1 + z)K Q(z) for some Q(z).

The dual-tree CWT inspires a new filter design problem: what

property should the two low-pass filters h0(n) and g0(n) satisfy

so as to ensure that the corresponding wavelets form an approxi-

mate Hilbert transform pair, i.e., ψg(t) ≈ H{ψh(t)}? Here

ψh(t) =
√

2
∑

n

h1(n) φh(t),

φh(t) =
√

2
∑

n

h0(n) φh(t),

h1(n) = (−1)n h0(d − n); ψg(t), φg(t), and g1(n) are defined

similarly. (For convenience, we assume here that both real

wavelet transforms are orthonormal.) Since the wavelets depend

on the scaling functions, and since the scaling functions depend

on the filters only implicitly, it is not at first obvious how the fil-

ters should be related. However, it turns out that the two low-

pass filters should satisfy a very simple property: one of them

should be approximately a half-sample shift of the other [87]

g0(n) ≈ h0(n − 0.5) �⇒ ψg(t) ≈ H{ψh(t)}. (9)

Since g0(n) and h0(n) are defined only on the integers, this

statement is somewhat informal. However, we can make the

statement rigorous using Fourier transforms. In [87], it is shown

that if G0

(

e j ω
)

= e−j 0.5 ω H0

(

e j ω
)

, then ψg(t) = H{ψh(t)}.

The converse has been proven in [76], [122], making the condi-

tion necessary and sufficient. The necessary and sufficient condi-

tions for the biorthogonal case were proven in [121]. To

understand intuitively why the half-sample delay condition leads

to a nearly shift-invariant wavelet transform, note that the half-

sample delay condition is equivalent to uniformly oversampling

the low-pass signal at each scale by 2:1, thus largely avoiding the

aliasing due to the low-pass downsamplers [53]–[55].

It will be useful to rewrite the half-sample delay condition in

terms of the magnitude and phase functions separately:

∣

∣

∣
G0

(

ejω
) ∣

∣

∣
=

∣

∣

∣
H0

(

ejω
) ∣

∣

∣
, (10)

� G0

(

e j ω
)

= � H0

(

e j ω
)

− 0.5 ω. (11)

Equivalently, g0(n) could be obtained from h0(n) by filtering

h0(n) with an ideal fractional delay system. However, such a sys-

tem is not realizable—its impulse response is of infinite length,

and its transfer function is not rational. Even if it were realiz-

able, it might not give a desirable solution because if h0(n) is

FIR, then g0(n) would be of infinite length. Indeed, if ψh(t) is a

wavelet of finite support, then its exact Hilbert transform will

have infinite support. Therefore, in practical implementations of

the dual-tree CWT, the delay condition (10) and (11) will be

satisfied only approximately; the wavelets ψh(t) and ψg(t) will

form only an approximate Hilbert pair; and the complex wavelet

ψh(t) + j ψh(t) will be only approximately analytic.

A question remains: is it possible to satisfy simultaneously

the PR condition (55) exactly and the half-sample delay condi-

tion (10), (11) approximately with short filters? Or does the

dual-tree CWT have some side effect that limits its effectiveness

as an analytic wavelet transform (like the bumps in Figure 6)

when short filters are used? The next section describes several

methods for filter design for the dual-tree CWT that demon-

strate that with relatively short filters, an effective invertible

approximately analytic wavelet transform can indeed be imple-

mented using the dual-tree approach.

FILTER DESIGN FOR THE DUAL-TREE CWT

As in the case of filter design for real wavelet transforms, there

are various approaches to the design of filters for the dual-tree

CWT. In the following, we describe methods to construct filters

satisfying the following desired properties:

■ approximate half-sample delay property

■ PR (orthogonal or biorthogonal)

■ finite support (FIR filters)

■ vanishing moments/good stopband

■ linear-phase filters (desired, but not required of a

wavelet transform for it to be approximately analytic).

Moreover, only the complex filter responses need be lin-

ear-phase; this can be achieved by taking

g0(n) = h0(N − 1 − n).

One approach to dual-tree filter design is to let h0(n) be

some existing wavelet filter. Then, given h0(n), we need to

design g0(n) so as to simultaneously satisfy G0

(

ej ω
)

≈
e−j 0.5 ω H0

(

ej ω
)

and the PR conditions. (Algorithms for design-

ing an orthonormal wavelet basis to match a specified signal

class are described, for example, in [20].) Unfortunately, this

will sometimes result in g0(n) being substantially longer than

h0(n) (but see [105] and [121] for relatively short g0(n)). By

jointly designing h0(n) and g0(n), we can obtain a pair of filters

of equal (or near-equal) length, where both are relatively short.

It should be noted however, that filters for the dual-tree CWT

are generally somewhat longer than filters for real wavelet

transforms with similar numbers of vanishing moments,

because of the additional constraints (10)–(11) that the filters

must approximately satisfy.

In the following, we describe three methods for FIR dual-tree

filter design. Fast implementations of some of these filters have

been recently described in [1].
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LINEAR-PHASE BIORTHOGONAL SOLUTION

The first solution, introduced in [53] and [54], sets h0(n) to be

a symmetric odd-length (Type I) FIR filter and sets g0(n) to be a

symmetric even-length (Type II) FIR filter, such that for N odd:

h0(n) = h0(N − 1 − n), (12)

g0(n) = g0(N − n). (13)

This solution must be a biorthogonal solution (the filters in

the synthesis FB are not time-reversed versions of the filters in

the analysis FB). This is because real orthonormal FIR two-

channel FBs cannot be symmetric (except for the Haar solu-

tion). Note that if h0(n) is a symmetric N-point impulse

response (supported on 0 ≤ n ≤ N − 1) then
� H0

(

ej ω
)

= −0.5 (N − 1) ω. Similarly, if g0(n) is a symmetric

(N + 1)-point impulse response (supported on 0 ≤ n ≤ N)

then � G0

(

e j ω
)

= −0.5 N ω. Therefore, for this type of solu-

tion, the phase part (11) of the half-sample delay condition is

exactly satisfied, but the magnitude part (10) is not

∣

∣

∣
G0

(

ej ω
) ∣

∣

∣
�=

∣

∣

∣
H0

(

ej ω
) ∣

∣

∣
, (14)

� G0

(

ej ω
)

= � H0

(

ej ω
)

− 0.5 ω. (15)

Therefore, h0(n) and g0(n) should be designed so as to approxi-

mately satisfy the magnitude condition (10).

The design of a pair of symmetric PR (biorthogonal) filters

approximately satisfying the magnitude relation (10) is per-

formed in [53] and [54] by an iterative error minimization strat-

egy rather similar to that in [58]. Alternative techniques are

given in [105] that employ even-length Bernstein FBs (EBFBs)

to obtain the matching even-length filters.

q-SHIFT SOLUTION

The second solution, introduced in [56], sets

g0(n) = h0(N − 1 − n) (16)

where N, now even, is the length of h0(n), which is supported on

0 ≤ n ≤ N − 1. In this case, the magnitude part (10) of the half-

sample delay condition is exactly satisfied due to the time-reverse

relation between the filters, but the phase part (11) is not exact 

∣

∣

∣
G0

(

ej ω
) ∣

∣

∣
=

∣

∣

∣
H0

(

ej ω
) ∣

∣

∣
, (17)

� G0

(

ej ω
)

�= � H0

(

ej ω
)

− 0.5 ω. (18)

Therefore, the filters must be designed so that the phase condi-

tion is approximately satisfied.

The quarter-shift (q-shift) solution has an interesting prop-

erty that leads to its name: If you ask that g0(n) and h0(n) be

related as in (16) and also that they approximately satisfy (11),

then it turns out that the frequency response of h0(n) has

approximately linear phase. This is verified by writing (16) in

terms of Fourier transforms

G0

(

e j ω
)

= H0

(

e j ω
)

e−j (N−1) ω,

where the overbar represents complex conjugation. This implies

that the phases satisfy

� G0

(

e j ω
)

= −� H0

(

e j ω
)

− (N − 1) ω.

