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Abstract—Aspects of the duality between the information-em-
bedding problem and the Wyner–Ziv problem of source coding
with side information at the decoder are developed and used to es-
tablish a spectrum new results on these and related problems, with
implications for a number of important applications. The single-
letter characterization of the information-embedding problem is
developed and related to the corresponding characterization of the
Wyner–Ziv problem, both of which correspond to optimization of
a common mutual information difference. Dual variables and dual
Markov conditions are identified, along with the dual role of noise
and distortion in the two problems.

For a Gaussian context with quadratic distortion metric, a
geometric interpretation of the duality is developed. From such
insights, we develop a capacity-achieving information-embedding
system based on nested lattices. We show the resulting encoder–de-
coder has precisely the same decoder–encoder structure as the
corresponding Wyner–Ziv system based on nested lattices that
achieves the rate-distortion limit.

For a binary context with Hamming distortion metric, the in-
formation-embedding capacity is developed, along with its rela-
tionship to the corresponding Wyner–Ziv rate-distortion function.
In turn, an information-embedding system for this case based on
nested linear codes is constructed having an encoder–decoder that
is identical to the decoder–encoder structure for the corresponding
system that achieves the Wyner–Ziv rate-distortion limit.

Finally, based on these results, a simple layered joint
source–channel coding system is developed with a perfectly
symmetric encoder–decoder structure. Its application and per-
formance is discussed in a broadcast setting in which there is a
need to control the fidelity experienced by different receivers.
Among other results, we show that such systems and their mul-
tilayer extensions retain attractive optimality properties in the
Gaussian-quadratic case, but not in the binary-Hamming case.

Index Terms—Coding with side information, data hiding, digital
watermarking, hybrid coding and transmission, information
embedding, joint source–channel coding, Slepian–Wolf coding,
Wyner–Ziv coding.
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I. INTRODUCTION

I
NFORMATION embedding concerns the reliable transmis-

sion of information embedded into a host signal, and has

an increasingly wide array of applications, from digital water-

marking, data hiding, and steganography, to backward-compat-

ible digital upgrading of communications infrastructure [7], [6].

Likewise, source coding with side information has a growing

spectrum of applications, ranging from new low-power sensor

networks to the upgrading of legacy communications infrastruc-

ture [28], [1].

This paper develops the natural duality between information

embedding, which can be reinterpreted as a problem of channel

coding with side information at the encoder [7], and the problem

of source coding with side information at the decoder, the most

important instance of which is the well-known “Wyner–Ziv”

problem [34]. Exploiting this duality, several new results and

interesting insights with practical implications are obtained, in-

cluding several in the context of mixed analog–digital transmis-

sion.

Fig. 1 depicts the information-embedding scenario of interest.

The -dimensional vector is the “host” signal, and the mes-

sage is the information to be embedded, which is indepen-

dent of . The encoder uses both the host and the message to

create a “composite” signal that is suitably close to the host

. The composite signal passes through a probabilistic channel,

the output of which, , is reliably decoded to retrieve the em-

bedded message .1 In our model for information embedding,

each element of the host is drawn in an independent and iden-

tically distributed (i.i.d.) manner from the distribution ,

and the channel is memoryless and characterized by the transi-

tion density .2 The specific information-embedding

problem is as follows: if the distortion between the host and

composite signal is constrained to be at most , what is the max-

imum rate of reliable communication that can be supported

by the embedding given a particular transmission channel?

The dashed line in Fig. 1 represents a less interesting variant

of information embedding whereby the host is also known to

the decoder. Wolfowitz [31] originally derived capacity for this

system without the distortion constraint, i.e., capacity with side

information at the encoder and decoder. For the purposes of this

1The decoder can also extractWWW from YYY , thereby reconstructing the original
host to within distortion d.

2For watermarking problems, a variety of attack channel models of the form
considered in [23], [7], and [12] are also of particular interest, although we do
not consider such channels in this paper.
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Fig. 1. The information-embedding model. The signalsXXX ,M ,WWW , andYYY are,
respectively, the host, embedded information, composite signal, and channel
output. The dashed line represents side information at the decoder, which may
or may not be present, depending on the application.

Fig. 2. The source coding with side information model. The signals YYY , M ,
XXX , and WWW are respectively the source, digital encoding, channel output, and
decoded source. The dashed line represents side information at the encoder,
which may or may not be present, depending on the application.

paper, we refer to the case where the host is also known at the de-

coder as “private” information embedding, and to the case where

the host is not also known at the decoder as “public” informa-

tion embedding. While we examine both forms of embedding,

we emphasize public information embedding in our develop-

ment, and when there is no risk of confusion we use the term

“information embedding” generically to refer to this case.

Fig. 2 depicts the source coding with side information

problem of interest. The -dimensional source vector passes

through a probabilistic channel, producing the side information

. The encoder produces the message from the source

that the decoder uses in conjunction with to produce a

suitably accurate reconstruction of . In our model for

source coding with side information, the source is drawn i.i.d.

from , and the channel is memoryless with transition

density . For this problem, the question is: given a

particular side information channel, what is the minimum rate

that is required at the output of the encoder to ensure that

distortion between the source and reconstruction is at most ?

The dashed line in Fig. 2 represents a less interesting variant

of the source coding with side information problem whereby

the side information is also known to the encoder. When the

side information is also known to the encoder, achievable perfor-

mance is easily characterized in terms of a familiar conditional

rate-distortion function [5], [21]. When the side information is

not also known to the encoder, we have the problem consid-

ered by Wyner and Ziv [34]. While we develop dualities associ-

ated with both forms of the source-coding problem, we empha-

size the Wyner–Ziv version, and when there is no risk of confu-

sion we describe both versions generically as the “Wyner–Ziv

problem.”

As Figs. 1 and 2 suggest, there is a one-to-one correspon-

dence between variables in the information-embedding and

Wyner–Ziv problems. Indeed, our notation is chosen so as to

identify the correspondence between variables in the two prob-

lems that arises out of the duality, as we will discuss.3 For the

moment, it suffices to observe that the information-embedding

encoder has exactly the same input variables ( and ) and

output variable ( ) as the decoder for the Wyner–Ziv problem.

Furthermore, the information-embedding decoder has the same

input variable ( ) and output variable ( ) as the encoder for

the Wyner–Ziv problem. As we illustrate in some key contexts

of interest, this is not a coincidence: the two problems are, in

fact, duals in the sense that an optimal encoder–decoder for one

problem is an optimal decoder–encoder pair for the other.

In developing the deeper connection, we show that, in gen-

eral, the capacities and rate-distortion limits for the two prob-

lems are closely related, and can be expressed in terms of an

optimization over the same mutual information difference with

respect to the free parameters in each problem. Moreover, we

show that distortion and channel noise play dual roles in the two

problems.

In addition to our own work [1], [6], [2], there has been

growing interest in aspects of the subject of this paper in recent

times, and an expanding set of results and insights. Su, Eggers,

and Girod [30] consider the Gaussian-quadratic special case

and have a similar geometric interpretation to ours. Chiang

and Cover [9], [17], [16] expand the scope of the duality

beyond the information-embedding context. Chou, Pradhan,

and Ramchandran describe aspects of the duality in [10] and

investigate it further in [24], [25].

An outline of the paper is as follows. After establishing

some basic notation in Section II, we develop and relate the

basic single-letter characterizations for the two problems

in Section III. For the information-embedding problem, we

generalize a result of Gel’fand and Pinsker to include a

distortion constraint and an arbitrary metric; other versions

of this problem are considered by Moulin and O’Sullivan

[23]. In Appendixes I and II, we provide the proofs for the

coding theorems for public and private information embedding,

respectively, emphasizing the duality with the corresponding

Wyner–Ziv problem. We then discuss the duality between

the resulting mutual information optimization and Markov

conditions for the information-embedding and Wyner–Ziv

problems. We further examine the dual relationship between

distortion and channel noise in the two problems, developing

the correspondence between the noise-free and distortion-free

special cases of each problem. Among other insights, we

discuss the resulting duality between a version of Slepian–Wolf

encoding and information embedding for noise-free channels.

