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Abstract. This paper contains several results relatingQ spaces in several real variables
with their dyadic counterparts, which are analogues of theorems for BMO and forQ spaces
on the circle. In addition, it gives an atomic (or quasi-orthogonal) decomposition for theseQ

spaces in terms of the same type of atoms used to decompose BMO.

1. Introduction. In recent years there has been much interest in a new family of
function spaces, calledQ spaces. These spaces were originally defined by Aulaskari, Xiao
and Zhao in [AXZ] as spaces of holomorphic functions on the unit disk. Following the work
of Essén and Xiao [EX] on the boundary values of these functions on the unit circle, the
definition was extended to then-dimensional Euclidean space by Essén, Janson, Peng and
Xiao in [EJPX].

Fix α ∈ (−∞,∞). For a cubeI in Rn with sidelength�(I), consider the mean quotient
of symmetric differences of a functionf ∈ L2(I) as follows:

(1.1) Of,α(I) := (�(I))2α−n
∫
I

∫
I

|f (x)− f (y)|2
|x − y|n+2α dxdy .

We say thatf ∈ Qα(Rn) if Of,α(I) is uniformly bounded, namely

‖f ‖Qα(Rn) := sup
I

(Of,α(I))
1/2 < ∞ ,

where the supremum ranges over all cubesI in Rn with sides parallel to the coordinate axes.
Modulo constants, this defines a norm under whichQα(Rn) becomes a Banach space.

From this definition it is not difficult to see that the spacesQα(Rn) bear a close connec-
tion to the space BMO(Rn) of functions ofbounded mean oscillation, introduced by John and
Nirenberg [JN]. Recall that a locally integrable functionf belongs to BMO(Rn) if

‖f ‖∗ := sup
cubesI

1

|I |
∫
I

|f (x)− f (I)|dx < ∞ ,

2000Mathematics Subject Classification. Primary 42B35; Secondary 46E30, 47B38.
Key words and phrases. Q spaces, BMO, dyadic structure, martingales, fractional Carleson measures, atomic

decomposition, quasi-orthogonal decomposition.
Project partly supported by the NSERC of Canada and NATEQ.



120 G. DAFNI AND J. XIAO

wheref (I) denotes the mean off over the cubeI , i.e.f (I) = |I |−1
∫
I
f (x)dx. Equivalently

(cf. [JN]), one has

‖f ‖∗ ≈ sup
I

(Φf (I))
1/2

with

(1.2) Φf (I) := 1

|I |
∫
I

|f (x)− f (I)|2 dx .
Rewriting the integral on the right as a double integral gives

Φf (I) = 1

2|I |2
∫
I

∫
I

|f (x)− f (y)|2dxdy
and reveals the relationship withOf,α(I) in (1.1).

In fact, the paper [EJPX] showed that

Qα(Rn) = BMO(Rn) if α < 0 ,

while

Qα(Rn) � BMO(Rn) if α ≥ 0 .

Furthermore, whenα ≥ 1 (for n ≥ 2) or whenα > 1/2 (for n = 1),Qα(Rn) contains only
constants. Thus the cases of interest are whenα is between 0 and min(1, n/2).

It is also important to note that like BMO(Rn),Qα(Rn) is homogeneous of degree zero,
namely:

‖f ◦ φ‖Qα(Rn) = ‖f ‖Qα(Rn)
for any dilationφ(x) = δx of Rn, δ > 0. This is in contrast to the case of the homogeneous
Sobolev or Besov spaces, whose homogeneity depends onα (see [EJPX] for the relationship
betweenQα(Rn) and Besov spaces).

The aim of this paper is the further study ofQα(Rn) and its dyadic structure, in particular
the analogues forQα(Rn) of certain well-known results for BMO(Rn).

In Section 2 we first review some background information onQα(Rn) from [EJPX].
We then present higher dimensional analogues of some of Janson’s results in [Ja] and give a
Qα(Rn)-version of the main result (concerning the relation between BMO(Rn) and its dyadic
counterpart) of Garnett and Jones [GJ].

In Section 3 we obtain a decomposition of functions inQα(Rn) into sums of “atoms”
of the type used by Uchiyama [U] (following the work of Chang and Fefferman [CF]) to
represent BMO(Rn)-functions. (See also Rochberg and Semmes [RS] for a different decom-
position of BMO(Rn), and Wu and Xie [WX] for decomposition theorems forQp spaces
in the unit disk.) The key ingredients in the proof are a quasi-orthogonality lemma and the
characterization ofQα(Rn) in terms of fractional Carleson measures, as well as the duality
theorem from [DX], identifyingQα(Rn) with the dual of a certain space of distributions,
HH 1−α(Rn). Thus we may view this decomposition forQα(Rn) as a kind of dual form of the
atomic decomposition ofHH 1−α(Rn) which was proved in [DX].

We would like to thank the referee for the careful reading of our manuscript.
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2. The dyadic structure of Qα(Rn). We first review some notation and then some
facts about the dyadic structure ofQα(Rn), which are analogues of similar results for
BMO(Rn).

In the following a cube will always mean a cube inRn with sides parallel to the coordi-
nate axes. We will use the notation�(I) for the sidelength of the cubeI , |I | for its volume
(Lebesgue measure), diam(I) for its diameter, andxI for its center. Forδ > 0, we will de-
note byδI the dilated cube, whose center isxI and whose sidelength isδ�(I). Similarly,
for x ∈ Rn, I + x will denote the translated cube, namely the cube with centerxI + x and
sidelength�(I).

By D0 = D0(Rn) we denote the collection of unit cubes whose vertices have integer
coordinates, and we setDk = Dk(Rn), k ∈ Z, to be the collection of all dyadic cubes
of sidelength 2−k, namely all cubes of the formJ = {2−kx; x ∈ I } for someI ∈ D0. The
collection of all dyadic cubes is thenD = ⋃∞

−∞ Dk. Starting with an arbitrary (not necessarily
dyadic) cubeI , for everyk ≥ 0 we can partition it into 2kn subcubes of sidelength 2−k�(I),
forming the collectionDk(I ). We writeD(I) = ⋃∞

0 Dk(I ).
We use the notationU ≈ V to denote the comparability of the quantitiesU andV ,

i.e., the existence of two positive constantsC1 andC2 satisfyingC1V ≤ U ≤ C2V . For
convenience, we will always use the letterC to denote a positive constant, which may change
from one equation to the next. The constants usually depend on the dimensionn, and may
also depend onα and other fixed parameters.

Now, forα ∈ (−∞,∞) and any cubeI , let

(2.1) Ψf,α(I) :=
∞∑
k=0

2(2α−n)k ∑
J∈Dk(I )

Φf (J ) ,

whereΦf is as in (1.2), andDk(I ) are the dyadic partitions ofI defined above. As shown in
[EJPX],

Φf (I) ≤ Ψf,α(I) ≤
∞∑
k=0

22αkΦf (I) ,

and henceΨf,α(I) ≈ Φf (I) for all α ∈ (−∞,0). Moreover, forα in the positive range we
have the following two lemmas (Lemmas 5.8 and 7.7 in [EJPX])

LEMMA 2.1 (EJPX).
(i) Let α ∈ (−∞,1/2). Then for any cube I and f ∈ L2(I),

Of,α(I) ≈ Ψf,α(I) .

(ii) Let α ∈ (−∞,∞). Then for any f ∈ L2
loc(R

n),

‖f ‖2
Qα(Rn)

≈ sup
I

Of,α(I) ≈ sup
I

Ψf,α(I) ,

where the supremum is taken over all cubes in Rn with dyadic sidelength.
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Observe that if we replacef (I) in Φf (I) with a constantcI depending on the cubeI ,
we obtain the following identity ((5.1) in [EJPX]):

(2.2) |I |−1
∫
I

|f (x)− cI |2dx = Φf (I)+ |f (I)− cI |2 .

This implies thatf ∈ BMO(Rn) if and only if there exist a finite constantκ > 0 and a
constantcI for every cubeI ⊂ Rn such that

|I |−1
∫
I

|f (x)− cI |2dx ≤ κ .

With the help of Lemma 2.1, we can easily obtain aQα(Rn)-version of the last assertion about
BMO(Rn).

THEOREM 2.2. Let α ∈ (−∞,∞) and f ∈ L2
loc(R

n). Then the following conditions
are equivalent :

(i) f ∈ Qα(Rn).
(ii) There exist a finite constant κ > 0 and a sequence {cJ }J∈Dk(I ) for every cube

I ⊂ Rn and integer k ≥ 0 such that

∞∑
k=0

2(2α−n)k ∑
J∈Dk(I )

|J |−1
∫
J

|f (x)− cJ |2dx ≤ κ .