If the two filters satisfy the phase condition (11) approximately

(i.e., � G0(e j ω) ≈ � H0(e j ω) − 0.5 ω) then

� H0

(

e j ω
)

− 0.5 ω ≈ −� H0

(

e j ω
)

− (N − 1) ω,

from which we have

� H0

(

e j ω
)

≈ −0.5 (N − 1) ω + 0.25 ω. (19)

That is, h0(n) is an approximately linear-phase filter. This also

says that h0(n) is approximately symmetric around the point

n = 0.5 (N − 1) − 0.25. Note that this is one quarter away from

the natural point of symmetry (if h0(n) were exactly symmet-

ric), and for this reason, solutions of this kind were introduced

as q-shift dual-tree filters in [56].

For the q-shift solution, the imaginary part of the complex

wavelet is a time-reversed version of the real part,

ψg(t) = ψh(N − 1 − t).

Therefore, the q-shift solution produces complex wavelets that are

exactly linear-phase (regardless which filters h0(n), g0(n) are used). 

The q-shift solution calls for the design of a single filter sat-

isfying simultaneously the PR conditions and the phase condi-

tion (19). True orthonormal solutions are possible here,

because the filters need only be approximately linear phase and

their coefficients do not need to exhibit symmetry. The same

time-reverse condition then applies between analysis and syn-

thesis filters as between the dual trees, yielding a surprisingly

neat overall solution from a single filter design. In [56], ortho-

normal solutions to this design problem are found by optimiza-

tion over lattice angles, using a lattice parameterization of

orthonormal FBs. One of these q-shift filters has only six

nonzero coefficients, making it efficient for implementation.

Longer filters have been obtained using an iterative frequency

domain error minimization criterion [58], which is better suit-

ed to the design of longer q-shift filters (typically using 12 or
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more taps) with improved smoothness and shift-invariance

properties.

COMMON-FACTOR SOLUTION

The third solution, introduced in [88], can be used to design

both orthonormal and biorthogonal solutions for the dual-tree

CWT. In this approach, we set

h0(n) = f(n) ∗ d(n), (20)

g0(n) = f(n) ∗ d(L − n), (21)

where ∗ represents discrete-time convolution and where d(n) is

supported on 0 ≤ n ≤ L. Equivalently,

H0(z) = F(z) D(z), (22)

G0(z) = F(z) z−L D(1/z). (23)

Like the q-shift solution, for solutions of this kind, the magni-

tude part (10) of the half-sample delay condition is exactly satis-

fied, but the phase part (11) is not

∣

∣

∣
G0

(

e j ω
) ∣

∣

∣
=

∣

∣

∣
H0

(

e j ω
) ∣

∣

∣
, (24)

� G0

(

e j ω
)

�= � H0

(

e j ω
)

− 0.5 ω. (25)

The filters must be designed so that the phase condition is

approximately satisfied. From (22)–(23), we have

G0(z) = H0(z) A(z), (26)

where

A(z) :=
z−LD(1/z)

D(z)

is an all-pass transfer function; it has the property that

|A(e j ω)| = 1. Therefore, from (26), |G0(e j ω)| = |H0(e j ω)| and

� G0

(

e j ω
)

= � H0

(

e j ω
)

+ � A
(

e j ω
)

.

If the filters h0(n) and g0(n) are to satisfy the phase condition

(11) approximately, then D(z) must be chosen so that

� A
(

e j ω
)

≈ −0.5 ω. (27)

With (27), we find that A(z) should be a fractional delay all-

pass system.

A solution to the dual-tree filter design problem, where the

filters are taken to have the form in (20)–(21), can be found in

two steps. First, find an FIR D(z) so that A(z) satisfies (27).

Second, find an FIR F(z) so that h0(n) and g0(n) satisfy the PR

conditions.

The first step can draw on existing literature. The design of

all-pass systems with phase response (27) is already well studied

[61], [62], [85]. The formula for the maximally flat-delay all-

pass filter, adapted from Thiran’s filter in [106], is 

D(z) = 1 +

L
∑

n=1

(

L

n

)

[

n−1
∏

k=0

τ − L + k

τ + 1 + k

]

(−z)−n. (28)

With this D(z), we have A(e jω) ≈ e−jτω around ω = 0. We can

use D(z) in (28) with τ = 0.5. The phase of the maximally flat

fractional-delay all-pass system A(z) is illustrated in Figure 9 for

L = 1, 2, 3. For larger values of L an improved approximation to

0.5 ω is obtained. The line 0.5 ω is indicated in the figure by the

dashed line. Note that the behavior of the phase in the stopband

of the low-pass filter H0(z) is not important, so the deviation of

the phase from 0.5 ω near ω = π is not relevant. Other frac-

tional delay all-pass filters can also be used; in [38], a different

all-pass filter is used.

The second step, finding F(z) so that h0(n) and g0(n) satisfy

the PR conditions, requires only a solution to a linear system of

equations and a spectral factorization. As described in [88], this

design procedure allows for an arbitrary number of vanishing

wavelet moments to be specified.

This approach to the dual-tree filter design problem is exactly

analogous to Daubechies’ construction of short orthonormal

(and biorthogonal) wavelet bases with vanishing moments. Like

the Daubechies’ construction, if the common-factor approach is

used to design an orthonormal wavelet transform, then the fil-

ters will not be symmetric. However, also similar to the

Daubechies’ construction, if this approach is used to design a

biorthogonal transform, then the filter f(n) can be exactly sym-

metric and the filters h0(n) and g0(n) will be approximately

linear-phase (because d(n) has approximately linear phase).

EXAMPLES

A q-shift Hilbert pair of wavelets is illustrated in Figure 3. The

filters were obtained using the design algorithm in [58] and are

of length 14. The spectrum of the complex wavelet

ψh(t) + jψg(t) is shown in the figure, and it is clearly nearly

analytic (approximately zero on the negative frequency axis). A

common factor Hilbert pair of wavelets based on a biorthogonal

set of filters is illustrated in Figure 10. The filters were obtained

using the design algorithm in [88] and have two vanishing

moments each. The analysis low-pass filters are of length 11 and

the synthesis low-pass filters are of length 13.

IMPLEMENTATION ISSUES

It turns out that the implementation of the dual-tree CWT requires

that the first stage of the dual-tree FB be different from the suc-
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ceeding stages. If the same PR filters are used for each stage, as

Figure 7 indicates, then the first several stages of the FB will not be

approximately analytic; i.e., the frequency responses for these stages

will not be approximately

single sided. In this section,

we describe how the filters

for the first stage should be

chosen so that the dual-tree

CWT is approximately ana-

lytic for every stage.

Note that the half-sam-

ple delay condition,

g0(n) ≈ h0(n − 0.5), was

derived by asking that

ψg(t) ≈ H{ψh(t)} .

However, ψg(t) and ψh(t)

are defined on the real line

through  (59), (60), and

they do not always accu-

rately reflect the behavior

and properties of the FB for

the first several stages.

These functions are most

useful for understanding

the behavior of the FB at

stage jas j → ∞. 

To understand how the

filters at each stage of the

dual-tree FB should be

designed, it is useful to

consider again the half-

sample delay condition. It

turns out that if the low-

pass filters satisfy the half-

sample delay condition,

g0(n) ≈ h0(n − 0.5), then

the scaling functions also

satisfy a half-sample delay condition:

φg(t) ≈ φh(t − 0.5). The wavelet expan-

sion of a signal x(t) on the real line in (1)

calls for the integer translates of the scal-

ing function φ(t). Therefore, the condi-

tion φg(t) ≈ φh(t − 0.5) implies that

the integer translates of φg(t) fall mid-

way between the integer translates of

φh(t). That is, the two scaling functions

satisfy an interlacing property. For the

discrete form of the dual-tree CWT to be

(approximately) analytic at each stage j,

it is necessary that the dual-tree FB

duplicate this interlacing property.

Instead of using the same filters at

each stage of the dual-tree FB, as depicted

in Figure 7, let us suppose that at each

stage, we use a different set of PR filters.

As illustrated in Figure 11, the low-pass filters used at stage j will

be denoted by h
( j)
0 (n) and g

( j)
0 (n). (At each stage, in each tree, the

high-pass filter will be determined by the low-pass filter, as usual.)