Section IV examines the duality further in the case of

Gaussian contexts with a quadratic distortion metric. In this

case, we relate the information embedding capacity and Wyner–

Ziv rate-distortion function geometrically, which emphasizes

the dual relationship between distortion and channel noise

in the two problems. We then proceed to build deterministic

information-embedding systems based on nested lattices that

achieve capacity at high signal-to-distortion ratio (SDR). Such

systems are also developed independently by Erez, Shamai, and

Zamir in [18]. We show how the resulting encoder–decoder pair

3Throughout this paper it will be clear through context whether a variable
to which we refer corresponds to the information-embedding problem or the
Wyner–Ziv problem.
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has the identical structure as the associated decoder–encoder

pair for a deterministic Wyner–Ziv embedding system based

a nested lattices, which achieves the rate-distortion limit at

high signal-to-noise ratio (SNR), and which is a nondithered

version of the Wyner–Ziv solution developed by Zamir and

Shamai [36]. We further develop, in Appendix III, a Wyner–Ziv

code based on nested lattices with dithering that achieves the

rate-distortion limit at any SNR.

Section V examines the duality further in the case of binary

contexts with a Hamming distortion metric. In this case,

we use our results in Section III to compute the informa-

tion-embedding capacities (Appendix IV), and highlight the

close relationship—between both the proofs and the final

expressions—to the corresponding Wyner–Ziv rate-distortion

function developed in [34]. We then proceed to build deter-

ministic information-embedding systems for this case based

on nested linear codes that achieve capacity, and show how

the resulting encoder–decoder pair has the identical structure

as the associated decoder–encoder pair developed in [28] for

achieving the Wyner–Ziv rate-distortion limit. In the noise-free

special case, the information-embedding system we construct

is the dual of Wyner’s Slepian–Wolf code construction [32].

Finally, in Section VI, we exploit our results in the devel-

opment of a new class of layered joint source–channel coding

systems from the interconnection of information embedding

and Wyner–Ziv subsystems. The new systems can be used in

a broadcast setting in which one wants to control the fidelity

available to different groups of users. We show that, with our

construction, no price need be paid for this extra functionality

in the Gaussian-quadratic case, but that there is a cost in the

binary-Hamming case. A unique feature of our coding system

is that the encoder and decoder share identical structure.

Section VII contains some concluding remarks.

II. NOTATION

In terms of general notation, the components of a length

random vector are denoted . In turn, we use

to denote a vector comprised of the th through th components

of , where if the subscript is omitted, is implicitly ; whence

. A script is used to denote the alphabet of

the random variable . Except when otherwise indicated (i.e.,

in Gaussian scenarios), all random variables in this paper take

on values from finite alphabets. We use to denote

a general distortion measure. The expressions , , and

denote Shannon’s mutual information, entropy, and con-

ditional entropy, respectively. All logarithms in this paper are to

be interpreted base- .

III. SINGLE-LETTER CHARACTERIZATIONS OF CAPACITY

AND RATE DISTORTION

In this section, we describe the single-letter expressions for

the distortion-constrained public information embedding ca-

pacity and the Wyner–Ziv rate-distortion function. We compare

these expressions to those when the host (respectively, source)

is known at the decoder (respectively, encoder).

Fig. 3. Illustration of the variable relationship in the single-letter
characterization of information embedding, where U is the auxiliary
random variable.

A. Public Information Embedding Capacity

The capacity of public information embedding subject to

an embedding distortion constraint is denoted . It is

defined as the maximum achievable rate for communicating

a message such that is arbitrarily small and

is arbitrarily close to for sufficiently

large .

The following result is a generalization of that of Gel’fand

and Pinsker [20] and Heegard and El Gamal [22], which con-

sider the problem without a distortion constraint.

Claim 1: For general distortion measures , the ca-

pacity can be expressed in the form

(1)

where the supremum is taken over all distributions

and functions satisfying

where (2)

where is an auxiliary random variable.

The relationship between the primary and auxiliary random

variables in this single-letter characterization is depicted in

Fig. 3. To prove Claim 1, we begin by using an extension of

the reasoning in [20] to show that the rate

is achievable. The basic encoder and decoder construction is

as follows. A random codebook is generated with i.i.d.

codewords , where .

The codewords are distributed randomly into bins, where

. At the encoder, the embedded

information specifies the bin which is used to code the

source. The encoder finds the codeword in that bin that is

jointly distortion typical with the host and transmits it.4

The decoder looks for the code vector in all of that is jointly

typical with the channel output . The bin index of that code

vector is the decoded information . That this encoder and

decoder structure has the requisite properties is straightforward

as shown in [1]. It remains only to show the converse, which is

provided in Appendix I and relies on the concavity of .

Finally, observe that since is an auxiliary random variable,

the characterization of the physical channel in this problem is

such that form a Markov chain, whence

(3)

4The main difference between this achievability proof and that of [20] is that
joint distortion typicality—not just joint typicality—is required to meet the em-
bedding distortion constraint.
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B. Private Information Embedding Capacity

The corresponding result to Claim 1 for private information

embedding subject to a distortion constraint with arbitrary

metric is summarized as follows.

Claim 2: The private information embedding capacity, de-

noted , is given by

(4)

where the supremum is taken over all such that

.

A proof is provided in Appendix II. The construction for

achievability involves the use of a set of codebooks, each of

which is a capacity-achieving codebook for a particular host

value . The total achievable rate is thus the ex-

pected value of the conditional capacities over , and the av-

erage distortion is the expected value of the distortions over all

the codebooks. The converse exploits the concavity of .

The public and private information embedding capacities are

related by

(5)

where equality in (5) holds if and only if the maximizing distri-

bution for in (1) also maximizes the argument on

the right-hand side of (4), and if with this distribution

(6)

i.e., form a Markov chain.

To verify (6), we first obtain, by expanding , two

different ways using the chain rule

(7)

where is any auxiliary random variable such that (2) is sat-

isfied. Likewise applying the chain rule to we

obtain

(8)

However, from (3), the first term on the right-hand side of (8) is

zero, and since is a deterministic function of and , the

second term on the right-hand side of (8) is also zero. Thus, (8)

implies and (7) can be rewritten as

(9)

Comparing (9) with (1) and (4), we obtain the stated necessary

and sufficient conditions for the public and private embedding

capacities to be equal.

C. Rate-Distortion Function With Side Information at the

Decoder

In [34], Wyner and Ziv define the rate-distortion function with

side information at the decoder, denoted , as the min-

imum data rate at which can be transmitted such that when

is large the average distortion is ar-

bitrarily close to .

Fig. 4. Illustration of the variable relationships in the single-letter charac-
terization of source coding with side information, where U is the auxiliary
random variable.

Their main result is the following:

(10)

where the infimum is taken over all and functions

such that

is a Markov chain (11)

and

where (12)

where is an auxiliary random variable. The relationship be-

tween the primary and auxiliary random variables in this single-

letter characterization is depicted in Fig. 4.