(iii) There exists a finite constant κ > 0 such that for every cube I ⊂ Rn,

∞∑
k=0

2(2α−n)k ∑
J∈Dk(I )

|J |−1
∫ ∞

0
t mf,J (t) dt ≤ κ ,

where mf,I (t) = |{x ∈ I ; |f (x)− f (I)| > t}|.
PROOF. It suffices to show the implication (ii)⇒(i). If (ii) is true, then for the constant

κ and sequencecJ , one has:

Ψf,α(I) ≤
∞∑
k=0

2(2α−n)k ∑
J∈Dk(I )

|J |−1
∫
J

|f (x)− cJ |2dx ≤ κ ,

which implies

sup
I

Of,α(I) ≤ C sup
I

Ψf,α(I) ≤ Cκ

and hencef ∈ Qα(Rn) , by Lemma 2.1.

Denote byδ(·, ·) the dyadic distance between two points inRn:

δ(x, y) = inf{�(I); x, y ∈ I ∈ D} .
It is clear that

|x − y| ≤ √
nδ(x, y) .
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For a cubeI ∈ D and a functionf ∈ L2(I) let

O
(d)
f,α(I) = (�(I))2α−n

∫
I

∫
I

|f (x)− f (y)|2
(δ(x, y))n+2α dx dy

be the dyadic fractional mean oscillation (off onI ). The dyadic versionQ(d)α (Rn) ofQα(Rn)
is defined as the class of all measurable functionsf on Rn such that

‖f ‖
Q
(d)
α (Rn)

:= sup
I∈D

(O
(d)
f,α(I))

1/2 < ∞ .

The following basic fact is Lemma 7.1 in [EJPX]:

LEMMA 2.3 (EJPX). Let α ∈ (−∞,∞). Then, for any cube I ∈ D and f ∈ L2(I),

Ψf,α(I) ≈ O
(d)
f,α(I) .

This lemma gives immediately thatf ∈ Q
(d)
α (Rn) if and only if supI∈D Ψf,α(I) < ∞

(see also [EJPX], Theorem 7.2). Moreover we have:
•Q(d)α (Rn) is always a subclass of the dyadic BMO space

BMO(d)(Rn) = {f ∈ L2
loc(R

n); sup
I∈D

Φf (I) < ∞};

•Q(d)α (Rn) = BMO(d)(Rn) if α ∈ (−∞,0);
•Q(d)α (Rn) = C if α > n/2.

For these see Theorem 7.3 in [EJPX].
Of particular interest is the following identity (see [EJPX], Theorem 7.9):
•Qα(Rn) = Q

(d)
α (Rn) ∩ BMO(Rn), α ∈ (−∞,1/2).

In other words,Qα(Rn) can be characterized by means ofQ(d)α (Rn) and BMO(Rn).
Accordingly, in order to studyQα(Rn) it is enough to work with its dyadic counterpart, which
is easily understood.

In what follows, we give a characterization ofQ(d)α (Rn) in terms of martingales, which
is an analogue of a one-dimensional result of Janson ([Ja], Theorem 10). For eachl ∈ Z, let
Fl be theσ -field generated by the partitionDl . Then to eachf ∈ L1

loc(R
n) we associate the

sequence of functionsfl = E(f |Fl ). In fact,fl is the function that takes the constant value
f (I) on each dyadic cubeI ∈ Dl .

THEOREM 2.4. Let α ∈ (−∞,∞) and f ∈ L2
loc(R

n). Then the following conditions
are equivalent:

(i) f ∈ Q(d)α (Rn).
(ii) There exists a finite constant κ > 0 such that for each l ∈ Z,

∞∑
k=0

22αkE(|f − fl+k|2
∣∣Fl) ≤ κ a.s.
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(iii) There exists a finite constant κ > 0 such that for each l ∈ Z,

∞∑
k=0

( k∑
j=0

22αj
)
E(|fl+k+1 − fl+k|2

∣∣Fl) ≤ κ a.s.

PROOF. Let l ∈ Z. If I ∈ Dl andJ ∈ Dk(I ) ⊂ Dl+k, then|J | = 2−kn|I |, f (J ) = fl+k
onJ , and hence

Ψf,α(I) =
∞∑
k=0

2(2α−n)k ∑
J∈Dk(I )

|J |−1
∫
J

|f (x)− fl+k(x)|2dx

=
∞∑
k=0

22αk|I |−1
∫
I

|f (x)− fl+k(x)|2dx

=
∞∑
k=0

22αkE(|f − fl+k |2
∣∣Fl ) .

(2.3)

Thus (ii) is equivalent to supI∈D Ψf,α(I) < ∞, which is equivalent to (i) by Lemma 2.3.
Note that for any nonnegative integerk one has, as in the one-dimensional case:

E(|f − fl+k|2|Fl ) =
∞∑
j=k

E(|fl+j+1 − fl+j |2
∣∣Fl) .

Inserting this into (2.3) and changing the order of summation, we get:

∞∑
k=0

22αkE(|f − fl+k |2|Fl) =
∞∑
j=0

( j∑
k=0

22αk
)
E(|fl+j+1 − fl+j |2

∣∣Fl ) ,
which implies the equivalence of (ii) and (iii).

Moreover, ifα > 0,
∑j
k=0 22αk ≈ 22αj so (iii) is equivalent to

∞∑
j=0

22αjE(|fl+j+1 − fl+j |2
∣∣Fl) < ∞ ,

which is an exact extension of Theorem 10 in [Ja] toRn.

For the caseα < 0, recalling thatQ(d)α (Rn) = BMO(d)(Rn), it follows from Theorem
2.4 thatf ∈ BMO(d)(Rn) if and only if there is a finite constantκ > 0 such that

E(|f − fj |2
∣∣Fl ) ≤ κ a.s.

for all l ∈ Z and allj ≥ l. (See, for example, remark (b) in Section II.2 of [FeSt].)
Note thatQα(Rn) is translation invariant whereasQ(d)α (Rn) is not. In fact, Theorem

7.8 in [EJPX] states that a functionf is in Qα(Rn) if and only if all its translates belong to
Q
(d)
α (Rn). More precisely:

LEMMA 2.5 (EJPX). Let α ∈ (−∞,∞) and let τt be the translation operator

τtf (x) = f (x − t) .
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Then f ∈ Qα(Rn) if and only if τtf ∈ Q(d)α (Rn) for all t ∈ Rn with

sup
t∈Rn

‖τtf ‖
Q
(d)
α (Rn)

< ∞ .

This suggests an extension of the general result of Garnett and Jones regarding BMO and
BMO(d) ([GJ], Theorem, p. 352). In order to do so, we need two lemmas. The first one is a
generalization of Lemma 5.6 in [EJPX] to the case of an arbitrary number of cubes.

LEMMA 2.6. Let α ∈ (−∞,1/2). If a cube I is contained in the union of l cubes of
the same size, namely I ⊂ I1 ∪ · · · ∪ I l , with |I j | = |I | for 1 ≤ j ≤ l, then

(2.4) Φf (I) ≤
l∑

j=1

Φf (I
j )+ 2(l − 1)

l2

∑
1≤i<j≤l

|f (I i)− f (I j )|2

and

(2.5) Ψf,α(I) ≤ Cl

( l∑
j=1

Ψf,α(I
j )+

∑
1≤i<j≤l

|f (I i)− f (I j )|2
)
.

PROOF. The proof is similar to that of Lemma 5.6 in [EJPX]. First, using identity (2.2)
with the constantcI = c := l−1 ∑l

i=1 f (I
i), we have

Φf (I) ≤ |I |−1
∫
I

|f (x)− c|2dx ≤
l∑

j=1

|I j |−1
∫
I j

|f (x)− c|2dx

=
l∑

j=1

{
Φf (I

j )+ |f (I j )− c|2}

≤
l∑

j=1

{
Φf (I

j )+
(
l−1

l∑
i=1

|f (I j )− f (I i)|
)2}

≤
l∑

j=1

{
Φf (I

j )+ (l − 1)

l2

∑
i �=j

|f (I i)− f (I j )|2
}

=
l∑

j=1

Φf (I
j )+ 2(l − 1)

l2

∑
1≤i<j≤l

|f (I i)− f (I j )|2 .

