THE DUALITY OPERATION IN THE CHARACTER RING OF A FINITE CHEVALLEY GROUP

BY DEAN ALVIS

It is possible (as in [4]) to define a duality operation $\zeta \rightarrow \zeta^{*}$ in the ring of virtual characters of an arbitrary finite group with a split (B, N)-pair of characteristic p. Such a group arises as the fixed points under a Frobenius map of a connected reductive algebraic group, defined over a finite field [1]. This paper contains statements of several general properties of the duality map $\zeta \rightarrow \zeta^{*}$ and two related operations (see $\S \S 2$ and 4). The duality map $\zeta \longrightarrow \zeta^{*}$ generalizes the construction in [2] of the Steinberg character, and interacts well with the organization of the characters from the point of view of cuspidal characters (§6). It is hoped that there is also a useful interaction with the Deligne-Lusztig virtual characters $R_{\mathrm{T}}^{\mathrm{G}} \theta$. Partial results have been obtained in this direction (§5). Detailed proofs will appear elsewhere.

1. Let G be a finite group with split (B, N)-pair of characteristic p. Let (W, R) be the Coxeter system, and let $P_{J}=L_{J} V_{J}$ be the standard parabolic subgroup corresponding to $J \subseteq R$, with $V_{J}=O_{P}\left(P_{J}\right)$ (see [3] for definitions and notations). Let $\operatorname{char}(G)$ denote the ring of virtual characters of G, and $\operatorname{Irr}(G)$ the set of irreducible characters of G, all taken in the complex field. For $J \subseteq R$ and $\zeta \in \operatorname{char}(G)$ define

$$
\begin{equation*}
\zeta_{\left(P_{J} / V_{J}\right)}=\Sigma\left(\zeta, \tilde{\lambda}^{G}\right)_{G} \lambda \tag{1.1}
\end{equation*}
$$

where \sim denotes extension to P_{J} via the projection $P_{J} \rightarrow L_{J} \cong P_{J} / V_{J}$, and the sum is over all $\lambda \in \operatorname{Irr}\left(L_{J}\right)$. Let $\zeta_{\left(P_{J}\right)}=\zeta_{\left(P_{J} / V_{J}\right)}{ }^{\sim}$. The duality map is then defined by:
1.2 DEfinition. $\zeta^{*}=\Sigma_{J \subseteq R}(-1)^{|J|} \zeta_{\left(P_{J}\right)}{ }^{G}$, for all $\zeta \in \operatorname{char}(G)$.
2. The truncation map $\zeta \rightarrow \zeta_{\left(P_{J} / V_{J}\right)}$ and the map $\lambda \rightarrow \tilde{\lambda}^{G}$ behave in much the same way as ordinary restriction and induction. The following basic properties follow directly from the structure theorems [3].

2.1 Frobenius reciprocity. Let $\zeta \in \operatorname{char}(G)$ and $\lambda \in \operatorname{char}\left(L_{J}\right)$. Then

Received by the editors May 7, 1979.
AMS (MOS) subject classification numbers (1970). Primary 20 C 15.

$$
\left(\zeta, \tilde{\lambda}^{G}\right)_{G}=\left(\zeta_{\left(P_{J}\right)}, \widetilde{\lambda}\right)_{P_{J}}=\left(\zeta_{\left.P_{J} / V_{J}\right)}, \lambda\right)_{L_{J}} .
$$

2.2 Transitivity. If $K \subseteq J \subseteq R$, let Q_{K} be the standard parabolic subgroup $P_{K} \cap L_{J}$ of L_{J} and let $V_{J, K}=O_{p}\left(Q_{K}\right)=L_{J} \cap V_{K}$. Then if $\zeta \in$ $\operatorname{char}(G)$ and $\zeta \in \operatorname{char}\left(L_{J}\right)$, we have

$$
\left(\zeta_{\left(P_{J} / V_{J}\right)}\right)\left(Q_{K} / V_{J, K}\right)=\zeta_{\left(P_{K} / V_{K}\right)},
$$

and

$$
\left.\tilde{\lambda}^{L_{J}}\right)^{\sim} G=\tilde{\lambda}^{G} .
$$

2.3 Intertwining number theorem. Let $\lambda_{i} \in \operatorname{char}\left(L_{J_{i}}\right)$ for $i=1,2$.

Then

$$
\left(\tilde{\lambda}_{1}^{G}, \tilde{\lambda}_{2}^{G}\right)_{G}=\sum_{w \in W_{J_{1}, J_{2}}}\left(\lambda_{1}\left(Q_{K_{1}} / V_{J_{1}}\right),{ }^{w} \lambda_{2\left(Q_{K_{2}} / V_{J_{2}, K_{2}}\right)}\right)_{L_{K_{1}}}
$$

where $W_{J_{1}, J_{2}}$ is the set of distinguished $W_{J_{1}}-W_{J_{2}}$ double coset representatives, $W_{K_{1}}=W_{J_{1}} \cap{ }^{w} W_{J_{2}}$ and $W_{K_{2}}=W_{J_{2}} \cap{ }^{w-1} W_{J_{1}}$.
2.4 Subgroup Theorem. Let $\lambda \in \operatorname{char}\left(L_{J_{1}}\right)$. Then

$$
\left.\tilde{\lambda}^{G}\right)_{\left(P_{J_{2}} / V_{J_{2}}\right)}=\sum_{w \in W_{J_{1}, J_{2}}} w^{-1}\left(\lambda_{\left(Q_{K_{1}} / V_{J_{1}, K_{1}}\right.}\right)^{\sim^{L} J_{J_{2}}}
$$

