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THE DYADIC STRUCTURE AND ATOMIC DECOMPOSITION
OF Q SPACESIN SEVERAL REAL VARIABLES
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Abstract.  This paper contains several results relatihgpaces in several real variables
with their dyadic counterparts, whichieaanalogues of theorems for BMO and f@rspaces
on the circle. In addition, it gives an atomic (or quasi-orthogonal) decomposition for ¢hese
spaces in terms of the same type of atoms used to decompose BMO.

1. Introduction. In recent years there has been much interest in a new family of
function spaces, calle@ spaces. These spaces were originally defined by Aulaskari, Xiao
and Zhao in [AXZ] as spaces of holomorphic functions on the unit disk. Following the work
of Essén and Xiao [EX] on the boundary values of these functions on the unit circle, the
definition was extended to thedimensional Euclidean space by Essén, Janson, Peng and
Xiao in [EJPX].

Fix o € (—o0, o0). For a cubd in R" with sidelength¢(7), consider the mean quotient
of symmetric differences of a functiof € L2(I) as follows:

|f(x) = fO)I?

lx — y|n+20z dxdy.

(1.1) Opa(l) i= (L(1))%*" f
1
We say thatf € Q. (R") if O« (1) is uniformly bounded, namely
I fllg,®R) = SUPOfa(I)Y? < 00,
1

where the supremum ranges over all cubés R" with sides parallel to the coordinate axes.
Modulo constants, this defines a norm under whithR*) becomes a Banach space.

From this definition it is not difficult to see that the spaggs(R") bear a close connec-
tion to the space BMQR") of functions ofbounded mean oscillation, introduced by John and
Nirenberg [JN]. Recall that a locally integrable functigrbelongs to BMQR") if

1
If1lx == sup —/Ilf(x)—f(l)ldx <00,

cubeg |11
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wheref (1) denotes the mean gfover the cubd, i.e. f(I) = |I|~1 f, f(x)dx. Equivalently
(cf. [ON]), one has

I £l ~ syp@fu))l/z
with
1
(L.2) Dp(l) = m/I|f(x)—f(1)|2dx.

Rewriting the integral on the right as a double integral gives

1
(1) = W/I/I|f<x)—f(y>|2dxdy

and reveals the relationship withs (1) in (1.1).
In fact, the paper [EJPX] showed that

0.(R"Y =BMOR") if a <0,

while
0.(R") CBMOR") if «>0.

Furthermore, when > 1 (forn > 2) or whena > 1/2 (forn = 1), Q,(R") contains only
constants. Thus the cases of interest are whisrbetween 0 and mid, n/2).

It is also important to note that like BM@"), Q. (R") is homogeneous of degree zero,
namely:

I fodllg,ry = IIfllg.RY

for any dilationg (x) = 8x of R", § > 0. This is in contrast to the case of the homogeneous
Sobolev or Besov spaces, whose homogeneity dependgsee [EJPX] for the relationship
betweenQ, (R") and Besov spaces).

The aim of this paper is the further study@f, (R") and its dyadic structure, in particular
the analogues fo@,, (R") of certain well-known results for BMQ@R").

In Section 2 we first review some background information@p(R") from [EJPX].
We then present higher dimensional analogues of some of Janson’s results in [Ja] and give a
0« (R"-version of the main result (coeerning the relation between BMR'") and its dyadic
counterpart) of Garnett and Jones [GJ].

In Section 3 we obtain a decomposition of functionsgdp(R") into sums of “atoms”
of the type used by Uchiyama [U] (following the work of Chang and Fefferman [CF]) to
represent BM@QR")-functions. (See also Rochberg and Semmes [RS] for a different decom-
position of BMQRR"), and Wu and Xie [WX] for decomposition theorems f@r, spaces
in the unit disk.) The key ingredients in the proof are a quasi-orthogonality lemma and the
characterization oD, (R") in terms of fractional Carleson measures, as well as the duality
theorem from [DX], identifyingQ, (R") with the dual of a certain space of distributions,
HH}a(R”). Thus we may view this decomposition fox, (R") as a kind of dual form of the
atomic decomposition afH* , (R") which was proved in [DX].

We would like to thank the referee for the careful reading of our manuscript.
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2. Thedyadic structure of Q,(R"). We first review some notation and then some
facts about the dyadic structure @f,(R"), which are analogues of similar results for
BMO(RY).

In the following a cube will always mean a cubeRA with sides parallel to the coordi-
nate axes. We will use the notatié/) for the sidelength of the cubg |7| for its volume
(Lebesgue measure), diam for its diameter, and; for its center. Fo$ > 0, we will de-
note byé/ the dilated cube, whose centeriis and whose sidelength &.(7). Similarly,
for x € R*, I 4+ x will denote the translated cube, namely the cube with center x and
sidelength?(1).

By Dy = Do(R") we denote the collection of unit cubes whose vertices have integer
coordinates, and we s@&;, = Dy (R"), k € Z, to be the collection of all dyadic cubes
of sidelength 2%, namely all cubes of the forni = {27%x; x e I} for somel € Dg. The
collection of all dyadic cubes is théh = | J> Dx. Starting with an arbitrary (not necessarily
dyadic) cubel, for everyk > 0 we can partition it into 2 subcubes of sidelengthr®¢(1),
forming the collectiorDy (7). We writeD (1) = | g Dk (I).

We use the notatio =~ V to denote the comparability of the quantiti&sand V,
i.e., the existence of two positive constadts and C, satisfyingC1V < U < CV. For
convenience, we will always use the let@to denote a positive constant, which may change
from one equation to the next. The constants usually depend on the dimensiod may
also depend on and other fixed parameters.

Now, fora € (—o0, 0c0) and any cubd, let

2.1) Wro(l) =Y 22 N dr()),

k=0 JeD(I)

where®; is as in (1.2), and (1) are the dyadic partitions df defined above. As shown in
[EJPX],

9]

Gp(l) < Wpall) <Y 22 (1),
k=0

and henc& s, (1) ~ @ (I) for all « € (—o0, 0). Moreover, forx in the positive range we
have the following two lemmas (Lemmas 5.8 and 7.7 in [EJPX])

LEMMA 2.1 (EJPX).
() Leta € (—o0,1/2). Thenfor any cubel and f € L2(I),

0 o) ~ Wyl
(i) Leta e (—oo,00). Thenfor any f € L2 _(R"),

loc

1F115, Ry & SUPO .o (1) ~ SUPY o (1) ,
1 1

where the supremum is taken over all cubesin R" with dyadic sidelength.
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Observe that if we replacg(l) in @ ¢(I) with a constant; depending on the cubg
we obtain the following identity ((5.1) in [EIPX]):

(22) '”71/, () — erlPdx = @ (D) + (D) — 1.

This implies thatf € BMO(R") if and only if there exist a finite constart > 0 and a
constant; for every cube c R”" such that

|1|*1/ |f @) —crlPdx <.