For (2.5) we can, as is done in [EJPX], assume by homogeneity thatI = I0 + x, with
I0 = [0,1]n andx = x1e1 + · · · + xnen, wherexi ∈ [0,1) andei is the unit vector in the
ith coordinate direction. Then eachI j in the statement of the lemma can be assumed to be
of the formI j = I0 + vj , wherevj is a vector whose coordinates are 0’s and 1’s. There
are at most 2n such choices, and anyI j which is not of this form would be superfluous and
would just add to the right-hand-side of (2.5). Note that ifxi = 0, we need only consider
thoseI j ’s for which the vectorvj has a zero in theith coordinate. In [EJPX] it was assumed
x2 = · · · = xn = 0 and there were only two cubes containingI (i.e. l = 2).
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Now supposek is a nonnegative integer. Following the notation in [EJPX], we denote by
D∗
k the union

⋃l
j=1 Dk(I j ) of thel2nk dyadic cubes of sidelength 2−k contained inI1 ∪ · · · ∪

I l . If Ik ∈ Dk(I ), then

Ik = [0,2−k]n + x + t1k e1 + · · · tnk en ,

wheretjk is a number of the fromm2−k, m an integer, 0≤ m < 2k. Now the cubeI0
k =

[0,2−k]n + t1k e1 + · · · tnk en is in Dk(I0), so Ik = I0
k + x is contained inl dyadic cubes

I1
k ∪· · ·∪I lk , each of which is inD∗

k . Herel is the same number of cubes as in the statement of
the lemma. In fact, if the pointx + t1k e1 +· · · tnk en belongs to the cubeI1

k ∈ D∗
k , then the other

cubes are given byI jk = I1
k +2−kvj , where the vectorsvj , 1 ≤ j ≤ l are as above (depending

on the number of nonzero coordinatesxi of x). Note that ifxi is an integer multiple of 2−k, it
is possible thatIk is contained in less thanl cubes, but we can always usel cubes.

Applying (2.4) toIk, we get

Φf (Ik) ≤
l∑

j=1

Φf (I
j
k )+ 2(l − 1)

l2

∑
1≤i<j≤l

|f (I ik)− f (I
j
k )|2

=
l∑

j=1

Φf (I
j

k )+ 2(l − 1)

l2

∑
1≤i<j≤l

|f (I1
k + 2−kvi )− f (I1

k + 2−kvj )|2 .

Again following [EJPX], let us denote byD0
k the set ofJ ∈ D∗

k such thatJ + 2−kvj ∈ D∗
k for

j = 1, . . . , l. Since differentIk in Dk(I ) corresponds to differentI1
k in D0

k , if we sum over
all Ik ∈ Dk(I ) and over allk ≥ 0, we get

Ψf,α(I) =
∞∑
k=0

∑
Ik∈Dk(I )

2(2α−n)kΦf (Ik)

≤ l

∞∑
k=0

2(2α−n)k ∑
J∈D∗

k

Φf (J )

+ 2(l − 1)

l2

∞∑
k=0

2(2α−n)k ∑
J∈D0

k

∑
1≤i<j≤l

|f (J + 2−kvi )− f (J + 2−kvj )|2

≤ l

l∑
j=1

Ψf,α(I
j )

+ 2(l − 1)

l2

∞∑
k=0

2(2α−n)k ∑
J∈D0

k

∑
1≤i<j≤l

|f (J + 2−kvi )− f (J + 2−kvj )|2 .

(2.6)

Continuing as in [EJPX], fixk ≥ 0, a cubeJ ∈ D0
k , and vectorsvi andvj . For simplicity,

write J0 = J +2−kvi ,K0 = J +2−kvj . Then as in [EJPX] we have two sequences of dyadic
cubesJ0 ⊂ J1 ⊂ · · · ⊂ Jm andK0 ⊂ K1 ⊂ · · · ⊂ Km with sidelengths�(Jr ) = 2−k+r and
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Jm = Km being the smallest dyadic cube containingJ0 andK0. Thus we can repeat estimate
(5.14) in [EJPX], using Cauchy-Schwarz and the fact that|f (Jr)− f (Jr−1)|2 ≤ 2nΦf (Jr ):

(2.7) |f (J0)− f (K0)|2 ≤ C

m∑
r=1

r2(Φf (Jr )+ Φf (Kr)) .

Note that sinceI1 ∪ · · · ∪ I l ⊂ [0,2]n, we must havem ≤ k + 1. Moreover, in the case
m = k + 1,Jk andKk must beI i andI j for somei, j,1 ≤ i < j ≤ l. In this case we end up
with the following analogue of estimate (5.15) in [EJPX]:

(2.8) |f (J0)− f (K0)|2 ≤ C

k∑
r=1

r2(Φf (Jr )+Φf (Kr))+ C|f (I i)− f (I j )|2 .

Now we need to sum over allJ ∈ D0
k and all choices ofJ0 = J + 2−kvi andK0 =

J + 2−kvj , 1 ≤ i < j ≤ l. As pointed out in [EJPX], the cubesJr andKr in (2.7) belong
to D∗

k−r , 1 ≤ r ≤ k. Conversely, each cubeJ ′ ∈ D∗
k−r corresponds to aJr or Kr only for

thoseJ0 andK0 which lie adjacent to the boundaries of its 2n dyadic subcubes of sidelength
2−k+r−1 (otherwise bothJ0 andK0 would lie in a dyadic cube of sidelength 2−k+r−1, thereby
makingm ≤ r − 1). Thus there are at most 4n2(n−1)r choices ofJ0 orK0 corresponding to
J ′ ∈ D∗

k−r . For the casem = k + 1, in which we apply (2.8), each cubeI j , 1 ≤ j ≤ l, can
appear asJk orKk for at most 4n2(n−1)k choices ofJ0 orK0. Thus we get∑

J∈D0
k

∑
1≤i<j≤l

|f (J + 2−kvi )− f (J + 2−kvj )|2

≤ C

k∑
r=1

∑
J ′∈D∗

k−r

r22(n−1)rΦf (J
′)+ C2(n−1)k

∑
1≤i<j≤l

|f (I i)− f (I j )|2 .

Finally, summing over allk ≥ 0 and lettings = k − r, we have
∞∑
k=0

2(2α−n)k ∑
J∈D0

k

∑
1≤i<j≤l

|f (J + 2−kvi )− f (J + 2−kvj )|2

≤ C

∞∑
k=0

2(2α−n)k
{ k∑
r=1

∑
J ′∈D∗

k−r

r22(n−1)rΦf (J
′)+ C2(n−1)k

∑
1≤i<j≤l

|f (I i)− f (I j )|2
}

= C

∞∑
r=0

∞∑
s=0

∑
J ′∈D∗

s

r22(n−1)r+(2α−n)(r+s)Φf (J ′)

+ C

∞∑
k=0

2(2α−1)k
∑

1≤i<j≤l
|f (I i)− f (I j )|2

= C

∞∑
r=0

r22(2α−1)r
∑

1≤j≤l

∞∑
s=0

∑
J ′∈Ds (I j )

2(2α−n)sΦf (J ′)
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+ C

∞∑
k=0

2(2α−1)k
∑

1≤i<j≤l
|f (I i)− f (I j )|2

≤ C
∑

1≤j≤l
Ψf,α(I

j )+ C
∑

1≤i<j≤l
|f (I i)− f (I j )|2 ,

sinceα < 1/2 implies that
∑∞
k=0 2(2α−1)k and

∑∞
r=0 r

22(2α−1)r are finite. Inserting this into
(2.6), we get (2.5). Note that the constantCl appearing in (2.5) can be replaced by a constant
depending only on the dimensionn andα, since, as explained above, we can assumel ≤ 2n.

The second lemma required is an extension of Lemma 6 in [Ja] toRn.

LEMMA 2.7. Suppose J is a fixed dyadic cube in Rn, with sidelength 2K for some
K ∈ Z. Let I ⊂ Rn be a cube (not necessarily dyadic) of sidelength 2k, k ∈ Z, and suppose
t ∈ Rn. Consider the intersection (I+ t)∩J of the translated cube I+ t with the fixed cube J .
Let I ′

t be the smallest dyadic cube of sidelength at least 2min{k,K} which contains (I + t) ∩ J ,
and let �(I ′

t ) = 2L. DefinemJ (I, t) as follows:
(i) if |(I + t) ∩ J | = 0, set mJ (I, t) = 0;
(ii) if |(I + t) \ J | = 0 (i.e. (I + t) ⊂ J ), set mJ (I, t) = L− k;
(iii) if |(I + t) \ J | > 0 and |(I + t) ∩ J | > 0, set mJ (I, t) = max{0,K − k}.
Then for every nonnegative integerM,

(2.9) |{t ∈ Rn : mJ (I, t) > M}| ≤ 2(K+1)n−M ,
and for p ∈ (0,∞),

(2.10)
∫

Rn
(mJ (I, t))

pdt ≤ 2(K+1)n+1
∞∑
l=1

lp2−l ≤ Cn,p |J | < ∞ .