Note that the objective functions on the right-hand sides of

(10) and (1) are identical, as occurs in the case of the duality

between source and channel coding without side information

[15]. Condition (11), i.e., and are conditionally indepen-

dent given , implies (c.f. (6))

(13)

which using (7) simplifies (10) to

(14)

The achievability proof [15] and that used for the informa-

tion-embedding problem [1] are mirrors of each other. Indeed,

the Wyner–Ziv encoder (respectively, decoder) is used in pre-

cisely the same manner as the information-embedding decoder

(respectively, encoder). Likewise, whereas the converse for in-

formation embedding relies on the concavity of , the

converse for the Wyner–Ziv problem relies on the convexity of

.

D. Conditional Rate-Distortion Function

Source coding with the side information known at the decoder

and encoder is the dual of private information embedding. As

shown by Berger [5] and Gray [21], the achievable rate is given

by the conditional rate-distortion function

(15)

where the infimum is taken over all distributions

such that .

The proof of this result mirrors the proof of private informa-

tion embedding described in Appendix II. In particular, achiev-

ability of the conditional rate-distortion function is proven by

a “switching” argument; for each , an optimal rate-dis-

tortion codebook is used to code the source samples for all

such that . The total rate is thus the expectation over

of the marginal rate-distortion functions, and the distortion is the
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expected value of the distortions over all the codebooks. Like-

wise, in the same way that the converse for private information

embedding exploits the concavity of , the converse for

the conditional rate-distortion problem exploits the convexity of

.

The Wyner–Ziv and conditional rate-distortion problems are

related by

(16)

where, as shown in [34], equality in (16) holds if and only if the

minimizing distribution for in (10) also minimizes

the objective function on the right-hand side of (15), and if with

this distribution we have (c.f. (3))

(17)

i.e., form a Markov chain.

E. Duality of Necessary and Sufficient Conditions

The relationships described in the preceding subsections re-

veal an important aspect of the duality between information em-

bedding and source coding with side information.

To summarize, with information embedding (respectively,

source coding with side information), for the embedding

capacity (respectively, rate-distortion function) to be the same

whether or not the host (respectively, side information) is

known at the decoder (respectively, encoder), the optimizing

distributions for must first be the same with

or without the signal known at the encoder (respectively,

decoder).

The duality manifests itself in the remaining necessary con-

dition. For information embedding this is the Markov condition

(6), which for the Wyner–Ziv problem is automatically satisfied

(c.f. (13)). Similarly, for the Wyner–Ziv problem, the remaining

necessary condition is the Markov constraint (17), which for the

case of information embedding is automatically satisfied (c.f.

(3)).

The Markov condition not automatically satisfied by the

problem construction may or may not be satisfied. Indeed,

in Section IV, we will see that it is for both problems in the

Gaussian-quadratic case, while in Section V we will see that it

is not for either problem in the binary-Hamming case.

Unless otherwise noted, for the remainder of this paper, we

restrict our attention to the problems of source coding with side

information known only at the decoder, and information embed-

ding with side-information known only at the encoder.

F. Noise-Free/Distortion-Free Duality

In this subsection, we examine important limiting cases of

the duality between information embedding and Wyner–Ziv

coding, corresponding to noise-free and distortion-free sce-

narios. First, we observe that distortion-free information em-

bedding and noise-free Wyner–Ziv encoding are trivial duals

- (18)

In the other limiting case—noise-free information embedding

and distortion-free Wyner–Ziv coding—the duality is more in-

teresting.

The minimum rate required for distortion-free

Wyner–Ziv coding follows immediately from an application of

the Slepian–Wolf source-coding theorem [29]. In particular,

the source can be reproduced exactly at the decoder ( )

if and only if [15, Sec. 14.4]

(19)

where the underlying density is prescribed by the

problem, so no infimum in (19) is required.

To see the duality to noise-free information embedding, we

develop the associated capacity in the sequel.

1) Noise-Free Information Embedding Capacity: The max-

imum rate that can be attained for noise-free information em-

bedding is closely related [6]. In particular, the dual result is as

follows: one can reliably embed a message in the host signal

for transmission over an error-free channel if and only if

- (20)

where the maximum in (20) is over all distributions

such that .

Equation (20) is verified as follows. We first show that, even

with the constraint in (1), the rate is achiev-

able

(21)

where we have used in the second line. Now, we

shall show that the capacity (1) cannot exceed

The third line follows since conditioning decreases entropy. The

final line arises since entropy is nonnegative.

It remains only to maximize this resulting rate

over all possible choices of . Equation (20) is ex-

pressed in terms of the equivalent maximization over

since .

IV. GAUSSIAN-QUADRATIC CASE

In this section, we examine the information embedding ca-

pacity and rate-distortion function in the case of a (continuous-

alphabet) Gaussian host and source, respectively, a memoryless

Gaussian channel, and a quadratic distortion metric. Our devel-

opment reveals the duality in the derivations of these bounds and

in the codes that achieve them.

A. Gaussian-Quadratic Information Embedding Capacity

Consider an i.i.d. Gaussian host and a

channel that adds white Gaussian noise that is
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independent of , where denotes Gaussian random

vector with mean and covariance matrix .5 The message

is embedded into , creating a composite signal such that the

mean-square embedding distortion is minimized:

. The capacity of this system is given by [14]

(22)

Costa proves this result in the context of coding for a channel

with a random state known at the encoder. Using a convenient

super-channel interpretation of information embedding, Chen

and Wornell [7] cite Costa’s expression as the information-em-

bedding capacity for the Gaussian case.

Costa first proves that the information-embedding capacity

with known at the encoder and decoder equals the expres-

sion in (22). He then proceeds to show that with no host at the

decoder, there is a test channel which achieves this capacity.

The test channel used to determine capacity defines the aux-

iliary random variable for some constant and

with zero-mean, Gaussian, and independent of , implying

that the encoding function is .

Solving for and maximizing with respect

to yields (22).

B. Gaussian-Quadratic Wyner–Ziv Rate-Distortion Function

The Wyner–Ziv rate-distortion function for a Gaussian source

with jointly Gaussian side information at the decoder is a dual to

the distortion-constrained information embedding capacity with

Gaussian host and Gaussian channel.

For jointly Gaussian and whose element pairs are

all drawn i.i.d. from the Gaussian density

, the Wyner–Ziv rate distortion function is [33]

if

if

(23)

where is the error variance in the minimum mean-square

error (MMSE) estimation of from . We can always write

the relationship between and in the form for

some , where is Gaussian with variance and independent

of . Without loss of generality, we restrict our attention to the

case .

Wyner [33] proves (23) by first showing that the conditional

rate-distortion function equals the expression in (23), mirroring

the approach used by Costa in the corresponding information-

embedding problem. He then proceeds to show that with no

side information at the encoder, there is a test channel which

achieves the same rate-distortion function, thereby finding the

Wyner–Ziv rate-distortion function.

In Wyner’s formulation, the test channel encoder simply as-

signs the auxiliary random variable to be a linear combi-

nation of the source and an independent zero-mean Gaussian

variable: . The test channel decoder function is

5We use III to denote the identity matrix.

Fig. 5. Geometric interpretation of information embedding as sphere packing
in the Gaussian-quadratic case.

also a linear function. For the special case of an additive white

Gaussian channel with SNR , the decoder function is

(24)

Note that this special-case decoder is the same as the informa-

tion-embedding encoding function for the Gaussian case.

C. Geometrical Interpretations

The duality between the information-embedding capacity and

Wyner–Ziv rate-distortion function in the Gaussian case has

a convenient geometrical interpretation, which we illustrate in

this subsection.6 In particular, we show how information em-

bedding is sphere packing about the host in signal space, while

Wyner–Ziv encoding is sphere covering about a source estimate

that is a linear function of the side information.