1

With the help of Lemma 2.1, we can easily obtai@ a(R")-version of the last assertion about
BMO(R").

THEOREM 2.2. Leta € (—oo0,00) and f € L%C(R”). Then the following conditions
areequivalent:
() f e QaRY.
(i) There exist a finite constant « > 0 and a sequence {c,},<p,(s) for every cube
I ¢ R" and integer k > 0 such that

o]

D 2eemE Y- |J|’1/|f(x)—w|2dx§/c.
J

k=0 JeD(I)

(i)  Thereexistsa finite constant « > 0 such that for every cube I c R”,

o0 00

2wk N |J|—1/ tmpy(t)dt <,
0

k=0

JeDi(I)
wherem (1) = l{x € I; | f(x) — f(D)| > t}].

PrROOF. It suffices to show the implication (#>(i). If (i) is true, then for the constant
« and sequencey, one has:

(e.¢]
Wro(l) <y 220k 3 |J|‘1/ |f(x) —cglPdx <«
k=0 JeD(D) 7
which implies
SuUpOyq(I) < Csup¥ye(l) < Ck
1 1
and hencef € Q,(R") , by Lemma 2.1.
Denote bys (-, -) the dyadic distance between two point
S(x,y)=inf{e(I);x,ye I € D}.

Itis clear that
Ix — y| < /nd(x,y).
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For a cubel e D and a functionf € L2(1) let

_ 2
0}d>(1)=(£(1))2a_n/ |f(x) = fD) dxdy

o i B, y)nt2

be the dyadic fractional mean oscillation (6bn 7). The dyadic versioerf’)(R") of 04 (R
is defined as the class of all measurable functiérm R” such that

— @) (1y)1/2
A1l @ gy 7= SUO ¢, (1))7* < 00.
o’ RY T TN e

The following basic fact is Lemma 7.1 in [EJPX]:
LEMMA 2.3 (EJPX). Let o € (—o0, 00). Then, for any cube 7 € D and f € L2(1),

W (D) ~ 0 (D).
This lemma gives immediately thgt Qf;’)(R”) if and only if sup .p ¥ro(I) < o0
(see also [EJPX], Theorem 7.2). Moreover we have
e 09(R") is always a subclass of the dyadic BMO space

BMOW(R") = (f € L2 (R"); sup®s(I) < oo};
1€D

¢ PR = BMODR") if o € (—o0, 0);
e 0 RY =Cifa>n/2.
For these see Theorem 7.3 in [EJPX].

Of particular interest is the following identity (see [EJPX], Theorem 7.9):

e 0u(R) = 0P (R")NBMORY), « e (—o0,1/2).

In other words,Q,(R") can be characterized by means@ﬁf’)(R”) and BMQ(R").
Accordingly, in order to study, (R") it is enough to work with its dyadic counterpart, which
is easily understood.

In what follows, we give a characterization Qﬁd)(R”) in terms of martingales, which
is an analogue of a one-dimensional result of Janson ([Ja], Theorem 10). FdreatHet
Fi be theo-field generated by the partitidh;. Then to eacly € Lﬁ)C(R") we associate the
sequence of functiong = E(f |F;). Infact, f; is the function that takes the constant value
f(I) on each dyadic cubk e D;.

2

THEOREM 2.4. Leta € (—o0,00) and f € Li.

are equivalent:
i) feo R
(i) Thereexistsafinite constant « > 0 such that for each! € Z,

(R™). Then the following conditions

o0
Y 2PME(f - finlP|F) < as.
k=0
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(i) Thereexistsafinite constant « > 0 such that for each/ € Z,

o0 k

> (Zzzaj)qul-i-k—i-l — fiklP|F) <« as.

k=0 " j=0

PROOF. Letl € Z.If I € D;andJ € Di(I) C Dy, then|J| = 271, f(J) = fisx
onJ, and hence

Wio(l) = 2wk 3= gt /J |f () = firk () [Pdx
k=0

JeDy(I)

(2.3) =Yy 22t /, |f @) = firk () Pdx
k=0

=Y 2 E(f = frsxP|F) -

k=0
Thus (i) is equivalent to sypp ¥« (1) < oo, which is equivalent to (i) by Lemma 2.3.
Note that for any nonnegative integeone has, as in the one-dimensional case:

E(f = fiielP1FD) = D E( firja — fir?|FD) .

j=k
Inserting this into (2.3) and changing the order of summation, we get:

00 00 J

DS~ finlF) =) (Z 22"‘">E(|fz+j+1 = i D
=0 j=0 k=0

which implies the equivalence of (i) and (iii).
Moreover, ifa > 0, }"7_,22%k ~ 222/ so (jii) is equivalent to

o
> 2% E(| firja1— firjl?|FD) < 00,
j=0

which is an exact extension of Theorem 10 in [JalRto

For the caser < 0, recalling thatp'” (R") = BMO@ (R"), it follows from Theorem
2.4 thatf € BMO“ (R") if and only if there is a finite constart> 0 such that

E(f - fil’|F) <« as.

foralll € Z and allj > [. (See, for example, remark (b) in Section 11.2 of [FeSt].)

Note thatQ, (R") is translation invariant wherea@&d)(R”) is not. In fact, Theorem
7.8 in [EJPX] states that a functiofis in Q,(R") if and only if all its translates belong to
Qfxd)(R”). More precisely:

LEMMA 2.5 (EJPX). Let @ € (—oo, 0o0) and let 7, be the translation operator
nfx)=f(x—1).
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Then f € 04 (RY) ifandonlyif 7, f € QP (R") for all € R with
supllz: fll @ gy < 00.
(eR" Qo (R")
This suggests an extension of the general result of Garnett and Jones regarding BMO and
BMO@ ([GJ], Theorem, p. 352). In order to do so, we need two lemmas. The first one is a
generalization of Lemma 5.6 in [EJPX] to the case of an arbitrary number of cubes.

LEMMA 2.6. Leta € (—o0,1/2). If acube I is contained in the union of / cubes of
thesamesize, namely 7 c 11U ..U I!, with |17| = |I| for 1 < j <, then

! 20 -1) . .
(2.4) Sp(l) =y @)+ == 3 IfUD = fUHP
j=1 1<i<j<l
and
!
(2.5) Wrol) < cl(Z VoI + > |fU) - f(I-’)IZ) :
j=1 1<i<j<l

PROOF. The proofis similar to that of Lemma 5.6 in [EJPX]. First, using identity (2.2)
with the constant; = ¢ := =131, f(I'), we have

l
®p(I) < '”_l/, |f () —cfPdx <) |1-’|‘1/” |f (x) — cl?dx

j=1

Il
MN

(1) + | f(1) —cl?)