[FIG10] Common factor complex wavelet corresponding to a set of biorthogonal dual-tree filters [88].
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[FIG11] Analysis FB for the dual-tree CWT with a different set of filters at each stage.
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From the input of the FB to the low-pass output of the upper

FB at stage, j we have (by basic multirate properties) the system

x(n) −→ h
( j)
tot(n) −→ ↓ 2 j −→

where h
( j)
tot

(n) is given by

H
( j)
tot(z) = H

(1)
0 (z) H

(2)
0 (z2) · · · H

( j)
0

(
z2 j−1

)
. (29)

We have a similar expression for G
( j)
tot

(z) in the lower FB.

To ensure that the discrete analysis

functions of the dual-tree CWT satisfy

the interlacing property, we require that

the filters at each stage, h
( j)
0

(n) and

g
( j)
0

(n), be designed so that the translates

of g
( j)
tot

(n) by 2 j fall midway between the

translates of h
( j)
tot

(n) by 2 j. At stage 1, for

example, we require that the translates

of g
(1)
tot

(n) by 2 fall midway between the

translates of h
(1)
tot

(n) by 2. That is, we

require that

g
(1)
tot

(n) ≈ h
(1)
tot

(n − 1).

At stage 2, we require that the translates of

g
(2)
tot

(n) by 4 fall midway between the

translates of h
(2)
tot

(n) by 4. That is, we

require that

g
(2)
tot

(n) ≈ h
(2)
tot

(n − 2).

At stage 3, we require that

g
(3)
tot

(n) ≈ h
(3)
tot

(n − 4),

and so forth.

At stage j = 1, h
(1)
tot

(n) is just h
(1)

0
(n),

and we are asking that

g
(1)
0 (n) ≈ h

(1)
0 (n − 1). (30)

This is different (and easier!) from the

half-sample delay condition discussed

above. Dual-tree filters designed to satisfy

the half-sample delay condition should

not be used for the first stage. For the first

stage, the condition (30) can be satisfied

exactly by using the same set of filters in

each of the two trees; it is necessary only to translate one set of fil-

ters by one sample with respect to the other set. Moreover, any set

of PR filters can be used for the first stage.

For stages j > 1 it is more useful to write the requirements

using the frequency responses of the filters. For stage j = 2,

we require that

G
(2)
tot

(
e jω

)
≈ e−j2ω H

(2)
tot

(
e jω

)
. (31)

Using (29), we can write (31) in terms of the individual filters as

[FIG12] Frequency responses of the (approximately analytic) dual-tree CWT for stages 1
through 4. Compare with Figure 6.
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[FIG13] The dual-tree CWT analysis FB with alternating filters for each stage (except the
first stage). The synthesis FB has alternating filters to match the analysis FB.
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G
(1)
0

(
e jω

)
G

(2)
0

(
e j2ω

)
≈ e−j2ω H

(1)
0

(
e jω

)
H

(2)
0

(
e j2ω

)
.

(32)

We already have G
(1)
0

(
e jω

)
≈ e−jω H

(1)
0

(
e jω

)
from (30) and so,

from (32), we obtain

G
(2)
0

(
e j2ω

)
≈ e−jω H0

(2)
(

e j2ω
)

or equivalently

G
(2)
0

(
e jω

)
≈ e−j0.5ω H

(2)
0

(
e jω

)
(33)

or g
(2)
0 (n) ≈ h

(2)
0 (n − 0.5). This is the half-sample delay condi-

tion we have already encountered.

For stage j = 3, we require that

G
(3)
tot

(
e jω

)
≈ e−j4ω H

(3)
tot

(
e jω

)
. (34)

Using (29) we can write (34) in terms of the individual filters as

G
(1)
0

(
e jω

)
G

(2)
0

(
e j2ω

)
G

(3)
0

(
e j4ω

)
≈

e−j4ω H
(1)
0

(
e jω

)
H

(2)
0

(
e j2ω

)
H

(3)
0

(
e j4ω

)
. (35)

We already have G
(1)
0 (e jω) ≈ e−jω H

(1)
0 (e jω) from (30) and

G
(2)
0 (e jω) ≈ e−j0.5ω H

(2)
0 (e jω) from (33), and so from (35), we

obtain

G
(3)
0

(
e j4ω

)
≈ e−j2ω H

(3)
0

(
e j4ω

)

or equivalently

G
(3)
0

(
e jω

)
≈ e−j0.5ω H

(3)
0

(
e jω

)

or g
(3)
0 (n) ≈ h

(3)
0 (n − 0.5). This is once again the half-sample

delay condition.

Using the same derivation for further stages, it turns out that for

each stage, j > 1, we always obtain the same condition

g
( j)
0 (n) ≈ h

( j)
0 (n − 0.5).

Therefore, the PR dual-tree filters introduced previously can be

used for each stage of the dual-tree FB after the first stage. Only

the first stage requires a different set of filters. Moreover, any

existing PR filters can be used for the first stage—it is only

required to offset them from each other by one sample.

Since the first-stage filters do not need to satisfy approximately

the conditions (10)–(11), they can be the same length as those

used for a real wavelet transform (the filters for the following

stages will be somewhat longer). For a two-dimensional (2-D)

wavelet transform, these filters consume about 3/4 of the total exe-

cution time, and so their length can be important for implementa-

tion efficiency.

Figure 12 illustrates the frequency responses of stages 1–4

of the dual-tree CWT. The first stage is quite far from being

analytic, but the later stages are quite close to being analytic.

For every stage after the first stage, the frequency responses

of the complex filters are close to being single sided and

are free of the unwanted lobes on the opposite side of the

frequency axis that are present in Figure 6. In this exam-

ple , h
(1)
0 (n) i s  a  Daubechies length-10 filter,

g
(1)
0 (n) = h

(1)
0 (n − 1), and gi(n), hi(n) are orthonormal solu-

tions of length 12 designed according to the algorithm of the

“Common Factor Solution” section.

SWAPPING

We saw above that the filters for the first dual-tree stage should

be different from the filters for the remaining stages. There is

another implementation detail. It was suggested in [55] that for

each stage j > 2 the filters should be interchanged  between the

upper and lower FBs. That is, the upper FB should use the filters

h0(n) and h1(n) for the even stages j = 2, 4, 6, . . . and the fil-

ters g0(n) and g1(n) for the odd stages j = 3, 5, 7, . . . .

Correspondingly, the filters in the lower FB should also alter-

nate. This scheme is illustrated in Figure 13. By alternating fil-

ters from stage to stage (except the first stage), in the cases

when |G0(e jω)| �= |H0(e lω)|, a more balanced implementation

is obtained. (The delay differences must not be swapped, even

when the filters are swapped, so an extra delay of one sample

must be included as required to keep the polarity of the half-sam-

ple delay correct at each level.)

We note, however, that use of alternating filters is not

required to achieve analytic behavior in the complex filters.

Hence, this implementation detail is less important than using a

different filter set for the first stage.

2-D DUAL-TREE CWT

ORIENTED WAVELETS

The M-D dual-tree CWT both maintains the attractive proper-

ties of the 1-D dual-tree and gains additional properties that

make it particularly effective for M-D wavelet-based signal

processing. In particular, M-D dual-tree wavelets are not only

approximately analytic but also oriented and thus natural for

analyzing and processing oriented singularities like edges in

images and surfaces in 3-D datasets.

Although wavelet bases are optimal in a sense for a large

class of 1-D signals, the 2-D wavelet transform does not pos-

sess these optimality properties for natural images [33], [112].

The reason for this is that while the separable 2-D wavelet

transform represents point-singularities efficiently, it is less

efficient for line-and curve-singularities (edges). Thus, one of

the interesting avenues in wavelet-related research has been
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the development of 2-D multiscale transforms that represent

edges more efficiently than the separable DWT. Examples

include steerable pyramids [41], [96], directional FBs and pyra-

mids [10], [31], curvelets [15], [100], and directional wavelet

transforms based on complex FBs [36], [39], [55], [57]. These

transforms isolate edges with different orientations in different

subbands, and they frequently give superior results in image

processing applications compared to the separable DWT.