1) Geometry of Information Embedding: Information em-

bedding can be viewed as a sphere-packing problem, as depicted

in Fig. 5 in the high distortion-to-noise ratio (DNR) regime. To

understand this figure, note that the distortion constraint implies

that all composite signals must be contained in a sphere

of radius centered about . In coding for the channel,

we use codewords (signal points) that must be contained

within such that smaller spheres of radius about all

of the signal points have negligible overlap—each symbol will

be uniquely distinguishable at the decoder. We emphasize that

this must be true for all , so that if changes by some amount,

the positions of signal points may change, but the number of

signal points will stay the same. Signal design corresponds to

filling a sphere of radius with smaller spheres of

radius .

6A similar geometrical interpretation is given in [30].
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Fig. 6. Geometric interpretation of Wyner–Ziv coding as sphere covering in
the Gaussian-quadratic case.

With this geometrical interpretation, clearly the maximum

number of spheres that can be used is upper-bounded by the

ratio of the volumes of the large to the small spheres. Thus, the

number of codewords is bounded

(25)

From (22), we see that a capacity-achieving code will meet this

upper bound as

(26)

for large .

2) Geometry of Wyner–Ziv Encoding: Wyner–Ziv coding

can be viewed as a sphere-covering problem, as depicted in

Fig. 6 in the low DNR regime. Given a side information vector

at the decoder, an MMSE estimate of the source is ,

where is the associated MMSE estimator gain. The remaining

mean-square error about the estimate is , implying that the

source must lie in a sphere of radius about .

Moreover, the noisier the channel from to , the larger this

sphere. A Wyner–Ziv codebook for a distortion will contain

code vectors in , and is designed so that most source

sequences of length lying in are within a distance

of a codeword. Rate-distortion coding for the Gaussian case,

therefore, amounts to covering the sphere with smaller

spheres of radius , which we illustrate in Fig. 6. Clearly

the number of codewords is lower-bounded by the ratio of the

volumes of the large to the small spheres

(27)

and this lower bound is met by a code that achieves the rate-

distortion bound given by (23).

D. Geometrical Duality

The geometric interpretation of the Gaussian case shows that

the encoder (respectively, decoder) operation for information

embedding is the same as the decoder (respectively, encoder)

operation for Wyner–Ziv coding. At the information-embedding

encoder, the digital information specifies a signal point in

a sphere about a signal , and similarly, at the Wyner–Ziv de-

coder the digital information from the coded source specifies

a signal point in a sphere about the signal . A minimum-dis-

tance decoder for the information-embedding problem finds the

nearest neighbor code vector to the channel observation, which

corresponds to a decoded message index. The corresponding

Wyner–Ziv encoder finds the nearest neighbor code vector to

the source, and transmits the associated index.

Another aspect of the relationship between the infor-

mation-embedding and Wyner–Ziv problems is the duality

between the roles of noise and distortion in the two problems,

which is readily seen in our geometric interpretation of the

Gaussian case. In particular, from Fig. 6 we see that in the

Wyner–Ziv problem the radius of the large sphere is propor-

tional to , which characterizes the noisiness of the channel

in the Wyner–Ziv problem, and the radius of the smaller sphere

is proportional to . In contrast, from Fig. 5, we see that in the

case of information embedding the radius of the large sphere

is essentially proportional to , and the radius of the smaller

sphere is proportional to the standard deviation of the noise .

Note that this dual relationship between noise in one problem

and distortion in the other is consistent with our observations in

Section III-F of the duality in the characterizations of achievable

rates between the noise-free and distortion-free scenarios in the

two problems with finite alphabets.

E. Nested Lattice Code Constructions

Nested lattices can be used to construct optimum codes for

the information-embedding and Wyner–Ziv problems in the

Gaussian-quadratic scenario, as we describe in this section in

the dual cases of high SDR and high SNR, respectively. The

resulting codes are duals of one another.

Our notation is as follows. An (unbounded) -dimensional

lattice is a set of codewords such that

(28)

A minimum (Euclidean) distance decoder, which quantizes an

arbitrary signal to the nearest (in a Euclidean sense) code-

word, takes the form

(29)

where denotes the (usual) Euclidean norm. The associated

quantization error is then

(30)

The quantizer specifies the characteristic Voronoi region
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for the lattice. A Voronoi region is conveniently described in

terms of its volume , second moment , and normalized

second moment , which are given by, respectively,

(31)

When is a good lattice (i.e., constitutes a good

source–channel code, in the sphere-covering/packing sense),

is sufficiently large, and we are operating in the limit of high

resolution (high signal-to-quantization-error ), we have

the following properties.7

(GQ-1) The quantization error (30) is white and Gaussian

with zero mean and variance , and independent of

(29), the codeword to which the vector is quantized

[35].

(GQ-2) For every , the probability of a decoding error,

when and is a

zero-mean white Gaussian vector independent of

whose elements have variance [13].

(GQ-3) For all , [35].

We make use of two good lattices and , where is

nested in , i.e., .8 The associated quantizer, Voronoi

cell, volume, second moment, and normalized second moment

for the lattice are denoted , , , , and .

The lattice can be partitioned into

cosets corresponding to and its translates. As in [36], for

, we refer to the quantity as the coset

shift of with respect to the lattice . The function :

indexes the coset shifts, and the

inverse function is , i.e., .

We let denote the coset corresponding to coset shift ,

and we note that the quantizer for this coset, , takes the form

(32)

1) Nested Lattice Codes for Information Embedding: In this

subsection, we construct a nested lattice implementation of dis-

tortion-compensated quantization index modulation (DC-QIM)

[7]. The codes achieve information embedding capacity in the

limit of high SDR . For this version we avoid the use of

dither; versions that exploit dither are given in [1] and [18].

We choose our nested lattices such that

and (33)

where

(34)

Our information-embedding encoder using these lattices

takes the form of DC-QIM [7], i.e., the composite signal

is constructed from the host and the (unique) coset shift

of the message according to

(35)

7These properties are true only in the asymptotic sense, which makes them
somewhat hypothetical for any n. See [18] for a more rigorous treatment.

8The existence of pairs of good nested lattices is shown in [19], [37].

with

(36)

where is another parameter. The associated decoder produces

the message estimate as the index of the closest coset to its ob-

servation , i.e., .

We first verify that the embedding rate is arbitrarily

close to capacity, which follows from the lattice properties.

Indeed, with the message drawn uniformly from the indexes

, using Property (GQ-3) and (33), the rate of

the system is within bits of

(37)

where the last equality follows from (22).

Furthermore, with the right choice of the parameter , we can

ensure the encoder meets the distortion constraint in the regime

of interest. Indeed, defining the quantization error

(38)

and letting we have that

(39)

Applying Property (GQ-1) in the context of the lattice , we

obtain that the embedding distortion is, using (39), as desired

(40)

Finally, it is straightforward to verify that the decoder

achieves arbitrarily low error probability. Indeed

(41)

(42)

(43)

(44)

where (42) follows from (39), where (43) follows from (38),

where is as defined in (36), and where .

Now, using Property (GQ-1) in the context of lattice , we

know that , and hence , is Gaussian and independent of

. Thus using Property (GQ-2) in the context of lattice we

have from (44) that with probability at least

since .9 But , so the decoder

estimates as with probability at least .

2) Nested Lattice Code for Wyner–Ziv Encoding: Anal-

ogously, nested lattices can be used to build Wyner–Ziv codes

for the Gaussian-quadratic case, as Zamir and Shamai develop

with a dithered construction in [36] in the limit of high SNR

.10 A generalization of this construction that achieves

the rate-distortion limit for all SNRs is outlined in Appendix III

and also appears in [1] and [37]. A version of this construction

that avoids dither, which we summarize here, is the dual of that

we consider in Section IV-E1. As the solution will reveal, the

Wyner–Ziv encoder (respectively, decoder) has the same form

9That the overall ZZZ can, for good lattices, be effectively treated as Gaussian
with the indicated variance is also justified by more formal treatment of the
underlying limits, as shown in [19].