~.
1
AN

! 2
®p(17) + (1—12 lfal) - f(I")|> }

-

j=1 i=1
iy =D i iy2
=D \@rUD+ ==Y 1fUh = D)

j=1 i#]

1

; 2(01—-1 : ;

=Y opuh+ X2 Y rah - ran.

j=1 1<i<j<l

For (2.5) we can, as is done in [EJPX], assume by homogeneity thai® + x, with
19 = [0, 1]" andx = xle! + ... + x"€", wherex’ € [0, 1) and€ is the unit vector in the
ith coordinate direction. Then eadh in the statement of the lemma can be assumed to be
of the form1/ = 1% + v/, wherev/ is a vector whose coordinates are 0's and 1's. There
are at most 2 such choices, and any/ which is not of this form would be superfluous and
would just add to the right-hand-side of (2.5). Note that’if= 0, we need only consider
thosel/’s for which the vectow/ has a zero in théth coordinate. In [EJPX] it was assumed

x?=...=x" = 0 and there were only two cubes containing.e./ = 2).
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Now supposé is a nonnegative integer. Following the notation in [EJPX], we denote by
Dj the unionUlj=l Dr(I7) of thel2"% dyadic cubes of sidelength® contained i1 U
I' If Iy € Dy(1), then

= [0, 27 +x+tke +---d,

wherer] is a number of the fronmz—k, m an integer, 0< m < 2*. Now the cubel? =
[0,27K)" + tlel + ... 1ie is in Di(19), so Iy = IP + x is contained i dyadic cubes
Ilu UI’ each of whichis irD}’. Herel is the same number of cubes as in the statement of
the Iemma In fact, if the point+#; tet 4. t; €' belongs to the cubl;(1 € Dy, then the other
cubes are given bli,/ = Ikl 27*v/ where the vectorg/, 1 < j <[ are as above (depending
on the number of nonzero coordinatéf x). Note that ifx’ is an integer multiple of 2¢, it
is possible thaty is contained in less thadrcubes, but we can always useubes.

Applying (2.4) tol;, we get

I
o20-1 , ~
qsf(lk)ngbf(I,j)Jr(T) Z |FUh — DI

/'—1 l<i<j<I

_anf(z) 2(1 b Yo+ 2N = U+ 27D P

1<i<j<l

Again following [EJPX], let us denote b&,? the set of/ € D} such that/ +27%v/ e Dj for
j =1,...,1. Since differentl; in D (I) corresponds to dif'fereri‘;{l in DY, if we sum over
all Iy € Dy(I) and over alk > 0, we get

wf,a(l)=§j Y 2& e

k=0 I; €Dy (I)

<122<2°‘ MEN T @)

JeDy

22@ DENTOY T U2 = I+ 27D

JeDQlsi<j=<l

2(l 1)

(2.6)
1
<Y Wpal)

j=1

+2(1 1)22@ ENYONT U 2D = f 272

JeDYlsi<j=<l

Continuing as in [EJPX], fix > 0, a cube/ € D?, and vectors’ andv/. For simplicity,
write Jo = J +27%Vi, Ko = J +27%v/. Then as in [EJPX] we have two sequences of dyadic
cubesio c J1 C --- C JyandKo C K1 C --- C K, with sidelengthg(J,) = 27%*" and
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Jn = K, being the smallest dyadic cube containifggand Ko. Thus we can repeat estimate
(5.14) in [EJPX], using Cauchy-Schwarz and the fact ti&tl,) — f (J,—1)? < 2"® ¢(J,):

m
27 |f(Jo) = (K> < C Y r(@5(Jy) + Py(Kr)) .

r=1
Note that sincd1 U --- U I' c [0, 2], we must haven < k + 1. Moreover, in the case
m =k + 1, J; andK; must bel’ andI/ for somei, j, 1 <i < j < [. Inthis case we end up
with the following analogue of estimate (5.15) in [EJPX]:

k
28 1fUo) = f(Ko)I? < C Y rA(@s(J) + P(K) + ClFUN = fUDIZ.
r=1

Now we need to sum over all € D? and all choices offo = J + 27*v/ andKo =
J+2%/ 1<i < j<I. Aspointed outin [EJPX], the cubes andK, in (2.7) belong
toDf_,, 1 < r < k. Conversely, each cub¥ e D}_, corresponds to &, or K, only for
thoseJp and Ko which lie adjacent to the boundaries of its @yadic subcubes of sidelength
2-k+r=1 (otherwise bothly and Ko would lie in a dyadic cube of sidelength’2"—1, thereby
makingm < r — 1). Thus there are at most2” " choices ofJy or Ko corresponding to
J' € Df_,. Forthe casen = k + 1, in which we apply (2.8), each culié, 1 < j <, can
appear ag; or K for at most 42"~Y* choices of/g or Ko. Thus we get

YD U+ = fU 27D

JeDY1si<j=l

k
=cY Y 20D g £ c2m P S iy - a2

r=1JeDy_, 1<i<j=<l

Finally, summing over alt > 0 and lettings = k — r, we have

Y 2@k NN pg 4 270 — £+ 2702

k=0 JEDO 1<i<j<l
r= lJ’eD* 1<i<j=<l
oo 00
=C Z Z Z r22(nfl)r+(2a7n)(r+s)¢f(J/)

r=05=0J'eD}

o0 . .
+CY 2% Y il — fahP

k=0 l<i<j<l

_CZ 22(2a r Z Z Z 2(205 ")Sgb (J)

1<j=<ls=0 J'eDs(1})
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+CY 22V N pah = faDP

k=0 l<i<j<l
<C ) WraUH+C Yo IfUh = fUNHP,
1<j=l l=<i<j=l

sincea < 1/2 implies thaty 32 , 2*~Dk and Y2 ) r2222=Dr gre finite. Inserting this into
(2.6), we get (2.5). Note that the constéhtappearing in (2.5) can be replaced by a constant
depending only on the dimensiarandq, since, as explained above, we can assurme”.

The second lemma required is an extension of Lemma 6 in [R].to

LEMMA 2.7. Suppose J is a fixed dyadic cube in R”, with sidelength 2% for some
K € Z. Let I c R" be a cube (not necessarily dyadic) of sidelength 2, k € Z, and suppose
t € R". Consider theintersection (I 4+t) N J of the translated cube 7 + ¢ with the fixed cube J.
Let 1/ be the smallest dyadic cube of sidelength at least 2M"- X} which contains (7 +1) N J,
and let ¢(I)) = 2L. Definem (1, t) asfollows:

i if|ld+nNnJ|=0,setmy(,t) =0;

iy if|[d+0n\J|l=0(@(ed+t)CJ),setmy(I,t)=L—k;

@iy if|d+p\J|>0and|(I+r)NJ|>0,setmy(I,t) =max0, K —k}.