Here K_{1} is as in 2.3 (note: ${ }^{w^{-1}} L_{K_{1}}=L_{K_{2}}$).
3. The results of this section are of independent interest, and are due to Curtis ([4]). They are needed to apply the results of $\S 2$ to the duality operation.
3.1. Lemma. Let $w \in W,{ }^{w} L_{J_{2}}=L_{J_{1}},{ }^{w} \lambda_{2}=\lambda_{1}$, where $\lambda_{i} \in \operatorname{char}\left(L_{J_{i}}\right)$. Then $\lambda_{1}^{G}=\lambda_{2}^{G}$.

The idea of the proof is to show that the numbers $\left(\widetilde{\lambda}_{i}^{G}, \tilde{\lambda}_{j}^{G}\right)_{G}$ are all the same for $i, j=1,2$. The proof in [3] (for the special case when λ_{1}, λ_{2} are cuspidal) can be modified to work in the present situation.

The following is Lemma 2.5 of [4].
3.2. Leмma. Let $a_{J_{2}, J_{1}, K}=\left|\left\{w \in W_{J_{1}, J_{2}} \mid W_{K}=W_{J_{1}} \cap{ }^{w} W_{J_{2}}\right\}\right|$. Then

$$
\sum_{J_{2} \subseteq R}(-1)^{\left|J_{2}\right|} a_{J_{2}, J_{1}, K}=(-1)^{|K|}
$$

4. The first main result relates duality and the operations $\zeta \rightarrow \zeta_{\left(P_{J} / V_{J}\right)}$ and $\lambda \rightarrow \widetilde{\lambda}^{G}$. Part (1) is Theorem 1.3 of [4].

Theorem. (1) $\left(\zeta^{*}\right)_{\left(P_{J} / V_{J}\right)}=\left(\zeta_{\left(P_{J} / V_{J}\right)}\right)$ for $J \subseteq R, \zeta \in \operatorname{char}(G)$
(2) $\left(\tilde{\lambda}^{G}\right)^{*}=\left(\lambda^{*}\right)^{\sim G}$ for $J \subseteq R, \lambda \in \operatorname{char}\left(L_{J}\right)$.

We provide a sketch of the proof of (2). Let $J_{1}=J$. Using 2.4, 2.2, and then Lemma 3.1 (noting that $L_{K_{1}}={ }^{w} L_{K_{2}}$ by Proposition 2.6 of [3]) we have

$$
\left(\widetilde{\lambda}^{G}\right)^{*}=\sum_{J_{2} \subseteq R}(-1)^{\left|J_{2}\right|} \sum_{w \in W_{J_{1}, J_{2}}} \lambda_{\left(Q_{K_{1}} / V_{J_{1}, K_{1}}\right)^{\sim G}}
$$

The proof is then completed by applying Lemma 3.2 and 2.2.
4.2 Theorem. The map $\zeta \longrightarrow \zeta^{*}$, from $\operatorname{char}(G) \longrightarrow \operatorname{char}(G)$ is an isometry of order two. In particular, $\zeta^{* *}=\zeta$ and $\pm \zeta^{*} \in \operatorname{Irr}(G)$, whenever $\zeta \in \operatorname{Irr}(G)$.

In order to prove Theorem 4.2, one first proves that $\left(\zeta_{1}, \zeta_{2}^{*}\right)_{G}=\left(\zeta_{1}^{*}, \zeta_{2}\right)_{G}$. It then suffices to prove $\zeta^{* *}=\zeta$. The key is to apply Theorem 4.1 part (1) to the expression for $\zeta^{* *}$. We have

$$
\begin{aligned}
\zeta^{* *} & =\sum_{J \subseteq R}(-1)^{|J|} \zeta_{\left(P_{J} / V_{J}\right)}{ }^{*} \sim^{G} \\
& =\sum_{J \subseteq R}(-1)^{|J|} \sum_{K \subseteq J}(-1)^{|K|} \zeta_{\left(P_{K}\right)^{G}}
\end{aligned}
$$

using 2.2. To finish the proof, note that $\Sigma(-1)^{|J|}$ summed over all J such that $K \subseteq J \subseteq R$ is zero unless $K=R$.
5. It is clear that $\zeta^{*}=(-1)^{|R|} \zeta$ for any cuspidal $\zeta \in \operatorname{Irr}(G)$. Thus by applying Theorem 4.1 part (2) we have:
5.1 Corollary. Let $\lambda \in \operatorname{Ir}\left(L_{\lambda}\right)$ be cuspidal. Then $\left(\tilde{\lambda}^{G}\right)^{*}=(-1)^{|J|} \widetilde{\lambda}^{G}$.