10Such constructions are explored further by Servetto [27].
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as the information-embedding decoder (respectively, encoder).

It suffices to restrict our attention to the case .

For this problem, the nested lattices are chosen such that

and (45)

A suitable encoder using these lattices transmits the index

of the closet coset to the source , i.e., it transmits

. The decoder observes and , calculates the

coset shift , then produces a source estimate of the

form

(46)

where

(47)

That the system operates at the target rate follows from the

lattice properties. Indeed, Property (GQ-3) and (45) prescribe

the rate of the code to be within bits of

(48)

where the last equality follows from (23) together with the fact

that as .

Next, to verify that the decoder reconstructs the source to

within distortion , we first define the quantization error

(49)

and express the received data in the form

(50)

where we have defined . Now applying (GQ-1) in

the context of11 , and exploiting that is independent of

and, therefore, , we have that is (effectively) Gaussian

and independent of . In turn, since , we can

use (GQ-2) in the context of to obtain that, with probability

at least

(51)

since . In turn, substituting (51) into (46), we

have that with probability

(52)

Choosing and so as to minimize the mean-square distor-

tion between and , we obtain, using basic linear MMSE

estimation theory, that the optimum and yield a mean-square

estimation error of

(53)

which confirms the distortion constraint is met.

11Since Wyner–Ziv coding is nontrivial only when d < � , and since

� < � , then our operating in the high-SNR regime implies we are also
operating in the high-SDR regime.

V. BINARY-HAMMING CASE

In this section, we consider the scenario where the signals of

interest—the host in the information-embedding problem and

the source in the Wyner–Ziv problem—are Bernoulli se-

quences, where Bernoulli denotes a sequence of i.i.d. binary

random variables, each of which is takes on the value

with probability . In both problems, the associated channel of

interest is the binary-symmetric channel with crossover proba-

bility . The distortion metric is Hamming metric, corre-

sponding to bit-error rate. In this section, we use to denote

the entropy of a Bernoulli source, i.e.,

and to denote binary convolution, i.e.,

A. Binary-Hamming Information-Embedding Capacity

The information-embedding capacities in the binary-Ham-

ming case are as follows.

Claim 3: For the binary-Hamming case, the distortion-con-

strained information-embedding capacity is the upper

concave envelope of the function

if

if
(54)

i.e.,

if

if

(55)

where .

Claim 4: For the binary-Hamming case, the distortion-con-

strained information-embedding capacity is given by

(56)

Proofs of Claims 3 and 4 are developed in Appendixes IV-A

and IV-B, respectively.12 Fig. 7 illustrates and

as a function of the distortion constraint for a channel transition

probability of . Note that for all

. This is not surprising: it is easy to verify that (6)

is not satisfied for in this range.

B. Binary-Hamming Wyner–Ziv Rate-Distortion Function

The Wyner–Ziv rate-distortion function for this scenario is

determined in [34] to be the lower convex envelope of the func-

tion
if

if
(57)

i.e.,

if

if

(58)

12The proof of Claim 3 mirrors that for the corresponding Wyner–Ziv rate-
distortion function in [34].
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Fig. 7. The information-embedding capacities for the binary-Hamming case with channel transition probability p = 0:1. The dashed line is the function g (d)
from (54). The successively lower solid lines are C (d) and C (d), the information-embedding capacities with and without XXX known at the decoder,
respectively.

where is the solution to the equation

(59)

with denoting the differentiation operator. For comparison, we

show the conditional rate-distortion function ( known at the

encoder and decoder) for the binary symmetric case [5]

if

if
(60)

Fig. 8 shows an example of and for channel

transition probability , which can be compared to

Fig. 7.

C. Nested Binary Linear Codes

Optimum information embedding and Wyner–Ziv coding in

the binary-Hamming case can be realized using a pair of nested

binary linear codes, as we develop in this subsection.

Our code notation is as follows. A binary linear code of

codewords having length is defined by a parity-check matrix

of dimension with the property that

(61)

where denotes the transpose operator. The syndrome of an

arbitrary vector is . A minimum (Hamming) distance

decoder, which quantizes an arbitrary signal to the nearest (in

a Hamming sense) codeword, takes the form

(62)

where denotes modulo- addition, and where is the as-

sociated decoding function. The resulting quantization error is,

therefore,

(63)

Let be determined from the code rate via

. Then when is a good code and is sufficiently

large, we have the following properties.

(BH-1) The quantization error (63) is Bernoulli distributed

and independent of (62), the codeword to which it is

quantized.

(BH-2) For all codewords , the probability of a de-

coding error is small when is

Bernoulli distributed and independent of .

We make use of two good binary linear codes and ,

where is nested in , i.e., .13 The associated code

rate, parity-check matrix, quantizer, and decoding function for

code are denoted , , , and , re-

spectively. Note that because of the nesting, we can write

(64)

where has dimension . Furthermore, can

be partitioned into cosets corresponding to and its

shifts.

13The existence of pairs of good nested linear codes is shown in [19], [37].
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Fig. 8. The Wyner–Ziv rate-distortion functions for the binary-Hamming case with channel transition probability p = 0:25. The dashed line is the function
g (d) = h(p � d)� h(d) from (57). The successively lower solid lines are R (d) and R (d), the rate-distortion functions with and without XXX known
at the encoder, respectively.

1) Nested Binary Codes for Information Embedding: In-

formation embedding for the binary-Hamming case again takes

the form of QIM [7]. However, in this binary-Hamming case,

no distortion compensation is involved.

To develop the appropriate QIM scheme, we choose

and , so our code rates are and

It suffices to restrict our attention to the region , since

lower distortions can be achieved through time sharing.

We let the rate of the information signal be

(65)

and associate with each message a (unique) coset shift

via the relation

(66)

where denotes a vector of length whose elements

are the binary expansion of . The encoder then generates the

composite signal according to QIM

(67)

(68)

where (68) follows from applying (62), and where

(69)

using (66) and the fact that .

To confirm that the encoder meets the distortion constraint it

suffices to note that by using Property (BH-1) in the context of

the codebook , we obtain that the (quantization) error

(70)

is Bernoulli .

The associated decoder operates as follows. The received

signal is , where is Bernoulli . Using Property

(BH-2) in the context of codebook , we obtain that can

be recovered via

(71)

with high probability. In turn, we use to recover

(and thus ) via

(72)

where the first equality is due to (66), and where the second is

a consequence of (67), since produces codewords in .

a) Noise-free case: Using (20), we easily determine that

under the constraint that the composite signal be within Ham-

ming distance of the host , the binary-Hamming embedding

capacity is

- (73)

To achieve rates arbitrarily close to the capacity (73), it therefore

suffices to use the nested linear coding method for information

embedding described in Section V-C1 with .
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Fig. 9. A layered joint source–channel coding system.

2) Nested Binary Codes for Wyner–Ziv Coding: The corre-

sponding nested codes for the Wyner–Ziv problem are devel-

oped by Shamai, Verdú, and Zamir [28] by setting

and , so the code rates are and

. To illustrate the duality with the informa-

tion-embedding solution, we summarize the salient features of

the construction in [28] here, again, restricting our attention to

bit-error rates , as time sharing with no coding can

achieve all other operating points on the capacity curve.