Then for every nonnegative integer M,

(2.9 Ht e R :m (I, 1) > M}| < 2K+Dn=M

and for p € (0, o0),

o
(2.10 / (my(I,0)Pdt < 2<’<+1>”+121P2*1 < CpplJ| <00,
R* =1
ProOF. By definition,m (1, t) > 0 in all cases. Moreover, the culige C J implies
thatL. < K and thereforen; (1,r) < max0, K — k} in all cases. Ik > K, thenm (1, 1) is
identically 0 and there is nothing to prove. Thus we may assurek, and prove (2.9) for
integersM withO < M < K — k.
Since (2.9) is translation invariant ih, we can fixJ = [0, 2X]", and assumé =
[0, 2K1". Observe thati;(I1,1) > M is equivalent to the fact thdt+ ¢ intersects/ (nontriv-
ially) but every dyadic subcub& c J with sidelength¢(J) = 2¢*M does not contai + 7.
Thus for each such dyadic subcubewe get a set of vectors

Sy ={t eJ'; I +tisnotcontained i’}
with volume|S,/| equal to 2+Mn _ (2k+M _ 2kyn |n addition, we have the set
So={eR:|I+0)NJ|>0,|I+1\J|>0}
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with volume|Sp| equal to(2K + 2ky" — 2K7 Thus

teR imy@y>M)= Y |Syl+I%l
J'€Dg_k—m(J)
— 2(K—k—M)n(2(k+M)n _ (2k+M _ 2k)n) + (2K + 2k)n _ 2Kn

=2Kn1— @ — 27"y 4 2K + 2Ky — 1

< 2Knp2=M 4 (20 — 1)2¢K)
< 2(K+l)n—M7

and (2.9) holds.
Now for p > 0 one has:
K—k
[ onstanrar =3 171 € Ry rny = 1)
R 1=0
K—k
<Y Pl{teR im0 >1-1)|
1=1

o0
< 2(K+1)n+l Z lpzfl ,
=1

proving (2.10).

With these two lemmas we have the following analogue of the result of Garnett and Jones
(see also Theorem 5 in [Ja] for a one-dimensiapalversion):

THEOREM 2.8. Letw € (—o0, 1/2). Suppose F isafunction on R" x R" such that for
eacht e R", F(t,-) € Qfxd)(R”) with support in a fixed dyadic cube, and fRn F(t,x)dx = 0.
Moreover, assume || F (, ')”Q((yd)(Rn) is essentially bounded as a function of ¢. Then for every
N € (0, 00), the averaging function fx belongsto Q. (R"), where fy is defined on R" by

2 /—
( , X t)d .

PrROOF. We proceed by analogy with Janson’s proof in the case of the circle (see [Ja]).
Set f;(x) = F(t,x) andh,(x) = F(t,x +t). LetJ denote the fixed dyadic cube which
contains the support of, for everyz. Assume thaf is a cube irR" (not necessarily dyadic)
of sidelength 2, k € Z. Consider the translate+ ¢ for somer € [—-N, N]*. We want to

nx) =

estimately, o (I) = ¥y, o (1 +1) interms of|| f; || 0 Ry More specifically, we want to prove
the estimate
(211 Whall +0)72 < Clmy (1,0 + DI fill g o)

wherem (1, t) is the integer defined in Lemma 2.7. There are several cases depending on the
nature of the intersectiotd +1¢) N J.
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The trivial case is when the measusé + t) N J| = 0, in which case Lemma 2.7
definesm ; (1, t) to be zero, and on the other hayid= 0 almost everywhere oh+ ¢ gives
Vol + t)=0.

The next case is that in whidkZ + 7) \ J| = 0, or more simply (if we consider closed
cubes) +t c J . Thenl + ¢ is contained in the union of at most adjacent dyadic cubes
of equal sidelength, namely+t c 11 U--- U I;, with €(I;) = ¢(1) = 2 for1 < j <1,

I; dyadic, and < 2". Moreover, if I/ is the smallest dyadic cube containifig+ ¢, then
LU.---Ul C I,,.
By Lemma 2.6,

!
(W, oI +0)Y2 < CI(Z(wf-,,a(zj>)1/2+ oAU - ﬁ(1k>|)
(2.12) j=1 1<j<k<l
< Clfill g, +C D 1AUT) = fdol,
1<j<k<l
where the constants depend onlyoandn (since! < 2"). For each cubé;, consider the
sequence of dyadic cubds = J; o0 C Jj1 C - C Jjm = I/ With £(Jj;11) = 20(J},).
Herem = L — k, wheret(l)) = 2L, and this is exactly the integet; (I, r) defined by
Lemma 2.7 in this case. Recall (see (5.4) in [EJPX]) thdt i J then|f(I) — f(J)? <
(J1/1IDD@f(J). Thus

I fi () — fill)] < Z lfi(Jji) — fr(Jji-D| + Z | fr (Jk,i) = fr(Jk,i-1)]

i=1 i=1

m m
<223 (@5 (Y4 272 (@ ()Y
i=1 i=1

< 22 (L o)1 £

Inserting this in (2.12), we get (2.11).

The remaining case is that in whidh+ ¢ intersects bothy/ and its complement, i.e.
[(I+)\J| > 0and|(/+1)NJ| > 0. Againwrite/ +¢ C I1U---UI;, with£(I;) = £(]) = 2k
forl < j <1, I; dyadic, and < 2", and use Lemma 2.6 to get inequality (2.12).

Now for each pairj, k, we have three cases. If boih and ;. have interiors which are
disjoint from J, then f;(I;) = f;({x) = 0. If both I; and; are contained iy, we proceed
as above, using the fact that in this case K, wheret(J) = 25, andm (I,t) = K — k, so
if L is as above (i.e((1)) = 2L), thenL — k < m(I,t) . Thus we again get

L)) = fiTl < 2% my (1O fill g oy -
Otherwise, one of these two cubes, gaymust have disjoint interior witll, while the other,
I;, must either contain or be containedinSince f; is supported irJ, this givesf; (Iy) =0
and| fi(1;) — fi(l)| = | f: (I))I.

If 1; > J, thenf,jﬁ(x)dx = [, fix)dx = [q fi(x)dx = 0o f;(I;) = 0 and
| fiIj) — fi(l)] = 0=my(I,1) (sincek > K). Otherwisel; C J, hence we le¥/;; be the

0P R
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sequence of dyadic cubes with= J;o C J;1 C --- C J;m = J, Where again in this case
m=my(l,t) =K —k,andl(J;;11) = 2¢(J;;). Thus we can write

|AUDI=1/UT) = fi(DI <Y1/ = -] <272 (@572

i=1 i=1

< 22my O fill g g -

Inserting the estimates for both cases into (2.12), we again get (2.11).
Finally, in order to estimaté¥y, ,(1))Y/2, we note that ¥, (1))'/?> may be regarded
as a weighted.? norm onl x I by writing (see [Ja], (10)):

Wia(l) =) 22k " @)

k=0 JeD(I)
= 22(211711)](71 Z |J|*2/ / If(x) _f(y)ldedy
k=0 JeDy(I) JJJ
:/I/IIf(x)—f(y)|2<|I|22 3 2(2a+n)klxj(x)xj(y))dxdy'

k=0 JeDy(I)
Applying Minkowski’s integral inequality to
=@ [,
[7N)N]ﬂ
we get

(Wrya(D)Y? < 2N)™ /

(W, (1) 2d1
[-N,N]"

<C@N [ )+ DIl g e
[—N.N]" @

< Csupl|F(t, )l @ mn (1+ (2N)7"/
: 0L R -

@+ @)D

my(l, t)dt)

< Csup||F(, )l y@ gn
up 0 R

by (2.10) in Lemma 2.7. This shows thét, (/) is uniformly bounded (by a constant
depending on the volume of) when I is a cube of sidelength*2for any integerk. By
Lemma2.1fy € Qu(R"), with norm

ny < .
lfnllo,rRy < Cn,y ISEI:{EHF(L )”Q((xd)(Rn) .