PROOF. By definition,mJ (I, t) ≥ 0 in all cases. Moreover, the cubeI ′
t ⊂ J implies

thatL ≤ K and thereforemJ (I, t) ≤ max{0,K − k} in all cases. Ifk ≥ K, thenmJ (I, t) is
identically 0 and there is nothing to prove. Thus we may assumek < K, and prove (2.9) for
integersM with 0 ≤ M < K − k.

Since (2.9) is translation invariant inI , we can fixJ = [0,2K ]n, and assumeI =
[0,2k]n. Observe thatmJ (I, t) > M is equivalent to the fact thatI + t intersectsJ (nontriv-
ially) but every dyadic subcubeJ ′ ⊂ J with sidelength�(J ′) = 2k+M does not containI + t .
Thus for each such dyadic subcubeJ ′ we get a set of vectors

SJ ′ = {t ∈ J ′; I + t is not contained inJ ′}
with volume|SJ ′ | equal to 2(k+M)n − (2k+M − 2k)n. In addition, we have the set

S0 = {t ∈ Rn; |(I + t) ∩ J | > 0, |I + t \ J | > 0}
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with volume|S0| equal to(2K + 2k)n − 2Kn. Thus

|{t ∈ Rn : mJ (I, t) > M}| =
∑

J ′∈DK−k−M(J )
|SJ ′ | + |S0|

= 2(K−k−M)n(2(k+M)n − (2k+M − 2k)n)+ (2K + 2k)n − 2Kn

= 2Kn[1 − (1 − 2−M)n] + 2Kn[(1 + 2k−K)n − 1]
≤ 2Kn[n2−M + (2n − 1)2k−K ]
≤ 2(K+1)n−M ,

and (2.9) holds.
Now forp > 0 one has:

∫
Rn
(mJ (I, t))

pdt =
K−k∑
l=0

lp |{t ∈ Rn : mJ (I, t) = l}|

≤
K−k∑
l=1

lp|{t ∈ Rn : mJ (I, t) > l − 1}|

≤ 2(K+1)n+1
∞∑
l=1

lp2−l ,

proving (2.10).

With these two lemmas we have the following analogue of the result of Garnett and Jones
(see also Theorem 5 in [Ja] for a one-dimensionalQp version):

THEOREM 2.8. Let α ∈ (−∞,1/2). Suppose F is a function on Rn× Rn such that for
each t ∈ Rn, F(t, ·) ∈ Q(d)α (Rn) with support in a fixed dyadic cube, and

∫
Rn F (t, x)dx = 0.

Moreover, assume ‖F(t, ·)‖
Q
(d)
α (Rn) is essentially bounded as a function of t . Then for every

N ∈ (0,∞), the averaging function fN belongs to Qα(Rn), where fN is defined on Rn by

fN(x) = 1

(2N)n

∫
[−N,N]n

F (t, x + t)dt .

PROOF. We proceed by analogy with Janson’s proof in the case of the circle (see [Ja]).
Setft (x) = F(t, x) andht (x) = F(t, x + t). Let J denote the fixed dyadic cube which
contains the support offt for everyt . Assume thatI is a cube inRn (not necessarily dyadic)
of sidelength 2k, k ∈ Z. Consider the translateI + t for somet ∈ [−N,N]n. We want to
estimateΨht ,α(I ) = Ψft ,α(I+t) in terms of‖ft‖Q(d)α (Rn)

. More specifically, we want to prove
the estimate

(2.11) (Ψft ,α(I + t))1/2 ≤ C(mJ (I, t) + 1)‖ft‖Q(d)α (Rn) ,

wheremJ (I, t) is the integer defined in Lemma 2.7. There are several cases depending on the
nature of the intersection(I + t) ∩ J .
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The trivial case is when the measure|(I + t) ∩ J | = 0, in which case Lemma 2.7
definesmJ (I, t) to be zero, and on the other handft = 0 almost everywhere onI + t gives
Ψft ,α(I + t) = 0.

The next case is that in which|(I + t) \ J | = 0, or more simply (if we consider closed
cubes)I + t ⊂ J . ThenI + t is contained in the union of at most 2n adjacent dyadic cubes
of equal sidelength, namelyI + t ⊂ I1 ∪ · · · ∪ Il , with �(Ij ) = �(I) = 2k for 1 ≤ j ≤ l,
Ij dyadic, andl ≤ 2n. Moreover, if I ′

t is the smallest dyadic cube containingI + t , then
I1 ∪ · · · ∪ Il ⊂ I ′

t .
By Lemma 2.6,

(Ψft ,α(I + t))1/2 ≤ Cl

( l∑
j=1

(Ψft ,α(Ij ))
1/2 +

∑
1≤j<k≤l

|ft (Ij )− ft (Ik)|
)

≤ C‖ft‖Q(d)α (Rn)
+ C

∑
1≤j<k≤l

|ft (Ij )− ft (Ik)| ,
(2.12)

where the constants depend only onα andn (sincel ≤ 2n). For each cubeIj , consider the
sequence of dyadic cubesIj = Jj,0 ⊂ Jj,1 ⊂ · · · ⊂ Jj,m = I ′

t with �(Jj,i+1) = 2�(Jj,i ).
Herem = L − k, where�(I ′

t ) = 2L, and this is exactly the integermJ (I, t) defined by
Lemma 2.7 in this case. Recall (see (5.4) in [EJPX]) that ifI ⊂ J then|f (I) − f (J )|2 ≤
(|J |/|I |)Φf (J ). Thus

|ft (Ij )− ft (Ik)| ≤
m∑
i=1

|ft (Jj,i )− ft (Jj,i−1)| +
m∑
i=1

|ft (Jk,i)− ft (Jk,i−1)|

≤ 2n/2
m∑
i=1

(Φft (Jj,i ))
1/2 + 2n/2

m∑
i=1

(Φft (Jk,i))
1/2

≤ 2n/2+1mJ (I, t)‖ft ‖Q(d)α (Rn)
.

Inserting this in (2.12), we get (2.11).
The remaining case is that in whichI + t intersects bothJ and its complement, i.e.

|(I+t)\J | > 0 and|(I+t)∩J | > 0. Again writeI+t ⊂ I1∪· · ·∪Il , with �(Ij ) = �(I) = 2k

for 1 ≤ j ≤ l, Ij dyadic, andl ≤ 2n, and use Lemma 2.6 to get inequality (2.12).
Now for each pairj, k, we have three cases. If bothIj andIk have interiors which are

disjoint fromJ , thenft (Ij ) = ft (Ik) = 0. If both Ij andIk are contained inJ , we proceed
as above, using the fact that in this casek ≤ K, where�(J ) = 2K , andmJ (I, t) = K − k, so
if L is as above (i.e.�(I ′

t ) = 2L), thenL− k ≤ mJ (I, t) . Thus we again get

|ft (Ij )− ft (Ik)| ≤ 2n/2+1mJ (I, t)‖ft‖Q(d)α (Rn) .

Otherwise, one of these two cubes, sayIk, must have disjoint interior withJ , while the other,
Ij , must either contain or be contained inJ . Sinceft is supported inJ , this givesft (Ik) = 0
and|ft (Ij )− ft (Ik)| = |ft (Ij )|.

If Ij ⊃ J , then
∫
Ij
ft (x)dx = ∫

J
ft (x)dx = ∫

Rn ft (x)dx = 0 soft (Ij ) = 0 and
|ft (Ij )− ft (Ik)| = 0 = mJ (I, t) (sincek ≥ K). OtherwiseIj ⊂ J , hence we letJj,i be the
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sequence of dyadic cubes withIj = Jj,0 ⊂ Jj,1 ⊂ · · · ⊂ Jj,m = J , where again in this case
m = mJ (I, t) = K − k, and�(Jj,i+1) = 2�(Jj,i). Thus we can write

|ft (Ij )| = |ft (Ij )− ft (J )| ≤
m∑
i=1

|ft (Jj,i)− ft (Jj,i−1)| ≤ 2n/2
m∑
i=1

(Φft (Jj,i ))
1/2

≤ 2n/2mJ (I, t)‖ft ‖Q(d)α (R)
.

Inserting the estimates for both cases into (2.12), we again get (2.11).
Finally, in order to estimate(ΨfN ,α(I))

1/2, we note that(Ψf,α(I))1/2 may be regarded
as a weightedL2 norm onI × I by writing (see [Ja], (10)):

Ψf,α(I) =
∞∑
k=0

2(2α−n)k ∑
J∈Dk(I )

Φf (J )

=
∞∑
k=0

2(2α−n)k−1
∑

J∈Dk(I )

|J |−2
∫
J

∫
J

|f (x)− f (y)|2dxdy

=
∫
I

∫
I

|f (x)− f (y)|2
(

|I |−2
∞∑
k=0

∑
J∈Dk(I )

2(2α+n)k−1χJ (x)χJ (y)

)
dxdy .