The separable (row-column) implementation of the 2-D DWT

is characterized by three wavelets (see Figure 14):

ψ1(x, y) = φ(x) ψ(y) (LH wavelet), (36)

ψ2(x, y) = ψ(x) φ(y) (HL wavelet), (37)

ψ3(x, y) = ψ(x) ψ(y) (HH wavelet). (38)

The LH wavelet is the product of the low-pass function φ(·)
along the first dimension and the high-pass (actually a band-

pass) function ψ(·) along the second dimension. The HL and

HH wavelets are similarly labeled. While the LH and HL

wavelets are oriented vertically and horizontally, the HH

wavelet has a checkerboard appearance—it mixes +45° and

−45° orientations. Consequently, the separable DWT fails to

isolate these orientations.

One way to understand why the checkerboard artifact arises

in the separable DWT is to look in the frequency domain. If

ψ(x) is a real wavelet and the 2-D separable wavelet is given by

ψ(x, y) = ψ(x) ψ(y), then the Fourier spectrum of ψ(x, y) is

illustrated by the following idealized diagram:

Since ψ(x) is a real function, its spectrum must be two-sided

and hence, it is unavoidable that the 2-D spectrum contains

passbands in all four corners of the 2-D frequency plane.

Therefore, this wavelet will be unable to distinguish between

+45° and −45° spectral features, and this leads to the same

ambiguity in the space domain. 

2-D DUAL-TREE CWT

To explain how the dual-tree CWT produces oriented wavelets,

consider the 2-D wavelet ψ(x, y) = ψ(x) ψ(y) associated with

the row-column implementation of the wavelet transform, where

ψ(x) is a complex (approximately analytic) wavelet given by

ψ(x) = ψh(x) + j ψg(x). We obtain for ψ(x, y) the expression

ψ(x, y) = [ψh(x) + j ψg(x)] [ψh(y) + j ψg(y)] (39)

= ψh(x) ψh(y) − ψg(x) ψg(y)

+ j [ψg(x) ψh(y) + ψh(x) ψg(y)]. (40)

The support of the Fourier spectrum of this complex wavelet is

illustrated by the following idealized diagram:

Since the spectrum of the (approximately) analytic 1-D wavelet

is supported on only one side of the frequency axis, the spec-

trum of the complex 2-D wavelet ψ(x, y) is supported in only

one quadrant of the 2-D frequency plane. For this reason, the

complex 2-D wavelet is oriented.

If we take the real part of this complex wavelet, then we

obtain the sum of two separable wavelets

Real Part{ψ(x, y)} = ψh(x) ψh(y) − ψg(x) ψg(y). (41)

Since the spectrum of a real function must be symmetric with

respect to the origin, the spectrum of this real wavelet is sup-

ported in two quadrants of the 2-D frequency plane, as illustrated

in the following (idealized) diagram:

Real Part { } =

× =

=×

[FIG14] Typical wavelets associated with the 2-D separable DWT.
(a) illustrates the wavelets in the space domain (LH, HL, HH); (b)
illustrates the (idealized) support of the Fourier spectrum of each
wavelet in the 2-D frequency domain (the origin lies at the
center). The checkerboard artifact of the third wavelet is evident.

(a)

(b)
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Unlike the real separable wavelet, the sup-

port of the spectrum of this real wavelet

does not possess the checkerboard arti-

fact, and therefore, this real wavelet, illus-

trated in the second panel of Figure 15, is

oriented at −45°. Note that this construc-

tion depends on the complex wavelet

ψ(x) = ψh(x) + j ψg(x) being (approxi-

mately) analytic or, equivalently, on ψg(t)

being approximately the Hilbert trans-

form of ψh(t), [ψg(t) ≈ H{ψh(t)}].
Note that the first term in expression

(41), ψh(x) ψh(y), is the HH wavelet of a

separable 2-D real wavelet transform

implemented using the filters

{h0(n), h1(n)} . The second term,

ψg(x) ψg(y), is also the HH wavelet of a

real separable wavelet transform, but one that is implemented

using the filters {g0(n), g1(n)}.
To obtain a real 2-D wavelet oriented at +45°, consider now

the complex 2-D wavelet ψ2(x, y) = ψ(x) ψ(y), where ψ(y)

represents the complex conjugate of ψ(y) and, as above, ψ(x) is

the approximately analytic wavelet ψ(x) = ψh(x) + j ψg(x).

We obtain for ψ2(x, y) the expression

ψ2(x, y) = [ψh(x) + j ψg(x)]
[

ψh(y) + j ψg(y)
]

= [ψh(x) + j ψg(x)] [ψh(y) − j ψg(y)]

= ψh(x) ψh(y) + ψg(x) ψg(y)

+ j [ψg(x) ψh(y) − ψh(x) ψg(y)].

The support in the 2-D frequency plane of the spectrum of this

complex wavelet is illustrated by the following idealized diagram:

As above, the spectrum of the complex 2-D wavelet ψ2(x, y) is sup-

ported in only one quadrant of the 2-D frequency plane. If we take

the real part of this complex wavelet, then we obtain the real wavelet

Real Part{ψ2(x, y)} = ψh(x) ψh(y) + ψg(x) ψg(y), (42)

the spectrum of which is supported in two quadrants of the 2-

D frequency plane, as illustrated in the following (idealized)

diagram:

Again, neither the spectrum of this real wavelet nor the wavelet

itself possesses the checkerboard artifact. This real 2-D wavelet

is oriented at +45° as illustrated in the fifth panel of Figure 15.

To obtain four more oriented real 2-D wavelets, we can

repeat this procedure on the following complex 2-D wavelets:

φ(x) ψ(y) , ψ(x) φ(y) , φ(x) ψ(y) , and ψ(x) φ(y) , where

ψ(x) = ψh(x) + j ψg(x) and φ(x) = φh(x) + j φg(x). By taking

the real part of each of these four complex wavelets, we obtain

four real oriented 2-D wavelets, in addition to the two already

obtained in (41) and (42). Specifically, we obtain the following

six wavelets:

ψi(x, y) =
1

√
2
(ψ1,i(x, y) − ψ2,i(x, y)), (43)

ψi+3(x, y) =
1

√
2
(ψ1,i(x, y) + ψ2,i(x, y)) (44)

for i = 1, 2, 3, where the two separable 2-D wavelet bases are

defined in the usual manner:

ψ1,1(x, y) = φh(x) ψh(y), ψ2,1(x, y) = φg(x) ψg(y), (45)

ψ1,2(x, y) = ψh(x) φh(y), ψ2,2(x, y) = ψg(x) φg(y), (46)

ψ1,3(x, y) = ψh(x) ψh(y), ψ2,3(x, y) = ψg(x) ψg(y). (47)

We have used the normalization 1/
√

2 only so that the sum/

difference operation constitutes an orthonormal operation.

Figure 15 illustrates the six real oriented wavelets derived from

a pair of typical wavelets satisfying ψg(t) ≈ H{ψh(t)} .

Compared with separable wavelets (see Figure 14), these six

wavelets (which are strictly nonseparable) succeed in isolating

different orientations—each of the six wavelets are aligned

along a specific direction and no checkerboard effect appears.

Moreover, they cover more distinct orientations than the separa-

ble DWT wavelets.

Real Part { } =

=×

[FIG15] Typical wavelets associated with the real oriented 2-D dual-tree wavelet
transform.  (a) illustrates the wavelets in the space domain; (b) illustrates the (idealized)
support of the Fourier spectrum of each wavelet in the 2-D frequency plane. The absence
of the checkerboard phenomenon is observed in both the space and frequency domains.

(a)

(b)
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In addition, since the

sum/difference operation is

orthonormal, the set of

wavelets obtained from integer

translates and their dyadic

dilations form a frame (rough-

ly speaking, an overcomplete

basis) [26]. (If the 1-D wavelets

ψg(t) and ψh(t) form ortho-

normal bases, then the set

constitutes a tight frame, or a

self-inverting transform.)