3. Atomic decomposition for Q,(R"). We follow the terminology of [FJ], Section
4, for the following:

DEFINITION 3.1. We call a functior; a (0, co)-atom if there exists a cubke c R”
and integergv; > 1 andN> > 0, such that:
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(@) supp; C 3,
(b) |DYa;(x)| < @), for DY = (8/dx1)"t---(3/0x,)" and|y| < Ni;
(©) Jrx"ar(x)dx =0, for|y| < Na.

Uchiyama proves (cf. [U], Lemmas 3.1-3.4) thae BMO(R") if and only if f can be

written as
f= Z sjaj
1€D
with {a;};cp a sequence of0, oco)-atoms ands; },;<p a sequence of coefficients such that
the measurg = Y, [s|2118(x, (1)) Satisfies the Carleson condition

lelle == supu(S) /1] < oo.
1€D
Hered(, ;) is used to denote the unit mass at the peint) in the upper half-spaclé’j:rl =
{(x,1); x € R",t > 0}, andS(/) denotes the “Carleson box” above the cubee.

S ={(y,n) eRM ye,0<1 < (D).

This condition on the measure is equivalent (cf. [FJ], Section 4) to the following condi-
tion on the coefficients (which we will also call the Carleson condition):

1 1/2
Hsr}repllc = (sup— > |s,|2|1|> <oo.

I1eD |I| Jcl

In fact, in Uchiyama’s result, condition (b) on the atoms is replaced by the Lipschitz
condition||ay|Lip1 < o(I)~1, where we usd f [|Lip1 to denote the Lipl-norm of € C(R"),
namely

I lps = sup L= SO
x#y lx — yl
and in condition (c) Uchiyama ha$, = 0. In [FJ] the result is stated with more smoothness
and cancellation conditions on the atoms.

We will extend this result t@), (R") for o € (0, 1). There is a similar characterization
of 0, (R") in terms of wavelets, given in [EJPX], Section 6, whose proof is based on that of
Meyer [M] for the case of BMO. However, for the atomic decomposition we cannot assume
orthogonality and we need to compensate wjtiasi-orthogonality, as in Uchiyama [U]. The
idea of the quasi-orthogonal decomposition goes back to Chang and Fefferman [CF] (see also
[St], Section IV.4.5).

DEFINITION 3.2. Fora € (—o0, 00), I € D ands = {sx}x<p (a Sequence associated
to all the dyadic cubes iR"), let

n—2a
(K
Usall) =) (%) sk 1.

KCI
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We say thalsk } kep IS Cy-Sequence provided that

1/2
I{sk}kepllc, = (SUpUsa(1)> <o00.
1D

Fora = 0, this is just the Carleson conditidifsx }xk<pllc < oo above. Note that for
a > 0, aC,-sequence is also@-sequence, since

Uso(I) < Use(I).

Before we continue we need to recall a basic geometric fact about cuBgs I 1, J
are cubes{(l) = at(J),andbl N cJ # @ for some positive numbets b, c, then

I C(a+ab+c)J.

In particular, if we restricf to be a dyadic cube, then for a fixddhere are at mostL + » +
¢/a)"™ such choices of.

The next lemma extends Uchiyama’s quasi-orthogonality result, Lemma 3.3 in [U] (see
also [St], Lemma 4.5.1).

LEMMA 3.3. Let j € N and suppose {sk }xep iSa Cqy-Sequence. For integers! < m,
consider a collection F of dyadic cubes such that 2/ < ¢(K) < 2" for every element K of F.
Define

(3.1) f&x)=) skak(x), xeR",
KeF

where the functions ag satisfy:

(d) suppag € 2/K;

(0) llakllupr < 277 (LK) ™%

(¢) Jfrrak(x)dx =0.

If @ € [0, 1), then there exists a constant C, independent of the choice of I, m and F,
such that

0]

11152 < €25 3 |sk|PL(K)"
KeF

and

(ii)

// | Y ker xypeaik) Sklak @) —ag M1

| B dxdy < C2%1(=® Z Isk|20(K)" 2 .
x—y

KeF
PROOF. Sincea > 0, {sg} is alsoCo-sequence and therefore part (i) is just Lemma 3.3
in [U]. We omit the proof since we will repeat the argument for the proof of part (ii).
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Suppose/, K € F with £(J) < £(K)and 2J N2/ K # @. Then

lak (x) —ax (Wlay(x) —ay(y)| J
, , _ , o xdy
2iJn2i K J2i Jn2i K lx — y|"

(3-2) < 272Ky Loyt / x — y|Z"2 dxdy
2iJ J2iJ

S C2](l1720!)£([()71£(])11+1720( .
Now for each cub& € F and integek > 0, let
Gi(K)={J e F;e(J)=2"%ek)and 27 N2/K + 0} .

Take$2 to be a bounded set iR, so that the number & e F for which 2 K N 2 # ¢ is
finite. Thus if we integrate oveR x §2, we can, after expanding the square inside the integral,

interchange the order of summation and integration (since the sum is finite) and use (3.2) to

get

2
// |Z{K€.7-—:x,y€2-/K}SK[aK(x)_aK(y)]| dxdy
2J2

|x — y|n+ee

lak (x) —ax (Y)llas(x) —ay(y)l dx
lx — y|n+20z

sZMi > |s1|/

KeF k=0 JeGi(K) 2/JN2/ K ,/21102/1(

oo
<CY D skl Y Issl2T k) ey

k=0KeF JeGr(K)

s 1/2
< C2](11720!) Z 2k(n+12a)< Z |SK|2€(K)I120!>

dy

k=0 KeF
2 1/2
(2 (30 ) ecwr)
KeF “Gr(K)
° 1/2
< C2](11720!) Z 2k(n+12a)< Z |sK|2£(K)n20!>
k=0 KeF
' 12
X < Z Z ISJ|22(]+I<)HZ(K)I120!>
KeF Gi(K)
s 1/2
< C2j(n72a)z 2k(n+12a)< Z |SK|2€(K)n2a>
k=0 KeF

1/2
x < Z ISJ|222jn+k(2n2a)€(J)n2a>
JeF

oo
S C22j(l’l—(¥) Z 2—k(1—a) Z |SK |2£(K)n—2u
k=0 KeF
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< C22 N sk |PL(K)" % (sincea < 1).
KeF
Note that we have used the the basic geoméaigt above (see remark before the statement
of the lemma) to bound the cardinality 6f (K) by a constant multiple of 2% and the
cardinality of{K : J € Gy (K)} (for a fixedJ) by a constant multiple of/2.
We have thus proved Part (ii) of the lemma for the double integral over anfy set?2,
£2 ¢ R" bounded, and therefore it holds for the integral dwérx R".