Applying Minkowski’s integral inequality to

fN = (2N)−n
∫

[−N,N]n
htdt ,

we get

(ΨfN,α(I))
1/2 ≤ (2N)−n

∫
[−N,N]n

(Ψht ,α(I ))
1/2dt

≤ C(2N)−n
∫

[−N,N]n
(mJ (I, t)+ 1)‖ft‖Q(d)α (Rn)

dt

≤ C sup
t

‖F(t, ·)‖
Q
(d)
α (Rn)

(
1 + (2N)−n

∫
t∈Rn

mJ (I, t)dt

)

≤ C sup
t

‖F(t, ·)‖
Q
(d)
α (Rn)(1 + (2N)−n|J |)

by (2.10) in Lemma 2.7. This shows thatΨfN ,α(I) is uniformly bounded (by a constant
depending on the volume ofJ ) when I is a cube of sidelength 2k for any integerk. By
Lemma 2.1,fN ∈ Qα(Rn), with norm

‖fN‖Qα(Rn) ≤ CN,J sup
t∈Rn

‖F(t, ·)‖
Q
(d)
α (Rn)

.

3. Atomic decomposition for Qα(Rn). We follow the terminology of [FJ], Section
4, for the following:

DEFINITION 3.1. We call a functionaI a (0,∞)-atom if there exists a cubeI ⊂ Rn

and integersN1 ≥ 1 andN2 ≥ 0, such that:



132 G. DAFNI AND J. XIAO

(a) suppaI ⊂ 3I ;
(b) |Dγ aI (x)| ≤ (�(I))−|γ |, forDγ = (∂/∂x1)

γ1 · · · (∂/∂xn)γn and|γ | ≤ N1;
(c)

∫
Rn x

γ aI (x)dx = 0, for |γ | ≤ N2.

Uchiyama proves (cf. [U], Lemmas 3.1–3.4) thatf ∈ BMO(Rn) if and only if f can be
written as

f =
∑
I∈D

sI aI

with {aI }I∈D a sequence of(0,∞)-atoms and{sI }I∈D a sequence of coefficients such that
the measureµ = ∑

I |sI |2|I |δ(xI ,�(I )) satisfies the Carleson condition

‖µ‖c := sup
I∈D

µ(S(I))/|I | < ∞ .

Hereδ(x,t) is used to denote the unit mass at the point(x, t) in the upper half-spaceRn+1+ =
{(x, t); x ∈ Rn, t > 0}, andS(I) denotes the “Carleson box” above the cubeI , i.e.

S(I) = {(y, t) ∈ Rn+1+ ; y ∈ I,0< t < �(I)}.
This condition on the measure is equivalent (cf. [FJ], Section 4) to the following condi-

tion on the coefficients (which we will also call the Carleson condition):

‖{sI }I∈D‖C :=
(

sup
I∈D

1

|I |
∑
J⊆I

|sJ |2|J |
)1/2

< ∞ .

In fact, in Uchiyama’s result, condition (b) on the atoms is replaced by the Lipschitz
condition‖aI‖Lip1 ≤ �(I)−1, where we use‖f ‖Lip1 to denote the Lip1-norm off ∈ C(Rn),
namely

‖f ‖Lip1 := sup
x �=y

|f (x)− f (y)|
|x − y| ,

and in condition (c) Uchiyama hasN2 = 0. In [FJ] the result is stated with more smoothness
and cancellation conditions on the atoms.

We will extend this result toQα(Rn) for α ∈ (0,1). There is a similar characterization
of Qα(Rn) in terms of wavelets, given in [EJPX], Section 6, whose proof is based on that of
Meyer [M] for the case of BMO. However, for the atomic decomposition we cannot assume
orthogonality and we need to compensate withquasi-orthogonality, as in Uchiyama [U]. The
idea of the quasi-orthogonal decomposition goes back to Chang and Fefferman [CF] (see also
[St], Section IV.4.5).

DEFINITION 3.2. Forα ∈ (−∞,∞), I ∈ D ands = {sK }K∈D (a sequence associated
to all the dyadic cubes inRn), let

Us,α(I ) :=
∑
K⊆I

(
�(K)

�(I)

)n−2α

|sK |2 .



DYADIC STRUCTURE AND ATOMIC DECOMPOSITION OFQ SPACES 133

We say that{sK }K∈D is Cα-sequence provided that

‖{sK }K∈D‖Cα :=
(

sup
I∈D

Us,α(I )

)1/2

< ∞ .

For α = 0, this is just the Carleson condition‖{sK }K∈D‖C < ∞ above. Note that for
α ≥ 0, aCα-sequence is also aC0-sequence, since

Us,0(I) ≤ Us,α(I ) .

Before we continue we need to recall a basic geometric fact about cubes inRn. If I , J
are cubes,�(I) = a�(J ), andbI ∩ cJ �= ∅ for some positive numbersa, b, c, then

I ⊂ (a + ab + c)J .

In particular, if we restrictI to be a dyadic cube, then for a fixedJ there are at most(1+ b+
c/a)n such choices ofI .

The next lemma extends Uchiyama’s quasi-orthogonality result, Lemma 3.3 in [U] (see
also [St], Lemma 4.5.1).

LEMMA 3.3. Let j ∈ N and suppose {sK }K∈D is a Cα-sequence. For integers l < m,
consider a collection F of dyadic cubes such that 2l ≤ �(K) ≤ 2m for every elementK of F .
Define

(3.1) f (x) =
∑
K∈F

sKaK(x) , x ∈ Rn ,

where the functions aK satisfy:
(a′) suppaK ⊆ 2jK;
(b′) ‖aK‖Lip1 ≤ 2−j (�(K))−1;
(c′)

∫
Rn aK(x)dx = 0.

If α ∈ [0,1), then there exists a constant C, independent of the choice of l, m and F ,
such that

(i)

‖f ‖2
L2 ≤ C22jn

∑
K∈F

|sK |2�(K)n

and
(ii)

∫ ∫ ∣∣ ∑{K∈F; x,y∈2jK} sK [aK(x)− aK(y)]
∣∣2

|x − y|n+2α
dxdy ≤ C22j (n−α) ∑

K∈F
|sK |2�(K)n−2α .

PROOF. Sinceα ≥ 0, {sK } is alsoC0-sequence and therefore part (i) is just Lemma 3.3
in [U]. We omit the proof since we will repeat the argument for the proof of part (ii).
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SupposeJ,K ∈ F with �(J ) ≤ �(K) and 2j J ∩ 2jK �= ∅. Then∫
2j J∩2jK

∫
2j J∩2jK

|aK(x)− aK(y)||aJ (x)− aJ (y)|
|x − y|n+2α dxdy

≤ 2−2j�(K)−1�(J )−1
∫

2j J

∫
2j J

|x − y|2−n−2α dxdy

≤ C2j (n−2α)�(K)−1�(J )n+1−2α .

(3.2)

Now for each cubeK ∈ F and integerk ≥ 0, let

Gk(K) = {J ∈ F; �(J ) = 2−k�(K) and 2j J ∩ 2jK �= ∅} .
TakeΩ to be a bounded set inRn, so that the number ofK ∈ F for which 2jK ∩Ω �= ∅ is
finite. Thus if we integrate overΩ×Ω , we can, after expanding the square inside the integral,
interchange the order of summation and integration (since the sum is finite) and use (3.2) to
get

∫
Ω

∫
Ω

∣∣ ∑{K∈F : x,y∈2jK} sK [aK(x)− aK(y)]
∣∣2

|x − y|n+2α dxdy

≤
∑
K∈F

|sK |
∞∑
k=0

∑
J∈Gk(K)

|sJ |
∫

2j J∩2jK

∫
2j J∩2jK

|aK(x)− aK(y)||aJ (x)− aJ (y)|
|x − y|n+2α

dxdy

≤ C

∞∑
k=0

∑
K∈F

|sK |
∑

J∈Gk(K)
|sJ |2j (n−2α)�(K)−1�(J )n+1−2α

≤ C2j (n−2α)
∞∑
k=0

2−k(n+1−2α)
( ∑
K∈F

|sK |2�(K)n−2α
)1/2

×
( ∑
K∈F

( ∑
Gk(K)

|sJ |
)2

�(K)n−2α
)1/2

≤ C2j (n−2α)
∞∑
k=0

2−k(n+1−2α)
( ∑
K∈F

|sK |2�(K)n−2α
)1/2

×
( ∑
K∈F

∑
Gk(K)

|sJ |22(j+k)n�(K)n−2α
)1/2

≤ C2j (n−2α)
∞∑
k=0

2−k(n+1−2α)
( ∑
K∈F

|sK |2�(K)n−2α
)1/2

×
( ∑
J∈F

|sJ |222jn+k(2n−2α)�(J )n−2α
)1/2

≤ C22j (n−α)
∞∑
k=0

2−k(1−α) ∑
K∈F

|sK |2�(K)n−2α
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≤ C22j (n−α) ∑
K∈F

|sK |2�(K)n−2α (sinceα < 1) .