REAL ORIENTED 2-D DUAL-

TREE TRANSFORM

Since the wavelets in (45)–(47)

are all separable, a 2-D wavelet

transform based on these six

oriented wavelets can be imple-

mented using two real separable

2-D wavelet transforms in paral-

lel. We call this the real oriented

2-D dual-tree wavelet trans-

form. The implementation is

simple: Use {h0(n), h1(n)} to implement one separable 2-D

wavelet transform; use {g0(n), g1(n)} to implement another.

Applying both separable transforms to the same 2-D data gives a

total of six subbands: two HL, two LH, and two HH subbands. To

implement the oriented wavelet transform, take the sum and dif-

ference of each pair of subbands. The transform is then two-times

expansive and free of the checkerboard artifact.

To clarify, suppose that the usual 2-D separable DWT

implemented using the filters {h0(n), h1(n)} is represented by

the square matrix Fhh, and suppose that the 2-D separable

DWT implemented using the filters {g0(n), g1(n)} is repre-

sented by the square matrix Fgg. (Representing a 2-D trans-

form as a square matrix calls for organizing the 2-D array of

pixels into a 1-D vector, but this reorganization is not actually

performed in the row-column implementation.) Then the ori-

ented real 2-D dual-tree wavelet transform is represented by

the rectangular matrix

F2D =
1

2

[
I −I

I I

] [
Fhh

Fgg

]
.

A (left) inverse of Fdt is then given by

F
−1

2D
=

1

2

[

F
−1

hh F
−1

gg

]

[
I I

−I I

]
.

If the two real separable 2-D wavelet transforms are orthonor-

mal transforms, then the transpose of Fhh is its inverse:

F
t
hh

· Fhh = I, and similarly Ft
gg · Fgg = I. Consequently, the

transpose of F2D is also its inverse: Ft
2D · F2D = I. That is, the

inverse of the oriented 2-D dual-tree wavelet transform can be

performed using the transpose of the forward transform.

Therefore, the transform satisfies Parseval’s energy theorem,

and the oriented wavelets form a tight frame [26].

Note that this oriented wavelet transform is nonseparable,

but it does not have the implementation complexity of a general

nonseparable transform, nor does it require a solution to a diffi-

cult design problem associated with a general nonseparable

transform. Indeed, the implementation requires only the addi-

tion and subtraction of respective subbands of two 2-D separable

real wavelet transforms; and it requires no new filter design

beyond the 1-D filter design problem of the 1-D dual-tree CWT

discussed above.

Like the 1-D dual-tree CWT, the oriented real 2-D dual-tree

wavelet transform is still a dual-tree wavelet transform and is

also two-times expansive. However, it is not in any way a com-

plex transform; the coefficients are not complex, nor should

they be interpreted as the real and imaginary parts of complex

coefficients. Therefore, while this transform has the benefit of

being oriented, it does not share the benefits of an analytic CWT

outlined in the first section. In particular, it will not be approxi-

mately shift invariant.

ORIENTED 2-D DUAL-TREE CWT

A 2-D wavelet transform that is both oriented and complex

(approximately analytic) can also be easily developed. The ori-

ented complex 2-D dual-tree wavelet transform is four-times

expansive, but it has the benefit of being both oriented and

approximately analytic. It also possesses the full shift-invariant

properties of the constituent 1-D transforms. To develop this

transform, consider taking the imaginary part of (40) to obtain

[FIG16] Typical wavelets associated with the oriented 2-D dual-tree CWT. (a) illustrates the real part
of each complex wavelet; (b) illustrates the imaginary part; and (c) illustrates the magnitude.

(a)

(b)

(c)
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Imag Part{ψ(x, y)} = ψg(x) ψh(y) + ψh(x) ψg(y). (48)

The ( idealized) support of  the spectrum of

Imag Part{ψ(x, y)} in the 2-D frequency plane is the same as

the spectrum of the real part in (41), and therefore, the real

2-D wavelet in (48) is also oriented at −45°. Note that the

first term of (48), ψg(x) ψh(y), is the HH wavelet of a separa-

ble real 2-D wavelet transform implemented using the fil-

ters {g0(n), g1(n)} on the rows, and the filters {h0(n), h1(n)}
on the columns of the image. Similarly, the second term,

ψh(x) ψg(y) , is also the HH wavelet of a real separable

wavelet transform, but one implemented using the filters

{h0(n), h1(n)} on the rows and {g0(n), g1(n)} on the

columns. Likewise, we consider also the imaginary parts of

ψ(x) ψ(y), φ(x) ψ(y), ψ(x) φ(y), φ(x) ψ(y), and ψ(x) φ(y);

where ψ(x) = ψh(x) + j ψg(x) and φ(x) = φh(x) + j φg(x) .

We then obtain six oriented wavelets given by 

ψi(x, y) =
1

√
2
(ψ3,i(x, y) + ψ4,i(x, y)), (49)

ψi+3(x, y) =
1

√
2
(ψ3,i(x, y) − ψ4,i(x, y)) (50)

for i = 1, 2, 3, where the two separable 2-D wavelet bases are

defined as:

ψ3,1(x, y) = φg(x) ψh(y), ψ4,1(x, y) = φh(x) ψg(y), (51)

ψ3,2(x, y) = ψg(x) φh(y), ψ4,2(x, y) = ψh(x) φg(y), (52)

ψ3,3(x, y) = ψg(x) ψh(y), ψ4,3(x, y) = ψh(x) ψg(y). (53)

The six real-valued wavelets in (49)–(50) are oriented for the

same reason the real-valued wavelets of (43)–(44) are oriented.

However, a set of six complex wavelet can be formed by using

wavelets (43)–(44) as the real parts and wavelets (49)–(50) as the

imaginary parts. Figure 16 illustrates a set of six oriented com-

plex wavelets obtained in this way. The real and imaginary parts

of each complex wavelet are oriented at the same angle, and the

magnitude of each complex wavelet is an approximately circular

bell-shaped function.

The matrix representation of the oriented complex 2-D dual-

tree wavelet transform clarifies the implementation of the trans-

form. Let the square matrix Fgh denote the 2-D separable

wavelet transform implemented using gi(n) along the rows and

hi(n) along the columns, and let Fhg denote the usage of hi(n)

along the rows and gi(n) along the columns. Then the oriented

complex 2-D dual-tree wavelet transform is represented by the

rectangular matrix

FO2D =
1

√
8









I −I

I I

I I

I −I

















Fhh

Fgg

Fgh

Fhg









.

A (left) inverse of F2D is then given by

F
−1
O2D =

1
√

8

[

F
−1
hh

F
−1
gg F

−1
gh

F
−1
hg

]









I I

−I I

I I

I −I









.

(54)

If the individual wavelet transforms are orthonormal trans-

forms, then the inverse in (54) is exactly the transpose of the

forward transform, and it therefore represents a tight frame.

If the vector x represents a real-valued image, then

w1 =
1

2

[

I −I

I I

] [

Fhh

Fgg

]

x

represents the real part of the oriented complex transform and

w2 =
1

2

[

I I

I −I

] [

Fgh

Fhg

]

x

represents the imaginary part. In this implementation, the real

and imaginary parts are stored separately. The complex wavelet

coefficients are w1 + j w2.

If the transform is applied to a complex-valued image, then

the complex coefficients should be formed explicitly as follows:

FC2D =
1

4









I j I

I j I

I −j I

I −j I

















I −I

I I

I I

I −I

















Fhh

Fgg

Fgh

Fhg









and

F
−1
C2D =

1

4

[

F
−1
hh

F
−1
gg F

−1
gh

F
−1
hg

]

×









I I

−I I

I I

I −I

















I I

I I

−j I j I

−j I j I









.

Note that the oriented 2-D dual-tree CWT (applied to real or

complex data) requires four separable wavelet transforms in par-

allel, and so it is no longer strictly a dual-tree wavelet transform.

However, we still refer to it as such for convenience and because

it is derived from the 1-D dual-tree CWT. Similarly, while the

wavelets are oriented, approximately analytic, and nonseparable,

the implementation is still very efficient, requiring only the

addition and subtraction of respective subbands of four 2-D sep-

arable wavelet transforms.