Continuing as in [U], we give an analogue of Uchiyama’s Lemma 3.4 in the case of
0q(R").
LEMMA 3.4. Under the hypotheses of Lemma 3.3,if 0 < o < 1, we have
1fllgurey < €27 (s Mic, -
where the constant C isindependent of the choice of F.

PrROOF. Before we start, let us point out that one can remove all referengeltelow
by settingsxy = 0forK ¢ F.

The proof is similar in notation and outline to that of [EJPX], Theorem 6.2 (see also
[M], p. 154). By Lemma 2.1, in order to estimat¢|l o, r"), it suffices to bound) s, (1) for
arbitrary cubegd of dyadic sidelength. Fix such a culbeand set

A ={K eD;22KN1 #0}.

Note that condition (3 impliesax = Oon[ if K ¢ A(I), so that in the sum (3.1)
defining f, whenx € I, the only cubesk that appear are those witti € A(7). Partition
A(I) into

A1 = A1(I) = (K € A(); 270(K) < (D)},
Ao = Ax(1) = {K € A(D); £(I) < 27¢(K)}.
Then we havef = f1 + f2 onl, where

fi= Z sxag, 1=1,2,
KeA;

and
(3.3 OfaI) <2(0p.a(I) + O a(l)).
To take care off1, we again separate the sum into two parts:

Of (I = Z(I)Za—n // |ZK€.A1 sklak (x) — aK(y)]|2
1,% -
1

I |x — y|n+ee

dxdy

2
SZZ(I)Za—n// ’Z{KeAl;x,yez/HﬁK}SK[GK()C)—aK(y)]’ dxdy
1JI

lx — y|n+2a

2
/|Z{KeAl;XGZ/K,)'¢2-/+1ﬁK}SKaK(x)| dxdy
1

x — y|nte

+ 45(1)201—11 /
1
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= 0(D*"(A+ B).

Take an integem sufficiently large so that™2 > 2,/n, and apply Lemma 3.3, Part (i), with
2 "ar instead ofix and 21" K instead of 2K . Then, sincex > 0,

B A=Cu2YUTY Y sk PUKY T2 < €24 Y sk PU(K)"T
KeA; KeA;

Noting that forx € 2/K andy ¢ 2/t1/nK, |x — y| > |xg — y|/2, we can apply Part
(i) of Lemma 3.3 to the functionsk (x) and coefficients

—n/2—
rky = Sklxk = Y77 Xk y g2iL k)

for afixedy € I, to get

B < c// | skag () |xx — y| 22 dxdy
{KeAp;xe2/K, )¢2/+1\/_K

—c [1 & axoaxlfagydy

KeA;
(3.5) < c2%n / > Ik lPeK) dy
KeAy
< c2in Y ek [ bk — 2 dy
K N2/
< €22 Y IskPeK)" 2
KeA;

Thus (3.4) and (3.5) give

Ofpa(l) < C2MUI* " Y |sk|PL(K)" ™

KeA;
0(K)
@9 s 33w (W0)
re&H Kl e

< C2%" sup Uso(I'),
I'eE)

where we have used the notati(¥) to denote the collection of (at most)xdyadic cubeg’
with ¢£(1") = ¢(I) for which I’ N 31 # ¢. Note that fork e Az, we havet(K) < 277¢(I)
and 2K N1 # ¢, which impliesk ¢ 31, hencek C I’ for a uniquel’ € £(I).
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Now for f2, by the Lipschitz condition (h above, and using the fact that for every dyadic
cubek, |sk|? < Usqy(K), we have

2
_ 20—n | Y kea,sklak (x) —ax (]|
0 (D) = CED) fl /1 T dxdy

2
< e fl /1 ( > |sK|(2fz(K>)1> x — y|*" 7 dxdy

KeA;

2
< CZ(I)ZH< sup Us,a(lo)( > (21'2(10)‘1) ()

KeA; KeA;
2
o) )
< C| sup Usy(K ;
= (Ke,fz oo )>(K§42 270(K)

< C( sup Us,a(K)>(i Z 2k>2

KeA; k=1KeAy, 2/ 0(K)=2k¢(I)

(3.7)

< CZZj"( sup Us,a(K)) )
KeA;
Here we have again used the geometric fact that for @aehV, there are at most(2tb”
choices ofK € A, with 27¢(K) = 2%¢(1).
Therefore, by estimates (3.33.6) and (3.7), we conclude

(38)  Opall) <C2% ( sup Uso(I')+ sup Us,a(K)> < C2%V(sk )
I'e&(I) KeAx(I) ¢
for every cubel of dyadic sidelength. By Lemma 2.1, we hayee Q,(R") with norm
I fllg,rm < C2j"||{s1<}||ca. Note that nowhere in the proof did we use the number of ele-
ments ofF.

Before getting to the main theorem of this section, we need to review some results from
[DX]. We first state a lemma which is a combination of Lemma 1.1 in [FJW] and Lemma
3.2in [DX]. Here and below we will denote the Schwartz class of rapidly decreasing smooth
functions onR” by S, and its dual, the space of tempered distributionsShyFor a function
¢ € S(R"), ¢ will denote the Fourier transform gf.

LEMMA 3.5. Fix N € N. Thenthereexistsafunction ¢ : R* — R such that

(1) suppp C {x € R"; |x] < 1}

(2) o¢isradial;

Q) ¢ e C*R");

(4) [Jpx7¢(x)dx = Qif |[y| < N,y € (NU{OD", x¥ = x]"xP?---x)", |y| =
Yi+ Y2+ -+ Vs

(5) [o(pteN?tdr = 1if& € R\ {0}.
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Moreover, if @ € (0,1), f € L2 (R"), anddjifg.q(x, 1) = |(f * ¢)(x)|% 12 drdx,
then thereisa constant C, independent of the choice of f, such that for any cubes 7 and J in
R”, with center x; = x; and with £(J) > 3¢(1),

[ra(SU)) < CLI)"™20s4(]).
Here again S(I) isthe“ Carleson box” over I.