Note that we have used the the basic geometricfact above (see remark before the statement
of the lemma) to bound the cardinality ofGk(K) by a constant multiple of 2(j+k)n and the
cardinality of{K : J ∈ Gk(K)} (for a fixedJ ) by a constant multiple of 2jn.

We have thus proved Part (ii) of the lemma for the double integral over any setΩ ×Ω ,
Ω ⊂ Rn bounded, and therefore it holds for the integral overRn × Rn.

Continuing as in [U], we give an analogue of Uchiyama’s Lemma 3.4 in the case of
Qα(Rn).

LEMMA 3.4. Under the hypotheses of Lemma 3.3,if 0< α < 1, we have

‖f ‖Qα(Rn) ≤ C2jn‖{sK }‖Cα ,
where the constant C is independent of the choice of F .

PROOF. Before we start, let us point out that one can remove all reference toF below
by settingsK = 0 forK �∈ F .

The proof is similar in notation and outline to that of [EJPX], Theorem 6.2 (see also
[M], p. 154). By Lemma 2.1, in order to estimate‖f ‖Qα(Rn), it suffices to boundOf,α(I) for
arbitrary cubesI of dyadic sidelength. Fix such a cubeI , and set

A(I) = {K ∈ D; 2jK ∩ I �= ∅} .
Note that condition (a′) implies aK = 0 on I if K /∈ A(I), so that in the sum (3.1)

definingf , whenx ∈ I , the only cubesK that appear are those withK ∈ A(I). Partition
A(I) into

A1 = A1(I) = {K ∈ A(I); 2j �(K) ≤ �(I)} ,
A2 = A2(I) = {K ∈ A(I); �(I) < 2j�(K)} .

Then we havef = f1 + f2 onI , where

fi =
∑
K∈Ai

sKaK, i = 1,2 ,

and

(3.3) Of,α(I) ≤ 2(Of1,α(I )+Of2,α(I )) .

To take care off1, we again separate the sum into two parts:

Of1,α(I ) = �(I)2α−n
∫
I

∫
I

∣∣ ∑
K∈A1

sK [aK(x)− aK(y)]
∣∣2

|x − y|n+2α dxdy

≤ 2�(I)2α−n
∫
I

∫
I

∣∣ ∑{K∈A1;x,y∈2j+1
√
nK} sK [aK(x)− aK(y)]

∣∣2
|x − y|n+2α

dxdy

+ 4�(I)2α−n
∫
I

∫
I

∣∣∑{K∈A1;x∈2jK,y �∈2j+1√nK} sKaK(x)
∣∣2

|x − y|n+2α
dxdy
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:= �(I)2α−n(A+ B) .

Take an integerm sufficiently large so that 2m ≥ 2
√
n, and apply Lemma 3.3, Part (ii), with

2−maK instead ofaK and 2j+mK instead of 2jK. Then, sinceα ≥ 0,

(3.4) A ≤ Cm22j (n−α) ∑
K∈A1

|sK |2�(K)n−2α ≤ C22jn
∑
K∈A1

|sK |2�(K)n−2α .

Noting that forx ∈ 2jK andy �∈ 2j+1√nK, |x − y| ≥ |xK − y|/2, we can apply Part
(i) of Lemma 3.3 to the functionsaK(x) and coefficients

λK,y = sK |xK − y|−n/2−αχ{K;y �∈2j+1
√
nK} ,

for a fixedy ∈ I , to get

B ≤ C

∫
I

∫
I

∣∣ ∑
{K∈A1;x∈2jK,y �∈2j+1

√
nK}

sKaK(x)|xK − y|−n/2−α∣∣2 dxdy

= C

∫
I

∥∥ ∑
K∈A1

λK,yaK
∥∥2
L2(I )

dy

≤ C22jn
∫
I

∑
K∈A1

|λK,y |2�(K)n dy

≤ C22jn
∑
K∈A1

|sK |2�(K)n
∫
I\2j+1

√
nK

|xK − y|−n−2α dy

≤ C22jn
∑
K∈A1

|sK |2�(K)n−2α .

(3.5)

Thus (3.4) and (3.5) give

Of1,α(I ) ≤ C22jn�(I)2α−n ∑
K∈A1

|sK |2�(K)n−2α

≤ C22jn
∑

I ′∈E(I )

∑
K⊆I ′

|sK |2
(
�(K)

�(I ′)

)n−2α

≤ C22jn sup
I ′∈E(I )

Us,α(I
′) ,

(3.6)

where we have used the notationE(I) to denote the collection of (at most 5n) dyadic cubesI ′
with �(I ′) = �(I) for which I ′ ∩ 3I �= ∅. Note that forK ∈ A1, we have�(K) ≤ 2−j �(I)
and 2jK ∩ I �= ∅, which impliesK ⊂ 3I , henceK ⊆ I ′ for a uniqueI ′ ∈ E(I).
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Now forf2, by the Lipschitz condition (b′) above, and using the fact that for every dyadic
cubeK, |sK |2 ≤ Us,α(K), we have

Of2,α(I ) = C�(I)2α−n
∫
I

∫
I

∣∣ ∑
K∈A2

sK [aK(x)− aK(y)]
∣∣2

|x − y|n+2α dxdy

≤ C�(I)2α−n
∫
I

∫
I

( ∑
K∈A2

|sK |(2j �(K))−1
)2

|x − y|2−n−2α dxdy

≤ C�(I)2α−n
(

sup
K∈A2

Us,α(K)

)( ∑
K∈A2

(2j �(K))−1
)2

�(I)2+n−2α

≤ C

(
sup
K∈A2

Us,α(K)

)( ∑
K∈A2

�(I)

2j�(K)

)2

≤ C

(
sup
K∈A2

Us,α(K)

)( ∞∑
k=1

∑
K∈A2,2j �(K)=2k�(I )

2−k
)2

≤ C22jn
(

sup
K∈A2

Us,α(K)

)
.

(3.7)

Here we have again used the geometric fact that for eachk ∈ N , there are at most 2(j+1)n

choices ofK ∈ A2 with 2j�(K) = 2k�(I).
Therefore, by estimates (3.3),(3.6) and (3.7), we conclude

(3.8) Of,α(I) ≤ C22nj
(

sup
I ′∈E(I )

Us ,α(I
′)+ sup

K∈A2(I )

Us ,α(K)

)
≤ C22nj‖{sK }‖2

Cα

for every cubeI of dyadic sidelength. By Lemma 2.1, we havef ∈ Qα(Rn) with norm
‖f ‖Qα(Rn) ≤ C2jn‖{sK }‖Cα . Note that nowhere in the proof did we use the number of ele-
ments ofF .

Before getting to the main theorem of this section, we need to review some results from
[DX]. We first state a lemma which is a combination of Lemma 1.1 in [FJW] and Lemma
3.2 in [DX]. Here and below we will denote the Schwartz class of rapidly decreasing smooth
functions onRn by S, and its dual, the space of tempered distributions, byS ′. For a function
φ ∈ S(Rn), φ̂ will denote the Fourier transform ofφ.

LEMMA 3.5. Fix N ∈ N . Then there exists a function φ : Rn → R such that
(1) suppφ ⊂ {x ∈ Rn; |x| ≤ 1};
(2) φ is radial;
(3) φ ∈ C∞(Rn);
(4)

∫
Rn x

γ φ(x)dx = 0 if |γ | ≤ N , γ ∈ (N ∪ {0})n, xγ = x
γ1
1 x

γ2
2 · · · xγnn , |γ | =

γ1 + γ2 + · · · + γn;
(5)

∫ ∞
0 (φ̂(tξ))2t−1dt = 1 if ξ ∈ Rn \ {0}.
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Moreover, if α ∈ (0,1), f ∈ L2
loc(R

n), and dµf,φ,α(x, t) = |(f ∗ φt)(x)|2t−1−2αdtdx,
then there is a constant C, independent of the choice of f , such that for any cubes I and J in
Rn, with center xI = xJ and with �(J ) ≥ 3�(I),

µf,φ,α(S(I)) ≤ C�(J )n−2αOf,α(J ) .

Here again S(I) is the “Carleson box” over I .