The encoder computes

(74)

and sends the length vector (syndrome) , which

describes the nearest coset of to . The rate of the encoder

is thus

(75)

The associated decoder observes and , and recon-

structs an estimate of the source as (c.f. (67), (68))

(76)

(77)

where is constructed from the received side information

via

(78)

Following Shamai et al. [28], the reconstruction can be

shown to meet the distortion constraint as follows. First, using

Property (BH-1) in the context of the codebook , we obtain

that the quantization error in , i.e.,

(79)

is Bernoulli . Next, expressing the channel output in the form

(80)

where is Bernoulli , we obtain, combining (79) with (80)

(81)

which is, therefore, Bernoulli . But then applying Property

(BH-2) to (81) in the context of the codebook , we have that

with high probability

(82)

Thus, we obtain that the reconstruction error is with high prob-

ability

(83)

which is Bernoulli( ) as required.

b) Distortion-free case: When we set in the nested

code construction of Section V-C2, the code not surprisingly

specializes to the well-known practical Slepian–Wolf code de-

veloped by Wyner [32].14 From this perspective, we can see

that the nested linear code for information embedding in the

noise-free case described at the end of Section V-C1 is the dual

of Wyner’s Slepian–Wolf code, i.e., the encoder in one case is

the decoder for the other, and vice versa.

VI. LAYERED JOINT SOURCE–CHANNEL CODING

The relationship between information embedding and

Wyner–Ziv coding developed in this paper can be exploited in

the development of a variety of novel systems. As one illustra-

tion, in this section we introduce a layered joint source–channel

coding system.

Such a system can be formed from the interconnection of

Wyner–Ziv and information-embedding subsystems. A simple

two-layer implementation is depicted in Fig. 9. As this figure

reflects, in this system the bits comprising the Wyner–Ziv rep-

resentation of the source are embedded into the source

using information embedding to produce a transmitted signal

, where the Wyner–Ziv encoding takes into account the ad-

ditional degradation of the source (beyond that introduced in

the channel) that will result from the embedding.15 The associ-

ated decoder operates on both layers of the received signal as

also shown in Fig. 9. It extracts the bits of the Wyner–Ziv rep-

resentation using the information-embedding decoder, and

uses them in the Wyner–Ziv decoder to reconstruct the estimate

of the source. Note the interesting property that encoder and

decoder for this system have identical structure, which follows

from the fact that the structure of the information-embedding

encoder is the same as that for the Wyner–Ziv decoder, and vice

versa.

Such a system has the feature that can be used in a broadcast

setting involving two classes of receivers: private receivers, to

which the Wyner–Ziv and information-embedding codebooks

are revealed, and public receivers, which have no codebook

information. Thus, public receivers construct an estimate

of the base layer, without decoding the embedded information,

while private receivers construct the estimate from both

layers.

By varying the Wyner–Ziv bit rate within the encoder (and

adjusting the private decoder parameters accordingly), one

14There has been renewed interest in implementations of Wyner’s construc-
tion lately; see, e.g., [26].

15Note that implicit in our assumption of a discrete-time source, all such codes
we develop use the same bandwidth as the source.
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can control the quality of the public estimate : the higher

the Wyner–Ziv bit rate, the lower the quality of the public

estimate. In the sequel, we examine how the quality of the

private estimate varies as this bit rate is varied. We refer to a

system as “efficient” when the quality of the private estimate is

independent of the chosen public estimate quality. Two systems

will be examined: one for the Gaussian-quadratic scenario, and

one for the binary-Hamming scenario.

A. The Gaussian-Quadratic Case

In this subsection, we construct a layered joint

source–channel code that is efficient for the Gaussian-quadratic

case. Let our i.i.d. Gaussian source have elements distributed

according to , let the independent additive white

Gaussian noise in the channel have elements

distributed according to . Our implementation uses

the information-embedding and Wyner–Ziv subsystems in

precisely the forms developed in Sections IV-A and IV-B.

When we embed under an embedding distortion constraint

using a capacity-achieving code, the embedding adds noise

that is independent of . In order to normalize

the overall transmitted power to , the host must be scaled

by

(84)

prior to embedding.

At the receiver, the observed signal is

(85)

from which we see using MMSE estimation theory that the best

public receiver estimate is

(86)

and yields distortion

(87)

Thus, as is varied from to , varies from

(88)

to , corresponding to the observation carrying no useful

(public) information about .

To obtain the distortion of the private decoder, we note

that with fixed, the maximum achievable embedding rate is

. Given this supplied data rate, we Wyner–Ziv-encode

for minimum distortion at the decoder subject to the available

embedding rate, i.e., the resulting distortion is the solution to

(89)

which upon substitution of (87) for is easily verified to be

given by16 (88) independent of the embedding level for all

.

Efficiency follows immediately. In particular, note that the

choice corresponds to a single-layer, fully private

separate source and channel coding system, which by the

source–channel separation theorem we know is the lowest

possible distortion achievable by any system. That (88) is

independent of means, therefore, is that this layered joint

source–channel coding system is efficient for all choices

of . Consistent with our analysis, this includes the other

extreme case , which corresponds to single-layer

uncoded (fully public) transmission, whose efficiency in the

Gaussian-quadratic scenario is well-known [5, Sec. 5.2].

Multilayer Joint Source–Channel Codes: The two-layer

joint source–channel coding scheme just described generalizes

naturally to a multiple-layer scheme involving successive

embeddings at the encoder. Such a system can be used to

support nested classes of private users, each able to recover a

progressively better estimate of the source.

The encoding for a -layer system is generated from

successive embeddings at distortion levels , producing the

sequence of composite signals , . In partic-

ular, at each layer , the composite signal is generated by

embedding the bits of the associated Wyner–Ziv encoding of

the preceding composite signal into itself. The final com-

posite signal is transmitted over the channel. In each

embedding, the amplitude is renormalized to keep each com-

posite signal at power . The composite signals thus created

can, therefore, be expressed in the form

(90)

where

(91)

and , independent of , for

.

The received signal is decoded as follows. There are code-

books , , of which the last are available to the

th class of (private) decoders. The th embedding is extracted

from the channel output by the information-embed-

ding decoder using codebook , and the bits are used to form

an estimate of via the associated Wyner–Ziv de-

coder. By the analysis in Section VI-A, the distortion in the es-

timate so produced is given by (88). We proceed to form an

estimate from the preceding composite signal estimate

, where the distortion in this estimate remains (88). This

process is continued until is formed by decoding with

codebook .

If all codebooks are available to the decoder, i.e., the de-

coder is in the th class, it follows that the source reconstruction

achieves the best possible fidelity, i.e., (88). Thus,

16Note that this result is consistent with the broadcast channel result in [7]
showing that the layered digital coding method involving the embedding of bits
into a host that is itself a coded bit stream achieves capacity for the Gaussian
channel.
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the multilayer embedding continues to be efficient in the sense

that no other alternative coding scheme for the channel could do

better.

It remains only to analyze the performance experienced by

the other classes of decoders. To simplify the exposition, we

restrict our attention to the case of equal embedding distortion

at each layer, i.e., for , so that, via

(84), we have

(92)

The th class of decoders, which can decode down to the

th layer, obtain , which can be expressed using the

results of Section VI-A as

(93)

where is independent of , and where

(94)

Expanding according to the iteration (90), we have

(95)

where , , and are mutually indepen-

dent and Gaussian. Thus, the th class of decoders estimate

as

(96)

and the associated distortion these users experience corresponds

to the error in the associated MMSE estimate of from ,

i.e.,

(97)

which decays exponentially with , the number of codebooks

available to the receiver. The time constant of the decay in-

creases linearly with . In turn, decreases linearly with

, the embedding distortion for an individual layer. When

(which requires that ), for all .

More generally, different versus profiles can be obtained

by choosing the to vary with .

B. Binary-Hamming Case

A layered joint source-channel coding system of the form

of Fig. 9 can also be developed for the binary-Hamming case.