Next, we need to recall the duality result in [DX], identifyir@y, (R*) with the dual of
the “Hardy-Hausdorff spaceHH}a(R”). This space can be characterized by the following
atomic decomposition (Theorem 6.3 in [DX]):

THEOREM 3.6 (DX). Let 0 < a < min{1, n/2}. Define an HH}a—atom atobea
tempered distribution supported in a cube 7 and satisfying:

(i)
@, ¥)| < (Oyo(I)Y?

for all ¢ € S; and

(i)

{a,y)=0

for any ¢» € S which coincidesin a neighborhood of 7 with a polynomial of degree < n/2+ 1.

Then atempered distribution f on R" belongsto HH Ea if and only if thereis a sequence
of HH!,-atoms {a,}, and an I* sequence {%,}, such that f = }_;A;a; in the sense of
distributions. Moreover,

||f||HH1a(Rn)%inf{Z|Aj|; fzzkl,aj}_
J J

As explained in [DX] (see Remark 2 after Lemma 6.2), HH*-atoma is actually
a distribution in the homogeneous Sobolev spéég(R”), and can thus be paired with a
functiony in the dual homogeneous Sobolev spag¢R"), namely a function satisfying

[y @) =y »I?
/R"/R" Ix—y|n+2a dxdy < o0.

In particular, we can take fogr any Lipschitz function with compact support, such as a
(0, c0)-atom. Moreover, approximating in Lf(R”) by functions inS, we see that condition
(i) in Theorem 3.6 extends to the pairingafvith suchy.

We are now in a position to prove the major result of this section.

THEOREM 3.7. Let0 < « < min{1, n/2}. If {a;};ep IS a sequence of (0, co)-atoms,
and {s;},;ep aCy-sequence, then there exists a function f € Q. (R") so that

39 — E srar = lim siar,
( ) f e k— —00,m— 00 Z 1
1eD 1eD, 2 <e(l)<2m

where the convergenceisin §’(R") modulo constants and in the weak-x topology in Q. (R")
(viewed asthe dual of HH!,(R")).
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Conversely, if f € Q4(R") then thereis a sequence {a;};<p of (0, co)-atoms, and a
Cq-sequence {s; };<p such that (3.9) holds. Moreover,

Ifllg.rm = st} -

PROOF. Let{s;};ep be aC,-sequence, anfd; };cp a sequence b, co)-atoms. Note
thata; /4 satisfy conditions (&(c') of Lemma 3.3 withj = 2. Therefore if we denote by
Fk.m the collection of cubeX € D with 2k < ¢(K) < 2™, and set

fim= Y sia;, forkmeZ, k=<m,
I€Fkm

then by Lemma 3.4,

(3.10 I femllourry = Cli{si}lic, »

with a constant independent bfandm. From an analogous result for BMO (see [FJ], The-
orem 4.1, or [St], Proposition 1V.4.5), we know thatlas> —oco,m — oo, fi.m converge
in §’/C and weakx in BMO (as the dual o) to a functionf € BMO. We want to show
that f € 0,(R") and in fact the convergence is weakn Q,(R"), viewed as the dual of
HH!,(R").

First, fork < 0 < m, write

fk,m = fk,O + fO,mo

Supposgy is an HH?! -atom, supported in a cuble Let I be the smallest concentric cube
containing/ with dyadic sidelength, sa§(7) = 2’.
Then for 0< m < p, we have, by condition (i) in Theorem 3.6,

[(fom = fops P12 = {fmps )12 < COy,, (D) < COy,, (D).

If m is sufficiently large 2 > r — 2), we have/(K) > ¢(I)/4forall K € Fm,p, and hence
we can repeat the calculations leading up to estimate (3.7) in the proof of Lemma 3.4 (with
j=2,F =FpupandAr = {K € D; £(K) > £(I)/4,4K NI # #}) to get

00 2
Oy pall) = C< sup Us,a(K))<Z 3 2—k)

KeA, k=1KeF, , L(K)=2%¢(T)/4
2
4 2 -
Scznn{mnca( Y 2 ") :
k>m+2—r

This shows{ fo,n — fo,p, 9) = 0 asm, p — oo.
To show( f;.0 — fi,0, 90 — 0 asqg, k — —oo we can use estimate (3.6), since forin
Fykrq <k <r—2,wehavel(K) < £(I)/4. This means that

(fg.0 = fro. 91> < COy, (D)
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n—2ua
; ¢(K)
<c2 Yy |sK|2<w,)> ,

[/Eg(i) KeFyr . KCI'

where

EN)y={I'"eD; eIy =), I'N3I £ 0} .
Now £(I) has at most’5elements, and for each of the cublése £(1), the finiteness of
Us(I') implies that

n—2u
Z (LK,)) |s1<|2 — 0 asq,k— —o0,
KeFyx KCI' e’

giving (fy.0 — fx,0, 9) = 0asg, k — —oo.

We have thus shown that lim _ oo m— oo {fk.m» g) €XiSts for anyg which is anHH}a—
atom, or a finite linear combination of such atoms. Since the finite linear combinations of
HH?,-atoms form a dense subset of the predda,(R"), and by (3.10) the sequence
{ft.m} is uniformly bounded inQ, (R"), we conclude thajf ,, converge weak-in Q,(R")
to some function inQ, (R"). This must be the same as the functiprithe weakx limit in

BMO), sinceH*(R") c HH?,(R") (see [DX]). Thusf € Q4(R") with
(311 I fllo.rmy < Clifsk}ic, -

Now let f € Q4 (R"). For the atomic decomposition, we will follow the construction in
the proof of Lemma 3.1 in [U], which in turn is based on [CF]. kebe as in Lemma 3.5.
Then we can use Calderén’s reproducing formula to obtain:

o0 d
£0) =/0 @6 N

dyd
=2 [ a-n60 H0 T
T) t

IeD
=) i),
I1eD
whereT (1) is the upper half of the “Carleson box”, namely

T() ={(y,1) eR Y ye ey 2 <t < (D)),

and the convergence is in the sense of distributions modulo constants &R /C—
see, for example, [FIW], Appendix), or alternatively, in the wealense in BMO (see [St],
Section 1V.4.5.3).

From the support and cancellation conditionssomve can conclude that is supported
in 3/ and[RnxVbI(x)dx = 0 for|y| < N = N». Moreover, as in the proof of Lemma 3.1
in [U] (for higher derivatives see also [St], Section IV.4.5.3), we can differentiate inside the
integral to obtain

v y dydt
Dy by (x)] = / (Dx ¢ (x — ) (e * () ——
T) t
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o) 1/2 dvd 1/2
=2l |— yat
< ”Dy¢”L2</ T 1dt) (f |(¢,*f>(y)|2—>
o2 TI) t

dydt\Y?
< Cqs,ym)"/“(/m) (¢ * f)(y>|2y7t) :

Thus if we leta; = by /s;, where

1/2
s,=cN2|1|1/2( / |(¢t*f>(y)|2rldrdy) ,
()

andCly, is so chosen to be larger thah, ,, for all |y| < N2, thena, is a(0, co)-atom and
f= Z[ED sray in S/(R”)/C.