Next, we need to recall the duality result in [DX], identifyingQα(Rn) with the dual of
the “Hardy-Hausdorff space”HH 1−α(Rn). This space can be characterized by the following
atomic decomposition (Theorem 6.3 in [DX]):

THEOREM 3.6 (DX). Let 0 < α < min{1, n/2}. Define an HH 1−α-atom a to be a
tempered distribution supported in a cube I and satisfying:

(i)

|〈a,ψ〉| ≤ (Oψ,α(I))
1/2

for all ψ ∈ S; and
(ii)

〈a,ψ〉 = 0

for anyψ ∈ S which coincides in a neighborhood of I with a polynomial of degree ≤ n/2+1.
Then a tempered distribution f on Rn belongs toHH 1−α if and only if there is a sequence

of HH 1−α-atoms {aj }, and an l1 sequence {λj }, such that f = ∑
j λj aj in the sense of

distributions. Moreover,

‖f ‖HH1−α(Rn) ≈ inf

{∑
j

|λj |; f =
∑
j

λj aj

}
.

As explained in [DX] (see Remark 2 after Lemma 6.2), anHH 1−α-atoma is actually
a distribution in the homogeneous Sobolev spaceL̇2−α(Rn), and can thus be paired with a
functionψ in the dual homogeneous Sobolev spaceL̇2

α(R
n), namely a function satisfying∫

Rn

∫
Rn

|ψ(x)− ψ(y)|2
|x − y|n+2α dxdy < ∞ .

In particular, we can take forψ any Lipschitz function with compact support, such as a
(0,∞)-atom. Moreover, approximatingψ in L̇2

α(R
n) by functions inS, we see that condition

(i) in Theorem 3.6 extends to the pairing ofa with suchψ.
We are now in a position to prove the major result of this section.

THEOREM 3.7. Let 0 < α < min{1, n/2}. If {aI }I∈D is a sequence of (0,∞)-atoms,
and {sI }I∈D a Cα-sequence, then there exists a function f ∈ Qα(Rn) so that

(3.9) f =
∑
I∈D

sI aI = lim
k→−∞,m→∞

∑
I∈D,2k≤�(I )≤2m

sI aI ,

where the convergence is in S ′(Rn) modulo constants and in the weak-∗ topology in Qα(Rn)
(viewed as the dual of HH 1−α(Rn)).
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Conversely, if f ∈ Qα(Rn) then there is a sequence {aI }I∈D of (0,∞)-atoms, and a
Cα-sequence {sI }I∈D such that (3.9) holds. Moreover,

‖f ‖Qα(Rn) ≈ ‖{sI }‖Cα .

PROOF. Let {sI }I∈D be aCα-sequence, and{aI }I∈D a sequence of(0,∞)-atoms. Note
thataI/4 satisfy conditions (a′)–(c′) of Lemma 3.3 withj = 2. Therefore if we denote by
Fk,m the collection of cubesK ∈ D with 2k < �(K) ≤ 2m, and set

fk,m =
∑

I∈Fk,m
sI aI , for k,m ∈ Z, k ≤ m ,

then by Lemma 3.4,

(3.10) ‖fk,m‖Qα(Rn) ≤ C‖{sI }‖Cα ,
with a constant independent ofk andm. From an analogous result for BMO (see [FJ], The-
orem 4.1, or [St], Proposition IV.4.5), we know that ask → −∞,m → ∞, fk,m converge
in S ′/C and weak-∗ in BMO (as the dual ofH 1) to a functionf ∈ BMO. We want to show
thatf ∈ Qα(Rn) and in fact the convergence is weak-∗ in Qα(Rn), viewed as the dual of
HH 1−α(Rn).

First, fork ≤ 0 ≤ m, write

fk,m = fk,0 + f0,m.

Supposeg is anHH 1−α-atom, supported in a cubeI . Let Ĩ be the smallest concentric cube
containingI with dyadic sidelength, say�(Ĩ ) = 2r .

Then for 0< m < p, we have, by condition (i) in Theorem 3.6,

|〈f0,m − f0,p, g〉|2 = |〈fm,p, g〉|2 ≤ COfm,p,α(I ) ≤ COfm,p,α(Ĩ ) .

If m is sufficiently large (m ≥ r − 2), we have�(K) > �(Ĩ )/4 for allK ∈ Fm,p, and hence
we can repeat the calculations leading up to estimate (3.7) in the proof of Lemma 3.4 (with
j = 2,F = Fm,p andA2 = {K ∈ D; �(K) > �(Ĩ )/4,4K ∩ Ĩ �= ∅}) to get

Ofm,p,α(Ĩ ) ≤ C

(
sup
K∈A2

Us,α(K)

)( ∞∑
k=1

∑
K∈Fm,p ,�(K)=2k�(Ĩ )/4

2−k
)2

≤ C24n‖{sK }‖2
Cα

( ∑
k>m+2−r

2−k
)2

.

This shows〈f0,m − f0,p, g〉 → 0 asm,p → ∞.
To show〈fq,0 − fk,0, g〉 → 0 asq, k → −∞ we can use estimate (3.6), since forK in

Fq,k, q < k ≤ r − 2, we have�(K) ≤ �(Ĩ )/4. This means that

|〈fq,0 − fk,0 , g〉|2 ≤ COfq,k ,α(Ĩ )
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≤ C24n
∑

I ′∈E(Ĩ )

∑
K∈Fq,k ,K⊆I ′

|sK |2
(
�(K)

�(I ′)

)n−2α

,

where
E(Ĩ ) = {I ′ ∈ D; �(I ′) = �(Ĩ ), I ′ ∩ 3Ĩ �= ∅} .

Now E(Ĩ ) has at most 5n elements, and for each of the cubesI ′ ∈ E(Ĩ ), the finiteness of
Us,α(I

′) implies that

∑
K∈Fq,k ,K⊆I ′

(
�(K)

�(I ′)

)n−2α

|sK |2 → 0 asq, k → −∞ ,

giving 〈fq,0 − fk,0, g〉 → 0 asq, k → −∞.
We have thus shown that limk→−∞,m→∞ 〈fk,m, g〉 exists for anyg which is anHH 1−α-

atom, or a finite linear combination of such atoms. Since the finite linear combinations of
HH 1−α-atoms form a dense subset of the predualHH 1−α(Rn), and by (3.10) the sequence
{fk,m} is uniformly bounded inQα(Rn), we conclude thatfk,m converge weak-∗ in Qα(Rn)
to some function inQα(Rn). This must be the same as the functionf (the weak-∗ limit in
BMO), sinceH 1(Rn) ⊂ HH 1−α(Rn) (see [DX]). Thusf ∈ Qα(Rn) with

(3.11) ‖f ‖Qα(Rn) ≤ C‖{sK }‖Cα .
Now letf ∈ Qα(Rn). For the atomic decomposition, we will follow the construction in

the proof of Lemma 3.1 in [U], which in turn is based on [CF]. Letφ be as in Lemma 3.5.
Then we can use Calderón’s reproducing formula to obtain:

f (x) =
∫ ∞

0
(φt ∗ φt ∗ f )(x)dt

t

=
∑
I∈D

∫
T (I )

φt (x − y)(φt ∗ f )(y)dydt
t

=
∑
I∈D

bI (x) ,

whereT (I) is the upper half of the “Carleson box”, namely

T (I) = {(y, t) ∈ Rn+1+ ; y ∈ I, �(I)/2 ≤ t < �(I)} ,
and the convergence is in the sense of distributions modulo constants (i.e. inS ′(Rn)/C—
see, for example, [FJW], Appendix), or alternatively, in the weak-∗ sense in BMO (see [St],
Section IV.4.5.3).

From the support and cancellation conditions onφ, we can conclude thatbI is supported
in 3I and

∫
Rn x

γ bI (x)dx = 0 for |γ | ≤ N = N2. Moreover, as in the proof of Lemma 3.1
in [U] (for higher derivatives see also [St], Section IV.4.5.3), we can differentiate inside the
integral to obtain

|Dγx bI (x)| =
∣∣∣∣
∫
T (I )

(D
γ
x φt (x − y))(φt ∗ f )(y)dydt

t

∣∣∣∣
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≤ ‖Dγ φ‖L2

( ∫ �(I )

�(I )/2
t−n−2|γ |−1dt

)1/2( ∫
T (I )

|(φt ∗ f )(y)|2dydt
t

)1/2

≤ Cφ,γ �(I)
−n/2−|γ |

( ∫
T (I )

|(φt ∗ f )(y)|2dydt
t

)1/2

.