LINKS WITH THE 2-D GABOR TRANSFORM

Gabor analysis is frequently used in image processing and pat-

tern analysis. A 2-D Gabor function is a 2-D Gaussian window
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multiplied by a complex sinusoid

f(x, y) = e−((x/σx)
2+(y/σy)

2) e−j (ωx x+ωy y).

Gabor functions are optimally concentrated in the space-

frequency plane. Certain image analysis algorithms use Gabor

functions as the impulse response of a set of 2-D filters [40].

By varying the parameters ωx and ωy, the orientation of the

Gabor function can be adjusted; by varying σx and σy the spa-

tial extent and aspect ratio of the function can be adjusted.

Some Gabor-based image processing algorithms are designed

to use both magnitude and phase information of Gabor-fil-

tered images.

The 2-D dual-tree wavelets illustrated in Figure 16 resemble 2-

D Gabor functions to some degree. However, in contrast to analy-

sis by Gabor functions, the 2-D dual-tree CWT is based on FIR FBs

with a fast invertible implementation. A typical Gabor image analy-

sis is either expensive to compute, is noninvertible, or both. With

the 2-D dual-tree CWT, many ideas and techniques from Gabor

analysis can be leveraged into wavelet-based image processing.

The oriented complex wavelets illustrated in Figure 16 also

resemble to some degree the set of 2-D functions computed by

Olshausen and Field [75]. They proposed that parts of biological

visual systems are based on the efficient representation of natural

images by an overcomplete set of 2-D functions. They proposed an

optimality criterion based on sparsity, developed an iterative

numerical algorithm, and obtained as a solution a remarkable set of

2-D functions exhibiting interesting properties: the functions are

mostly well oriented and occur at various scales. Their result con-

firms to some degree the notion that oriented wavelet and wavelet-

like transforms are natural for image processing applications.

EXTENSIONS TO HIGHER DIMENSIONS

The dual-tree CWT can be extended to higher dimensions than

two using the procedure described above. In the d-dimensional

case, the oriented dual-tree real wavelet transform is expansive

by 2d−1; the oriented CWT is expansive by 2d. Importantly, the

The DWT of (1)–(3) is intimately intertwined with the iterated

two-band FB tree structures of Figure 24 [68]. The forward DWT,

implemented with the analysis FB of Figure 24(a), computes the

scaling and wavelet coefficients c(n) and d(j, n). The input signal

is the uniformly spaced samples of a continuous-time signal xa(t)

[x(n) = xa(nT)] or a prefiltered version of them [104]. In many

(perhaps most) applications, x(n) is the discrete data itself. For

the inverse DWT, the scaling and wavelet coefficients are input

to the synthesis FB of Figure 24(b) to produce the signal y(n).

The wavelet coefficients d(j, n) in Figure 24 are labeled so that

the coarsest scale is denoted by j = 0 and j increases for finer

scales. In the continuous-time limiting case, the scale index j

increases to infinity.

Here we denote the analysis filters

by h0(n) and h1(n), and the synthe-

sis filters by ̃h0(n) and ̃h1(n). For the

analysis and synthesis FBs to repre-

sent a forward and inverse wavelet

transform, it is necessary that the

perfect reconstruction (PR) condi-

tion be satisfied: y(n) = x(n), or

more generally y(n) = x(n − no).

Assuming that the analysis and

synthesis filters are real FIR filters,

the perfect reconstruction condi-

tion can be satisfied if h0(n) ∗ h̃0(n)

is a low-pass halfband filter [74],

[99], [111]. Specifically, if we define

the product filter

p(n) := h0(n) ∗ h̃0(n)

then for perfect reconstruction

(with a delay of no samples), it is

necessary that

p(2 n + no) = δ(n) =

{
1, n = 0
0, n �= 0

(55)

where the two high-pass filters are given by

h1(n) = (−1)n+d h̃0(n − d), (56)

h̃1(n) = −(−1)n+d h0(n + d) (57)

and d is an even (or odd) integer when no is an odd (or even)

integer. When no is odd, d can be zero, which simplifies the

expressions for the high-pass filters. 

Taking the discrete-time Fourier transform (DTFT), an equiva-

lent condition in terms of the filter frequency responses is

[FIG 24] Filter bank trees implementing the (a) forward (analysis) and (b) inverse
(synthesis) DWT.
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checkerboard artifact of the conventional separable DWT

becomes ever more serious in higher dimensions.

Correspondingly, the gain provided by using the oriented

wavelet transform grows with the dimension d. The 3-D dual-

tree wavelet transforms shows promise for processing medical

volume data and video sequences [90]. Application of complex

and oriented 3-D wavelet transforms to seismic analysis is

described in [109]. A higher-D generalization of the CWT to a

hyper-CWT (based on quaternions and octonions) has been

introduced in [17]–[19].

USING THE DUAL-TREE CWT

The key advantages of the dual-tree CWT over the DWT are its

shift invariance and directional selectivity. This means that the

squared magnitude of a given complex wavelet coefficient pro-

vides an accurate measure of spectral energy at a particular

location in space, scale, and orientation. It also means that

CWT-based algorithms will automatically be almost shift

invariant, thus reducing many of the artifacts of the critically

sampled DWT. Here, we illustrate some additional attractive

properties of the CWT along with some prototypical applications.

NEAR SHIFT INVARIANCE

One way to illustrate the near shift invariance of the dual-tree

CWT is to observe how the projection of a signal onto a certain

scale varies as the signal translates. The projection of a signal

onto scale j can be computed by reconstructing the signal from

only the wavelet coefficients in subband j. Figure 17(a) shows a

simple pulse signal x(n) and its reconstruction from the wavelet

coefficients at the third scale level of the critically sampled DWT

and the dual-tree CWT. Figure 17(b)shows the same signal

translated by three samples and the corresponding reconstruc-

tions from level 3. Comparing Figures 17(a), (c), (e) and (b), (d),

(f), we see that the DWT-reconstructed signal varies significantly

with translations of the signal. However, the CWT-reconstructed

signal maintains its shape, illustrating the near shift-invariance

of the dual-tree CWT. This property of the CWT greatly simpli-

fies wavelet-based modeling, processing, and other applications.

∣

∣H0

(

e jω
)

∣

∣

2 +
∣

∣H1

(

e jω
)

∣

∣

2 = 2. (58)

Figure 25 illustrates 
∣

∣H0

(
e jω

) ∣

∣ and 
∣

∣H1

(
e jω

) ∣

∣ of the low-pass

and high-pass Daubechies filters of length 10 [27].

Since the analysis FB does not expand the total data rate, we

say that it is critically sampled. Consequently, for finite length

input data, the analysis FB can be viewed as a linear transfor-

mation with a square real matrix F taking the vector x of sig-

nal samples to the vector w of scaling and wavelet coefficients

via w = Fx. When the transform is perfect reconstruction, we

have x = F−1w.

For an orthonormal wavelet transform, the transform matrix F

satisfies F · Ft = Ft · F = I; i.e., the transpose of F is also its

inverse. [When F is complex, then it represents a unitary trans-

form with F · F∗ = F∗ · F = I, where F∗ is the conjugate

(Hermitian) transpose of F.] It can be shown that the analysis

and synthesis FB represent an orthonormal transform if the syn-

thesis filters are the time-reversed versions of the analysis filters:

h̃0(n) = h0(L − n) and ̃h1(n) = h1(L − n) for some L. In this case,

the product filter p(n) is the autocorrelation of h0(n).

Additional constraints on the filters can force orthogonality

to low-order polynomials (vanishing moment conditions

[27]), which is useful for representing smooth and piecewise

smooth signals, and finite time support, i.e., that the wavelet

equals zero outside of some time interval.  Finite support is

extremely useful for wavelet-based signal processing, since it

limits the extent to which a signal feature can affect the

wavelet coefficients.