In order to verify that{s; };<p is aCy-sequence, we apply Lemma 3.5 to obtain that for
anyl € D,

Usa(I) = CUNX™" ()" 211" fT
J<I

<cEun* "y fT |0 NI didy

JCI
— (e /S @ DO drdy
S COf,O((sl) 9

(¢ * )%~ drdy
)

so taking the supremum ovér

(312 {sr}lc, = Clfllguwre -

Finally, note that by the first part of the theore;n,s;a; converge in the weak-sense
to a limit in 9, (R"), and since we already have the weakenvergence in BMO tg, this
limit must be f. By (3.11) and (3.12)|| f 1l o, r") = I{s1}llc,, as desired.

This completes the proof of the theorem.

Note that in proving the weak-convergence i@, (R") of the sum of atomy_ s;a;, we
did not use the full force of Lemma 3.4, but rather only the case2. In fact, using Lemma
3.4 and the following lemma of Uchiyama (Lemma 3.5 in [U]), we can prove a stronger result.

LeEMMA 3.8 (Uchiyama). Let I c R" be a cube with center x;, and suppose b €
C1(R") satisfies
(i) [reb(x)dx =0;
(i) 1b)| < €N /@) + |x — xg )"
(i) |9y, b(0)| < (DY) + |x — x "2 fori =1, ..., n.
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Then there exists a sequence {a; }?’;0 of functionsin C1(R") such that

o
b(x) =Y 277" g (x),
j=0
and for each j the function a; satisfies conditions (&) —(c’) of Lemma 3.3 (with respect to the
cube ).

We will call a functionb € CL(R") satisfying conditions (i)— (iii) of Lemma 3.8 a
(0, o0)-molecule (see [FJ], Section 3). Note that ev@yoo)-atom is also a molecule (up
to a constant). Conversely, the lemma may be thought of as the decomposition of a molecule
into atoms. We now state the extension of Theorem 3.7, namely the weahvergence in
Q«(R") of a sum of molecules. An analogous result for BMO is Theorem 4.1(b) in [FJ].

THEOREM 3.9. Let 0 < o < min{1,n/2}. If {b;};cp is a sequence of (0, co)-
molecules, and {s;};<p a Cy-Sequence, then there exists a function f € Q,(R") so that

f:ZS[blzk lim N Z sibr,

— —00,m—>

[eD 1eD, 28 <e(l)<2m
where the convergenceisin §’'(R") modulo constants and in the weak-x topology in Q. (R")
(viewed asthe dual of HH!,(R")).

PROOF. Let{s;};ep be aCy-sequence, anfli;};p a sequence afd, co)-molecules.
By Lemma 3.8,

(e.¢]
br(x) =) 271" a ;(x),
j=0
where eachu; ; possesses properties)@(c) of Lemma 3.3 with respect th and j. Fol-

lowing the proof of Theorem 3.7, we denote By ,, the collection of cubeX € D with
2 < ¢(K) < 2", and set

!
Semi(x) = Z Sy ZZ_j("+l)a1,j(x), fork,m,leZ, k<m,l>0.
I1€Fim j=0

With help of Lemma 3.4 we obtain that

l
Z s Z zfj(nJrl)al)j

I€Fkm j=0

1
2—Jj(n+1)
(3.13) jgo

I frem.illo,RY) <

Qa(RY)

IA

> siar,

Iefk,m

Qa(RY)

o0

< C Y 277DMs Y e,
j=0

< Clitss}le,
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with C independent ok, m and!l. Similarly,
I2
I femiy = femiollggwey < C Y 27720 (s} |le, — O asly, I — oo.
Jj=h
Thus lim_ « fi.m.1 €Xists INnQ, (R"), and since

o0
FimG) = im_ fin 1) = > s Z 277D g, 1 (x)
IeFrm =0
converges pointwise, an application of Fatou’s lemma gf¢gs = lim;_ « fi.m.1 iN Oy (R?).
Moreover, by (3.13),
il’lnpllfk,mllga(R") < Cli{st}llc, -

As in the proof of Theorem 3.7, in order to show thfat, converges weak-in Q,(R"), it
remains to show that lip — oo m— oo { fk.m, g) €Xists forg in a dense subset of the predual
HH!,(R").

Again write fi m = fr.0 + fom for k < 0 < m, takeg to be anHH}a-atom supported
in a cubel, and let/ be the smallest concentric cube containingith dyadic sidelength.
Then by condition (i) in Theorem 3.6, Fatou’s lemma, and Minkowski’s inequality, we have,
forO <m < p,

[{fon = fop 9 < C(Ofy—fo., a(INY?
< C(Ofy,—fop aDNM?
< ClIminf (0, fo .« (D)2

(3.14) Lo .
< Climint Y~ 27700 (0, o (D)2
— 00 j=0
o0 . ~
=CY 27700y, o (Y2,
j=0
where
hj = Z SKAK,j -
KeFm.p

Imitating (3.7) in the proof of Lemma 3.4 (With = F,, ,, 2" > 2-74(I)), we have

00 2
oo smonaw)(y X 2

KeAa(l) k=1 K e, ,NAa(D), 2] L(K)=2¢0(T)

2
Sczzf"wusk}iia( 2 Zk)

k>m+ j—log, £(I)
= C27 22D s & e(D)?
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Thus

(0,¢]
[{fom = fop. 901 < C27™[{sk e, &) Y 27% — 0
j=0
asm, p — oQ.
Forthe case off; 0— fi.0, 9) ask, g — —oo, we repeat (3.14) with ; now standing for
Y ker,, SKak.j. Assumingg <k < log, ¢(7) — j sothatk e F, x implies 2 ¢(K) < ¢(I),
another application of (3.6) in the proof of Lemma 3.4 gives

n—2a
i . LK)
Onjally <C2m 37 37 'SK'Z(M)) ’

ey KeFgn, Kl

where we recall that
ED ={I'eD; ey =), I'N3I + B).

Noting again that£(/) has at most’5 elements, and for each of the cubEse &'(I),

ZKE&IC,KQ,/(6(1()/5(1/))”*2"‘|sK|2 — 0 asg,k — —oo by the convergence of the se-

ries definingUs« (I'), we have that for eacp > 0, 277" Ohj,a(f)l/2 — 0asq, k - —oo.

Moreover, Zf'"Ohj,o[(f)l/2 are bounded by a constant multiple of gup Usq()Y? =

I{sx }kepllc,. This, together with (3.14), implies thaf, o — fk,0, 90 — 0 asg, k — —oo.
The proof of weak« convergence i, (R") is now complete. The convergenceStyC

is proved in Remark 3.2 of [FJ].
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