Thus if we letaI = bI/sI , where

sI = CN2|I |−1/2
( ∫

T (I )

|(φt ∗ f )(y)|2t−1dtdy

)1/2

,

andCN2 is so chosen to be larger thanCφ,γ for all |γ | ≤ N2, thenaI is a (0,∞)-atom and
f = ∑

I∈D sI aI in S ′(Rn)/C.
In order to verify that{sI }I∈D is aCα-sequence, we apply Lemma 3.5 to obtain that for

anyI ∈ D,

Us,α(I ) = C(�(I))2α−n ∑
J⊆I

�(J )n−2α|J |−1
∫
T (J )

|(φt ∗ f )(y)|2t−1dtdy

≤ C(�(I))2α−n ∑
J⊆I

∫
T (J )

|(φt ∗ f )(y)|2t−1−2αdtdy

= C(�(I))2α−n
∫
S(I )

|(φt ∗ f )(y)|2t−1−2αdtdy

≤ COf,α(3I) ,

so taking the supremum overI ,

(3.12) ‖{sI }‖Cα ≤ C‖f ‖Qα(Rn) .

Finally, note that by the first part of the theorem,
∑
sI aI converge in the weak-∗ sense

to a limit inQα(Rn), and since we already have the weak-∗ convergence in BMO tof , this
limit must bef . By (3.11) and (3.12),‖f ‖Qα(Rn) ≈ ‖{sI }‖Cα , as desired.

This completes the proof of the theorem.

Note that in proving the weak-∗ convergence inQα(Rn) of the sum of atoms
∑
sI aI , we

did not use the full force of Lemma 3.4, but rather only the casej = 2. In fact, using Lemma
3.4 and the following lemma of Uchiyama (Lemma 3.5 in [U]), we can prove a stronger result.

LEMMA 3.8 (Uchiyama). Let I ⊂ Rn be a cube with center xI , and suppose b ∈
C1(Rn) satisfies

(i)
∫

Rn b(x)dx = 0;
(ii) |b(x)| ≤ (�(I))n+1/(�(I)+ |x − xI |)n+1;
(iii)

∣∣∂xi b(x)∣∣ ≤ (�(I))n+1/(�(I)+ |x − xI |)n+2 for i = 1, . . . , n.
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Then there exists a sequence {aj }∞j=0 of functions in C1(Rn) such that

b(x) =
∞∑
j=0

2−j (n+1)aj (x) ,

and for each j the function aj satisfies conditions (a′) – (c′) of Lemma 3.3 (with respect to the
cube I ).

We will call a functionb ∈ C1(Rn) satisfying conditions (i) – (iii) of Lemma 3.8 a
(0,∞)-molecule (see [FJ], Section 3). Note that every(0,∞)-atom is also a molecule (up
to a constant). Conversely, the lemma may be thought of as the decomposition of a molecule
into atoms. We now state the extension of Theorem 3.7, namely the weak-∗ convergence in
Qα(Rn) of a sum of molecules. An analogous result for BMO is Theorem 4.1(b) in [FJ].

THEOREM 3.9. Let 0 < α < min{1, n/2}. If {bI }I∈D is a sequence of (0,∞)-
molecules, and {sI }I∈D a Cα-sequence, then there exists a function f ∈ Qα(Rn) so that

f =
∑
I∈D

sI bI = lim
k→−∞,m→∞

∑
I∈D,2k≤�(I )≤2m

sI bI ,

where the convergence is in S ′(Rn) modulo constants and in the weak-∗ topology in Qα(Rn)
(viewed as the dual of HH 1−α(Rn)).

PROOF. Let {sI }I∈D be aCα-sequence, and{aI }I∈D a sequence of(0,∞)-molecules.
By Lemma 3.8,

bI (x) =
∞∑
j=0

2−j (n+1)aI,j (x) ,

where eachaI,j possesses properties (a′) – (c′) of Lemma 3.3 with respect toI andj . Fol-
lowing the proof of Theorem 3.7, we denote byFk,m the collection of cubesK ∈ D with
2k < �(K) ≤ 2m, and set

fk,m,l(x) =
∑

I∈Fk,m
sI

l∑
j=0

2−j (n+1)aI,j (x) , for k,m, l ∈ Z, k ≤ m, l ≥ 0 .

With help of Lemma 3.4 we obtain that

‖fk,m,l‖Qα(Rn) ≤
∥∥∥∥

∑
I∈Fk,m

sI

l∑
j=0

2−j (n+1)aI,j

∥∥∥∥
Qα(Rn)

≤
l∑

j=0

2−j (n+1)
∥∥∥∥

∑
I∈Fk,m

sI aI,j

∥∥∥∥
Qα(Rn)

≤ C

∞∑
j=0

2−j (n+1)2jn‖{sI }‖Cα
≤ C‖{sI }‖Cα

(3.13)
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with C independent ofk,m andl. Similarly,

‖fk,m,l1 − fk,m,l2‖Qα(Rn) ≤ C

l2∑
j=l1

2−j (n+1)2jn‖{sI }‖Cα → 0 asl1, l2 → ∞.

Thus liml→∞ fk,m,l exists inQα(Rn), and since

fk,m(x) = lim
l→∞ fk,m,l(x) =

∑
I∈Fk,m

sI

∞∑
j=0

2−j (n+1)aI,j (x)

converges pointwise, an application of Fatou’s lemma givesfk,m = liml→∞fk,m,l inQα(Rn).
Moreover, by (3.13),

sup
k,m

‖fk,m‖Qα(Rn) ≤ C‖{sI }‖Cα .
As in the proof of Theorem 3.7, in order to show thatfk,m converges weak-∗ in Qα(Rn), it
remains to show that limk→−∞,m→∞〈fk,m, g〉 exists forg in a dense subset of the predual
HH 1−α(Rn).

Again writefk,m = fk,0 + f0,m for k ≤ 0 ≤ m, takeg to be anHH 1−α-atom supported
in a cubeI , and letĨ be the smallest concentric cube containingI with dyadic sidelength.
Then by condition (i) in Theorem 3.6, Fatou’s lemma, and Minkowski’s inequality, we have,
for 0< m < p,

|〈f0,m − f0,p , g〉| ≤ C(Of0,m−f0,p ,α(I ))
1/2

≤ C(Of0,m−f0,p ,α(Ĩ ))
1/2

≤ C lim inf
l→∞ (Of0,m,l−f0,p,l ,α(Ĩ ))

1/2

≤ C lim inf
l→∞

l∑
j=0

2−j (n+1)(Ohj ,α(Ĩ ))
1/2

= C

∞∑
j=0

2−j (n+1)(Ohj ,α(Ĩ ))
1/2 ,

(3.14)

where
hj =

∑
K∈Fm,p

sKaK,j .

Imitating (3.7) in the proof of Lemma 3.4 (withF = Fm,p, 2m ≥ 2−j�(Ĩ )), we have

Ohj ,α(Ĩ ) ≤ C

(
sup

K∈A2(Ĩ )

Us,α(K)

)( ∞∑
k=1

∑
K∈Fm,p∩A2(Ĩ ),2j �(K)=2k�(Ĩ )

2−k
)2

≤ C22jn‖{sK }‖2
Cα

( ∑
k>m+j−log2 �(Ĩ )

2−k
)2

= C2−2m+2j (n−1)‖{sK }‖2
Cα �(Ĩ )

2 .
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Thus

|〈f0,m − f0,p, g〉| ≤ C2−m‖{sK }‖Cα �(Ĩ )
∞∑
j=0

2−2j → 0

asm,p → ∞.
For the case of〈fq,0−fk,0, g〉 ask, q → −∞, we repeat (3.14) withhj now standing for∑

K∈Fq,k sKaK,j . Assumingq < k ≤ log2 �(Ĩ )−j so thatK ∈ Fq,k implies 2j �(K) ≤ �(Ĩ ),
another application of (3.6) in the proof of Lemma 3.4 gives

Ohj ,α(Ĩ ) ≤ C22jn
∑

I ′∈E(Ĩ )

∑
K∈Fq,k ,K⊆I ′

|sK |2
(
�(K)

�(I ′)

)n−2α

,

where we recall that

E(Ĩ ) = {I ′ ∈ D; �(I ′) = �(Ĩ ), I ′ ∩ 3Ĩ �= ∅}.
Noting again thatE(Ĩ ) has at most 5n elements, and for each of the cubesI ′ ∈ E ′(Ĩ ),∑
K∈Fq,k,K⊆I ′(�(K)/�(I ′))n−2α|sK |2 → 0 asq, k → −∞ by the convergence of the se-

ries definingUs,α(I
′), we have that for eachj ≥ 0, 2−jnOhj ,α(Ĩ )1/2 → 0 asq, k → −∞.

Moreover, 2−jnOhj ,α(Ĩ )1/2 are bounded by a constant multiple of supI∈D Us,α(I )
1/2 =

‖{sK }K∈D‖Cα . This, together with (3.14), implies that〈fq,0 − fk,0, g〉 → 0 asq, k → −∞.
The proof of weak-∗ convergence inQα(Rn) is now complete. The convergence inS ′/C

is proved in Remark 3.2 of [FJ].
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