The (analysis) wavelet ψ(t) associated with these filters

is given by

ψ(t) =
√

2
∑

n

h1(n) φ(2 t − n) (59)

where φ(t) is called the scaling function and is given implicitly by

φ(t) =
√

2
∑

n

h0(n) φ(2 t − n). (60)

The synthesis wavelet and scaling functions, ψ̃(t) and φ̃(t), are

given by the same equations, but using ̃hi(n) instead of hi(n). In

the orthonormal case, the synthesis wavelet is the time-reversed

version of the analysis wavelet. Equation (60), called the dilation

equation, is a central equation in the theory of wavelet bases

and has been studied extensively since the advent of wavelet

transforms [103]. We note here that a well-defined solution to

the dilation equation exists only when h0(n) is a low-pass filter

with H0(z = −1) = 0. From  (59) and (60), the wavelets are fully

determined by the filters h0(n) and h1(n), so therefore, the

design of a wavelet ψ(t) satisfying specific properties is equiva-

lent to the design of filters hi(n) satisfying specific properties.

For example, if the filters have finite support, then so do the

wavelet and scaling function. And, if the filters have vanishing

moments, then so do the wavelet and scaling function.

[FIG25] Magnitude frequency responses 
∣

∣H0

(
ejω

) ∣

∣

(solid) and 
∣

∣H1

(
ejω

) ∣

∣ (dashed) of the real Daubechies
low-pass and high-pass filters of length 10.
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The source of the near shift invariance property can be under-

stood in two different ways. First, since the real and imaginary

wavelets are Hilbert transforms of each other (90◦ out of phase),

the real and imaginary wavelet coefficients interpolate each

other. Second, since we use two trees, the effect of the decima-

tion by two at each scale is diminished, which greatly reduces the

amount of aliasing.

The near shift-invariance of the dual-tree CWT can be quan-

tified. The measure of shift dependence defined in (5) of [57] is

based on the ratio of the energy of the aliased components of the

transfer function through a given subband to the energy of the

unaliased components. A truly shift invariant transform has the

property that the signal path through any single subband of the

transform and its inverse may be characterized by a unique z

transfer function, which is unaffected by the down and up sam-

pling within the transform.

LOCAL HILBERT TRANSFORM

The envelope of a real signal can be computed using the Hilbert

transform to create a complex-valued analytic signal; the magni-

tude is the sought envelope. However, a time- or frequency-

based Hilbert transform may produce undesired behavior

around transients of the signal due to the slow decay of the

impulse response of the ideal Hilbert transformation (61). A

local Hilbert transform can be computed in the complex wavelet

domain simply by multiplying the CWT coefficients by j. As a

bonus, the CWT-based local Hilbert transform can be efficiently

implemented by a continuously running FB. An example is

shown in Figure 18. M-D CWT-based local Hilbert transforms

have been proposed in [109] for seismic data analysis. An inter-

esting feature of CWT-based Hilbert transforms is that the tran-

sition region around zero frequency may be made arbitrarily

sharp by adding additional levels of wavelet decomposition. This

requires a negligible increase in computation cost, but it does

add extra delay.

NEAR ROTATION INVARIANCE

The directionality of the 2-D CWT renders it nearly rotation

invariant in addition to nearly shift invariant. Figure 19 illus-

trates the image obtained by reconstruction from only one level
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A fundamental problem appearing in many signal processing

and communications applications is that of extracting the

amplitude a(t) and instantaneous phase ρ(t) of a real, modu-

lated signal

x(t) = a(t) cos(ρ(t)).

Retrieval of a(t) is ill-posed when cos(ρ(t)) ≈ 0. A clever

solution sidesteps this problem by making the real signal x(t)

complex through the Hilbert transform [77] 

(Hx)(t) =
1

π

∫ ∞

−∞

x(τ )

t − τ
dτ. (61)

Note that the impulse response of the Hilbert transform is

hH(t) =
1

π t
,

which decays slowly. If the underlying amplitude function a(t)

is assumed to be relatively narrowband compared with x(t),

then the analytic signal

xa(t) = x(t) + j (Hx)(t),

where j =
√

−1, becomes

xa(t) = a(t) cos(ρ(t)) + j a(t) sin(ρ(t)) = a(t) ejρ(t).

Estimation of the magnitude a(t) is now well-posed and

straightforward via

|a(t)| = |xa(t)|.

The Hilbert transform has several useful and interesting

properties. First, x(t) and (Hx)(t) have the same magni-

tude function a(t) but phases that are shifted by 90◦ .

Second, the frequency response of the filter correspon-

ding to (61) is

HH(�) =

{−j, � > 0
0, � = 0
j, � < 0.

(62)

Thus, the overall filter corresponding to the transformation

x(t) → xa(t) suppresses negative frequencies

Ha(�) = 1 + jHH(�) =

{ 2, � > 0
1, � = 0
0, � < 0.

(63)

Since x(t) is real, its Fourier transform X(�) has conju-

gate symmetry; the filter Ha(�) produces Xa(�) = 2 X(�)

for � > 0 and sets Xa(�) = 0 for � < 0. Note that due to

the discontinuity of HH(�) at � = 0 a transition band

must be allowed in practice. Third, whenthe phase func-

tion is linear such that ρ(t) = �0 t , a time shift of the

real signal manifests itself as a time shift of the ampli-

tude and a phase shift of the phase. That is,  if

y(t) = x(t − t0), then

ya(t) = xa(t − t0) = a(t − t0) ejρ(t) e−j�0t0 .

The definitions of Hilbert transform and analytic signal are

similar for discrete-time signals.

THE HILBERT TRANSFORM AND ANALYTIC SIGNAL
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of the real DWT and dual-tree CWT for a test image with a sharp

edge on a hyperbolic trajectory. The ringing and aliasing arti-

facts in the DWT coefficients that change with the edge orienta-

tion are not present in the CWT coefficients.

IMAGE ROTATION

While there are more direct methods for image rotation (via image

interpolation in the pixel domain) it is interesting to note that it is

possible to do this in the wavelet domain using the dual-tree CWT.

This relies on the uniqueness of the z transfer functions with shift,

mentioned previously, and the resulting interpolability of each

subband. By shifting the complex coefficients in each subband

independently, we can rotate an image by small angles. This is

achieved by a band-limited interpolation process, in which the

complex coefficients a) are first derotated by the band center fre-

quency, b) are then interpolated using the

MATLAB command interp2, and c) are

then rerotated back up to their original

frequency range. For example, Figure 20

illustrates the Barbara image and a 5.7◦

(0.1 radians) rotated version. Note the

blurring effects in the corners where there

would be undefined pixels in a space-

domain rotation scheme. This technique

can also be used to achieve other arbitrary

smoothly varying displacements, provided

that any rotation components are small

enough that there is little energy transfer

between directional subbands (i.e., less

than about 10°).

ESTIMATING IMAGE

GEOMETRICAL STRUCTURE

The shift and rotation invariance proper-

ties of the CWT can also be harnessed to

compute accurate and efficient estimates

of the geometrical structure in images,

namely the strength, orientation, and

offset of image edges, ridges, and other

singularities.

Consider the edge segment depicted

in Figure 21(a), and fix the scale of the

CWT so that the wavelets have roughly

this support size. Then, as the orienta-

tion θ and offset r of the edge change,

so do the magnitude and phase of the

CWT coefficients [57], [81], and [113].

In particular, as we see from Figure

21(b) the magnitudes of the CWT coef-

ficients peak as the edge orientation θ

approaches their orientation; we can

estimate the edge orientation to within

approximately 2◦ error by simply inter-

polating between these response curves

[81]. Moreover, the edge offset r can be

estimated directly from the phase of the CWT coefficient with

largest magnitude. Finally, this same largest coefficient indi-

cates the strength of the edge. Figure 22 illustrates this proce-

dure on a test image.

The related problem of predicting the phase of a complex

coefficient from one scale to the next has been addressed for 1-D

signals in [82] and [117].