We consider an implementation, analogous to that for the

Gaussian-quadratic case, in which we use the information-em-

bedding and Wyner–Ziv subsystems in precisely the forms

developed in Sections V-A and V-B. In the sequel, we use

to denote the crossover probability of the binary-symmetric

channel.

Let us evaluate the achievable distortions. As shown in Ap-

pendix IV-A, the information-embedding capacity of is

achieved with a distortion of that acts on the source as a

binary-symmetric channel with crossover probability . Thus,

the combined effect of the embedding and the physical channel

will be a binary-symmetric channel with crossover probability

, so that for the Wyner–Ziv encoding, the side information

is the source corrupted by a Bernoulli process. Thus, the

best (public) estimate of the source in this case is ,

and the associated distortion is

(98)

so that as is varied from to , varies from

(99)

to , corresponding to the observation carrying no useful

(public) information about .

Meanwhile, the achieved private distortion is the solution

to

(100)

where the left-hand side of (100) is the upper concave envelope

of the function as defined in (54), and the right-hand side

of (100) is the lower convex envelope of the function as

defined in (57).

The distortion in two limiting cases can be evaluated in closed

form. In the case , which corresponds to single-layer,

fully private, separate source and channel coding system, (100)

specializes to

(101)

yielding . By the source–channel separation theorem, this

is the best distortion one can achieve using any system on this

channel. The other limiting case for which , corresponding

to a single-layer, fully public uncoded system, the distortion

is obviously also achievable simply using the received data as

the source estimate.

More generally, the resulting (normalized) distortion is

plotted in Fig. 10 as a function of for various values of .

Note that while the system is efficient for the limiting cases

and , it is not in between: the distortion is strictly

greater than (99) for all and all . This fact

is proven analytically in [1].

Part of the reason for the inefficiency may lie in the fact that

in the encoder of our system: 1) the chosen information-embed-

ding encoder subsystem does not take into account the corre-

lation between the source and the message ; and 2) the

chosen Wyner–Ziv encoder does not take into account partial

knowledge it has of the ultimate channel output in the form

of . Clearly, in the Gaussian-quadratic case nothing can be

gained by exploiting such partial side information, since the

system was efficient. However, in the binary-Hamming case,

taking them into account could lead to a system that is efficient

for all and , though that remains to be investigated.

VII. CONCLUDING REMARKS

In this paper, we identified and developed the inherent duality

between information-embedding and Wyner–Ziv coding, and

used this relationship to establish a variety of new results on the

performance limits of information-embedding and deterministic

nested codes for achieving them. As an illustration of other ap-

plications of these results, a layered joint source–channel coding

system was developed with a symmetric encoder–decoder struc-

ture, and evaluated in the context of a broadcast setting in which
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Fig. 10. Performance of layered source–channel coding in the binary-symmetric case. Plotted is the reconstruction distortion (normalized by p) as a function of
embedding distortion for p = 0:05; 0:1; 0:2; 0:4.

there is a need to control the fidelity available to different re-

ceivers. Efficiency was evaluated in the context of channels for

which the source–channel separation theorem holds, but still

more interesting results may follow from examining its behavior

in context where it does not.

More generally, in many respects, our results are simply rep-

resentative examples of a considerably broader set of results

that may ultimately evolve from the relationship between the in-

formation-embedding and Wyner–Ziv problems and exploring

such directions is a rich area for future research.

APPENDIX I

PROOF OF CONVERSE IN CLAIM 1

(PUBLIC EMBEDDING CAPACITY)

We show that for any rate , the maximal proba-

bility of error for a length code, , is bounded away from

zero. We begin with two useful lemmas.

Lemma 1: The capacity is a nondecreasing concave

function of .

Proof: First, that is a nondecreasing function fol-

lows from the fact that increasing increases the domain over

which the maximization is performed.

To establish concavity, consider any two distortions and

and the corresponding arguments, and , re-

spectively, which maximize the argument of (1) for the given

distortion. Let be a random variable independent of , ,

, and , that takes on the value with probability and the

value with probability . Define and let

, implying a distortion

(102)

(103)

(104)

and

(105)

(106)

(107)

(108)

(109)

Thus,

(110)

(111)

(112)

(113)

proving the concavity of .
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Gel’fand and Pinsker [20] show that in the absence of a dis-

tortion constraint, one cannot do better than (1) with a nonsin-

gular distribution . The same is true with a distortion

constraint present. The following proof is due to Cohen [11].

Lemma 2 (Cohen): For a fixed and ,

(114)

where on the right-hand side.

Proof: To show that any nondeterministic

has at best the performance of a deterministic

distribution, consider any such . Then there

exists such that for some

and . Define and functions , and

positive constants with such that

(115)

We show by a simple construction that a sufficient size

for is . We let and

. We define the variables

and place them, along with , in an ordered set of nonde-

creasing (possibly repeating) values, , where

. We let , . Corre-

sponding to each is a , from which we define

, , where is the smallest index for which

. These definitions satisfy (115) and ,

which is finite.

Continuing with the proof of the lemma, we define a new

alphabet where , and let

a new auxiliary random variable take values in and have

joint distributions

if

if

(116)

and

if

if

(117)

It is straightforward to verify that the joint distribution on

, , and is the same under the original and new auxiliary

random variable choices, i.e.,

(118)

Thus, both and are unchanged by

switching to the new auxiliary random variable.

If, in addition, the following joint distribution between , ,

and is defined via

if

if
(119)

which is consistent with (117), then form a

Markov chain. Thus, by the data-processing inequality

(120)

Moreover, since from (115)–(117), we have

(121)

Thus, by the concavity of entropy we have

, which together with the fact that is unchanged

yields

(122)

Combining (120) with (122) we see that

(123)

Thus, is an optimal choice of random variable, whose al-

phabet has one less element than for which is

nondeterministic. Recursive application of this logic for all

such that yields an auxiliary

random variable that is optimal and for which is

deterministic.

Despite the fact that the repeated application of the logic in

Lemma 2 will increase the cardinality of the auxiliary random

variable, the final is bounded above. Straightforward appli-

cation of Caratheodory’s theorem tells us that for the original

with nondeterministic , we have .

Since we apply the recursive argument at most times, we

have

which is a finite upper bound on the cardinality.

Returning to our proof of the converse, consider an infor-

mation-embedding code, with an encoding function :

and a decoding function :

. Let : de-

note the th symbol produced by the encoding function. The dis-

tortion constraint is

(124)

We have the following chain of inequalities:

(125)

(126)

(127)
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(128)

(129)

(130)

(131)

where

(125) follows from the fact that is distributed uniformly

on from our formulation;

(126) follows from the fact that by the inde-

pendence of and in our problem formulation;

(127) follows from [20, Lemma 4], where is defined as

;

(128) follows from (1);

(129) follows from Jensen’s inequality and the concavity of

from Lemma 1;

(130) follows from (124) and the nondecreasing property of

from Lemma 1; and

(131) follows from the Fano inequality.

Rearranging terms in (131) we have

(132)

which shows for , the probability or error is bounded

away from .

APPENDIX II

PROOF CLAIM 2 (PRIVATE EMBEDDING CAPACITY)

In this appendix, we prove that the private information-em-

bedding capacity is given by (4), where the supremum is over

the set

(133)

A. Converse

The proof of the converse uses a technique very similar to that

used in Appendix I, exploiting the concavity of , a fact

which is established through the following lemma.

Lemma 3: The information-embedding capacity given in

(4) is a nondecreasing, concave function of the distortion con-

straint .

Proof: With increasing , the domain over which the

mutual information is maximized increases, which implies

, is nondecreasing.