Thus duality permutes (up to sign) the components of $\tilde{\lambda}^{G}$. We can thus determine the "sign" of ζ^{*} as follows: $(-1)^{|J|} \zeta^{*}$ is in $\operatorname{Irr}(G)$ if $\zeta \in \operatorname{Irr}(G)$ is a component of $\tilde{\lambda}^{G}, \lambda \in \operatorname{Irr}\left(L_{J}\right)$ cuspidal. In particular, $\zeta \rightarrow \zeta^{*}$ permutes the principal series characters, i.e. the components of $\widetilde{\lambda}^{G}, \lambda \in \operatorname{Irr}\left(L_{\varnothing}\right)$. A more explicit result is known for the components $\zeta_{\varphi, q}$ of $1_{B(q)}^{G(q)}$ in a system of groups $\{G(q)\}$ of type (W, R). Specifically, $\zeta_{\varphi, q}^{*}=\zeta_{\epsilon \varphi, q}$ where ϵ is the sign character of W ([4]).

Finally, consider the case $G=\mathbf{G}^{F}$ where \mathbf{G} is a reductive algebraic group and $F: \mathbf{G} \longrightarrow \mathbf{G}$ is a Frobenius map over F_{q}. Let $R_{\mathbf{T}}^{\mathbf{G}} \theta$ denote the DeligneLusztig generalized character of G (\mathbf{T} an F-stable maximal torus of \mathbf{G}, θ a linear character of \mathbf{T}^{F}). It is natural to ask whether

$$
\begin{equation*}
\left(R_{\mathbf{T}}^{\mathbf{G}} \theta\right)^{*}= \pm R_{\mathbf{T}}^{\mathrm{G}} \theta \tag{5.2}
\end{equation*}
$$

holds. The following suggests the answer is yes.

$$
\begin{equation*}
\left(R_{\mathbf{T}}^{\mathbf{G}} \theta\right)^{*}(s)= \pm R_{\mathbf{T}}^{\mathbf{G}} \theta(s) \tag{5.3}
\end{equation*}
$$

for semisimple elements s of G. The \pm sign in 5.3 does not depend on the particular element s of G. The proof of 5.3 uses several results of [5]. (Note added in proof: The conjecture 5.2 has been proved by G. Lusztig.)
5.4 Example. Let $G=\mathbf{G}^{F}$ as above, with (relative) Coxeter system (W, R). Let V be the set of unipotent elements of G and let ϵ_{V} be the characteristic function of V. A recent result of Springer (Theorem 1 of [6]) ${ }^{\mathbf{1}}$ shows

$$
\epsilon_{V}=q^{d} \sum_{J \subseteq R}(-1)^{|J|}\left|P_{J}\right|^{-1} 1_{V_{J}}^{G}
$$

where $d=\operatorname{dim}(\mathbf{G} / \mathbf{B})$, B a Borel subgroup of G. Applying Theorems 4.1 and 4.2 we have:
5.5 Theorem. (1) $\epsilon_{V}^{*}=\left(q^{d} /|G|\right) \rho_{G}$ where ρ_{G} is the regular character of G.
(2) For $\zeta \in \operatorname{Irr}(G)$,

$$
\frac{1}{\zeta(1)} \sum_{v \in V} \zeta(v)=q^{d}\left(\zeta^{*}(1) / \zeta(1)\right)
$$

(3) For $\zeta \in \operatorname{Irr}(G),\left|\zeta^{*}(1)\right|_{p^{0}}=\zeta(1)_{p^{\prime}}$, where p is the characteristic of F_{q} and $n_{p^{\prime}}$ is the p^{\prime} part of n.
(4) For $\zeta \in \operatorname{Irr}(G), 1 / \zeta(1) \Sigma_{v \in V} \zeta(v)$ is, up to sign, a power of p.

Part (4) of Theorem 5.5 confirms a special case of a conjecture of Macdonald (see [6]), namely the case when $q=p$ is prime.

REFERENCES

1. A. Borel and J. Tits, Groupes reductifs, Inst. Hautes Etudes Sci. Publ. Math. 27 (1965), 55-151.
2. C. W. Curtis, The Steinberg character of a finite group with a (B, N)-pair, J. Algebra 4 (1966), 433-441.

[^0]3. - Reduction theorems for characters of finite groups of Lie type, J. Math. Soc. Japan 27 (1975), 666-688.
4. - Truncation and duality in the character ring of a finite group of Lie type, J. Algebra (to appear).
5. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161.
6. T. A. Springer, A formula for the characteristic function of the unipotent set of a finite Chevalley group (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403

[^0]: ${ }^{1}$ The author is indebted to T. A. Springer for communicating both his results in [6] and the suggestion of G. Lusztig of combining them with duality.