ESTIMATING LOCAL DISPLACEMENT

Local displacement (motion) between two images can be esti-

mated from the change of phase of CWT coefficients from one

image to the next. As in the single image case in the previous

section, at each position and orientation, the change �φd of

the phase of a complex wavelet coefficient is approximately lin-

early proportional to the displacement in a direction orthogonal
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[FIG17] A signal x(n) and its shifted version x(n − 3) (a), (b) and its reconstruction from
wavelet coefficients at scale level 3 of the real DWT (c), (d) and dual-tree CWT (e), (f). The
CWT is more nearly shift-invariant than the DWT.
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to the subband orientation. From the six �φd values (one for

each subband), a best-fit displacement vector and associated

confidence ellipse can be estimated. Propagation of vectors

from coarse to fine scales can then provide resilience to aper-

ture problems. Further details are given in [19], [67], [81],

and [113]. It is also appropriate to use more complicated

strategies for phase-based displacement estimation with the

CWT such as in [47].

DENOISING

Basic wavelet-based image denoising algorithms use the DWT

and hard or soft thresholding. Substantial performance

improvements can be obtained through other transforms (such

as the undecimated DWT [23], [63], steerable pyramid [95], or

curvelet transform [100]) and through more effective, possibly

adaptive, nonlinearities based on statistical models for the

wavelet coefficients [24], [72], [78].

The CWT can give a substantial performance boost to

DWT noise reduction algorithms. When thresholding the

complex-valued coefficients of the CWT it is typically

more effective to apply the nonlinearity to the magnitude

rather than to the real and imaginary parts separately.

Since the coefficient magnitudes are slowly varying and

free of aliasing distortion, this results in a nearly shift-

invariant denoising algorithm. Also, denoising algo-

rithms based on statistical models of wavelet coefficients

can be more effective for the CWT than for the real DWT

because the magnitudes of the coefficients are more

strongly dependent in interscale and intrascale neighbor-

hoods [82], [83].

In this example, the 512 × 512 8-bit gray-scale Barbara

image was corrupted by additive Gaussian noise with

σn = 15. Denoising with the data-driven locally adaptive

bishrink algorithm of [91] was performed using both the crit-

ically sampled separable DWT and the dual-tree CWT. The

peak signal to noise ratios for this noise level are 29.85 dB

and 31.27 dB, respectively. Cropped portions of the images

are illustrated in Figure 23. The improved performance from

using directionally selective and shift-invariant filters is

clear. The effective performance of several other denoising

algorithms using the CWT have also been described [22],

[83], and [118].

Volume and video denoising can be performed with a 3-D

version of the dual-tree CWT [12], [90], [93]. 

ADDITIONAL APPLICATIONS

The dual-tree CWT is suitable for numerous other applications

as well, including image segmentation [83], [92], classification

[80], deconvolution [29], [51], image sharpening [94], motion

estimation [67], coding [79], [97], [115], watermarking [35],

[66], texture analysis and synthesis [28], [46], [48], feature

extraction [60], [65], seismic imaging [73], and the extraction of

evoked potential responses in EEG signals [16]. CWTs (not

specifically the dual-tree CWT) have been used recently for

measuring image similarity [116].

RELATED WORK

There has been substantial work on transforms that are some

combination of multiscale, directional, complex, analytic, nearly

shift invariant, and overcomplete. The following gives a brief but

nonexhaustive overview of some of them. 

(APPROXIMATELY) ANALYTIC CWTS

In their seminal work on the continuous wavelet transform,

Grossman and Morlet emphasized complex analytic (exact

and approximate) wavelets [45]. Indeed, the Morlet wavelet is

complex valued and approximately analytic. This work in

continuous wavelet transforms was continued by Antoine [6],

[7] and used for the development of directional wavelets by

Vandergheynst et al. [110]. Analytic wavelet transforms and

[FIG18] The dual-tree CWT provides a way to perform a local
appoximate Hilbert transform. The FFT gives similar results, but it
requires an overlapped block implementation for real-time data,
whereas the dual-tree CWT can be implemented as a
continuously running FB. In each case, the input waveform,
x(t) = t exp(−0.2t) cos(0.8t) for t = 0, 1 . . . 40, is shown as a
blue stem plot, and its local Hilbert transform, y(t), as a green
dashed stem plot. The ‘true’ envelope, t exp(−0.2t), is shown as
a cyan dashed line and the envelope extracted by |x(t) + jy(t )| is
shown as a red solid line.
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discrete implementations were also

used by Abry and Flandrin [3]–[5] for

turbulence analysis, where the quad-

rature properties of the wavelets

were exploited.

COMPLEX FBS

Complex forms of the DWT were men-

tioned by Daubechies [27], and com-

plex Daubechies wavelets were studied

in depth by Lina [11], [64]. Other

complex-valued FBs have been devel-

oped by Gao, Nguyen, and Strang

[42], [123]. However, while these

solutions are complex valued, they are

not approximately analytic, as noted

in the “CWT via DWT post-process-

ing” section.

DIRECTIONAL TRANSFORMS

Bamberger,  Smith,  Hong, and

Rosiles have developed critically

sampled directional 2-D FBs [10],

[49], and [84]. Do and Vetterli have

developed the contourlet transform

which can be critically sampled or

slightly over-complete [30]–[32].

The curvelet transform, developed

by Candes and Donoho, is an over-

complete directional multiscale

transform that is very effective for

representing edges in images [15]

and [100].

GENERALIZATIONS OF THE DUAL-

TREE CWT

Chaux et. al. have developed the M-

band dual-tree CWT, generalizing

the delay condition for the Hilbert

pair  property in [21].  Gopinath

introduced the phaselet transform

[43], where more than two critical-

ly sampled DWTs are used together.

In this transform, each of M low-

pass filters are offset from each

other by increments of 1/M sam-

ples, a generalization of the half-

sample delay condition. Another

generalization is the double-densi-

ty dual-tree CWT [89] where two

over-sampled (double-density [86]) DWTs are used togeth-

er. This is further generalized in [44] and [2]. Another

type of generalization in higher dimensions is the hyper-

CWT [17]–[19]. The RI-spline is also a recently developed

CWT [52].

APPROXIMATELY ANALYTIC COMPLEX DIRECTIONAL

TRANSFORMS

The closest alternative to the dual-tree CWT is probably the

complex (approximately) analytic form of the steerable

pyramid [95] and [96]. Simoncelli has used this transform

[FIG21] (a) Image segment with an edge singularity at orientation θ and offset from center
r. (b) Magnitude responses of the CWT coefficients of this segment as a funtion of θ.
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[FIG19] Near rotation invariance of the CWT. (a) Test image with sharp edge on hyperbolic
trajectory.  (b) When the test image is reconstructed from one level of the DWT coefficients,
ringing and aliasing effects are apparent. (c) The reconstruction of the image from one level
of the CWT does not exhibit these phenomena.
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[FIG20] CWT-based image rotation by 5.7º by independently phase shifting the complex
wavelet coefficients in each subband.
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for image denoising and texture analysis

and synthesis. Malvar has described com-

plex lapped transforms [70] and [71].

Similar transforms have been used for

motion estimation [119] and [120].

Other recent research activity in the

development of complex directional mul-

tiscale transforms has focused on the

development of critically sampled (nonre-

dundant) implementations, for example

by Ates and Orchard, Hua, Spaendonck,

and Fernandez [8], [9], [39], [50], [108],

[109]. In a critically sampled transform, it

is difficult to achieve the near shift-

invariance of the dual-tree CWT.

However, such transforms are promising

for image compression.

CONCLUSIONS

The dual-tree  CWT is a valuable enhance-

ment of the traditional real wavelet trans-

form that is nearly shift invariant and, in

higher dimensions, directionally selective.

Since the real and imaginary parts of the

dual-tree CWT are, in fact, conventional

real wavelet transforms, the CWT benefits

from the vast theoretical, practical, and

computational resources that have been developed for the

standard DWT. For example, software and hardware developed

for implementation of the real DWT can be used directly for

the CWT. But, in addition, the magnitude and phase of CWT

coefficients can be exploited to develop new effective wavelet-

based algorithms, especially for applications for which the

DWT is unsuited or underperforms.

MATLAB software for the dual-tree complex wavelet transform

(and related algorithms) is available at the following locations on

the web: http://taco.poly.edu/WaveletSoftware/, http://www-

sigproc.eng.cam.ac.uk/∼ngk/, and http://dsp.rice.edu/.
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