We prove concavity by considering two capacity–distortion

pairs and , which are points on the informa-

tion-embedding capacity function. These points are achieved

with the distributions

and , respectively. We

define

(134)

Because distortion is a linear function of the transition proba-

bilities, the distortion for is

(135)

It is easily verified that the mutual information

is a concave function of the distribution . Therefore,

(136)

where we subscript the mutual informations with their respec-

tive distributions. Thus, we have the following chain of inequal-

ities:

(137)

(138)

(139)

(140)

where (139) follows from (136), which proves the concavity of

.

Returning to the proof of our main result, recall the input to

the channel is the composite signal , which is an encoded

function of the host and the message . The distortion

between and is constrained by

(141)

The converse is proven by the following chain of inequalities:

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)
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(150)

(151)

(152)

(153)

where

(142) follows from our formulation that is uniformly dis-

tributed on ;

(143) follows from our formulation that and are in-

dependent;

(144) follows from the chain rule for mutual information;

(146) follows from the fact that conditioning reduces en-

tropy;

(149) follows from the data processing inequality, using the

fact that is a Markov chain;

(150) follows from (4);

(151) follows from Jensen’s inequality and the concavity of

from Lemma 3;

(152) follows from (141) and that is nondecreasing

from Lemma 3;

(153) follows from the Fano inequality.

Rearranging terms in (153) we have

(154)

which shows for , the probability or error is bounded

away from .

B. Achievability

For our proof, it is convenient to express the capacity (4) in

terms of , the capacity of a channel when the host

is some constant value known at the encoder and decoder, as

developed in the following lemma.

Lemma 4: The information-embedding capacity with host

known at the encoder and decoder satisfies

(155)

where, by the conventional channel capacity theorem

(156)

with

(157)

denoting the constraint set for the embedding.

Using this lemma, consider the set of that achieves the

maximum on the right-hand side of (155). By the conventional

channel-coding theorem, we can achieve the rate with

embedding distortion and negligible probability of error if

for all samples of data. Thus, the following coding

scheme suffices: we embed data in , a length- block of host

samples, using a different codebook for each which achieves

the rate at embedding distortion . For each , we

collect all of the samples for each such that and

code using the codebook corresponding to . The total rate is

thus

(158)

which by the lemma equals capacity.

It remains only to prove Lemma 4.

Proof of Lemma 4: We first prove that is lower-

bounded by the right-hand side of (155). To see this, choose a

fixed for each such that and a test channel

. It is easily confirmed from (157) that

(159)

which implies as defined in (133). For any

test channel

(160)

so that choosing to satisfy the maximization in

(156) yields

(161)

for any set of satisfying .

It remains only to show that is upper-bounded by the

right-hand side of (155). To see this, we choose a test channel

, which results in a set of conditional dis-

tortions that satisfy . For

any such test channel

(162)

(163)

(164)

Choosing to achieve the maximum in (4) yields

(165)

which completes the proof of the lemma.

APPENDIX III

DITHERED NESTED LATTICE CODE FOR

WYNER–ZIV ENCODING

Nested lattices can also be used to build Wyner–Ziv codes that

are capacity achieving at all SNRs. Our construction exploits

dithered quantizers, and can be viewed as a generalization of

the result in [36]. As before, it suffices to restrict our attention

to the case .
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Our dithered quantizers are defined via

(166)

where the dither is uniform over the characteristic Voronoi

cell and generated independently. By the properties of subtrac-

tive dithered quantization, we must change the property (GQ-1)

for the new quantizer as follows.

(GQ-1 ) The quantization error (30) is white and Gaussian

with zero-mean and variance , and independent

of the input to the quantizer [35].

The other properties (GQ-2) and (GQ-3) remain valid with .

With these quantizers, the nested lattices are chosen such that

and (167)

A suitable encoder using these lattices transmits the

index of the closet coset to the source , i.e., it transmits

. The decoder observes and , calculates

the coset shift and an MMSE estimate ,

where . The decoder then produces a source

estimate of the form

(168)

where

(169)

That the system operates at the target rate follows from the

lattice properties. Indeed, Property (GQ-3) and (167) prescribe

the rate of the code to be within bits of

(170)

where the last equality follows from (23).

Next, to verify that the decoder reconstructs the source to

within distortion , we first define the quantization error

(171)

and the estimation error

(172)

so that

(173)

with

(174)

To establish that in (174) is independent of in (173), we

first note that is independent of by the orthogonality

principle. It only remains to show that is independent of

and . To see this, note that

(175)

where the first equality follows from (172), the second equality

follows from the definition

(176)

and the third equality follows from the fact that by (GQ-1 ) the

quantization error is zero mean and inde-

pendent of . Hence, it follows that is independent of both

and

(177)

where the first equality follows from an application of (GQ-1 ),

and the second by averaging over in (175).

Now, since is effectively Gaussian with zero mean and vari-

ance , we know from (GQ-2) that

Furthermore, if , then by the translational invariance

of lattice geometry

for any coset shift and any (178)

So with as defined in (169) we have that, using (173) and

exploiting the independence of and

(179)

since the term on the fifth line is zero by using

in (178), and since is bounded by . Thus, using

(179) in (168), we have that with probability

(180)

Choosing and so as to minimize the mean-square distor-

tion between and , we obtain, using basic linear MMSE

estimation theory, that the optimum and yield a mean-square

estimation error of

(181)

which confirms the distortion constraint is met.
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APPENDIX IV

CAPACITIES OF INFORMATION EMBEDDING FOR THE

BINARY-HAMMING CASE

A. Proof of Claim 3 (Public Case)

The upper concave envelope of in (54) is given by

(182)

where the supremum is taken with respect to all and

such that . By the concavity

of , it is clear that is concave over . Thus,

the maximization in (182) can be simplified by letting

(183)

where the supremum is taken with respect to all and

such that

(184)

We establish that by separately proving that

is lower- and upper-bounded by .

The lower bound is developed by considering a special case.

Let the auxiliary random variable be the output of a binary-

symmetric channel with crossover probability which has as

input. Furthermore, we choose such that ,

which makes the distortion equal . We evaluate

(185)

and conclude from (1) that

(186)

when we choose the values and such that

(184) holds for some given .

By the concavity of from Lemma 1, we have

(187)

which is true for all and satisfying (184), whence

.

It remains only to show the upper bound ,

for which it suffices to show that

(188)

for any such that .

Defining the set

(189)

we have

(190)

(191)

(192)

Using

(193)

with (192) yields

(194)

where , , and

(195)

We observe that, because , we have

, , and thus,

(196)

(197)

(198)

(199)

where for (198) we have used

which is true because for any , the channel input is

either or the complement of . Because the channel is binary

symmetric, the entropy of is thus greater than or equal to that

of .

We proceed to evaluate the right-hand side of (199). Consider

any . Defining , we obtain,

using (195)

(200)

So

(201)

Next, given , the channel input is uniquely specified by

, and thus,

(202)

Thus,

(203)

(204)

(205)
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(206)

(207)

(208)

where

(203) is obtained by substituting (201) and (202) into (199);

(204) is obtained by defining ;

(205) follows from the facts that is concave for

and ;

(206) follows from defining ;

(207) follows from the definition of in (183) with

; and

(208) follows from the fact that and is a nonde-

creasing function.

Hence, we have shown that for any distribution

there exists a and

such that (188) holds.

B. Proof of Claim 4 (Private Case)

Since adding (modulo- ) a known symbol to both and

in (4) does not affect their mutual information, we have

(209)

where is the distortion due to embedding, which

is constrained to have . Note that ,

where is a Bernoulli source representing the noise of the

binary-symmetric channel. Under the constraint that

, we have the following chain of inequalities:

(210)

(211)

(212)

(213)

The inequalities are met with equality if is Bernoulli , in-

dependent of , and , which proves the claim.
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