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Abstract. An exact dynamic 2D solution for a concentrated force near a stationary

semi-infinite crack in an unbounded plane can be used in the transient analysis of

wave-scattering problems. Direct approaches to obtaining the solution, however, are

complicated by the existence of a characteristic length. A less direct approach is used here

which circumvents these complications. As an example, the dynamic stress intensity

factors are derived and studied for their behavior w.r.t. time and concentrated force-crack

edge orientation.

1. Introduction. Wave-scattering studies of cracks, voids, dislocations and inclusions

[1,2] often require a knowledge of transient solutions to idealized wave propagation

problems. For both analytical [3] and computational [4] convenience, these solutions are

often based on the Green's function-related problem of a concentrated force. By adopting

an eigenstrain [5] approach, in fact, the effects of a void or inclusion can be incorporated

in the problem solution, although this has generally been done for ellipsoidal shapes, and

in the frequency domain. Similarly, dislocations can be incorporated by treating them as

body force terms [6] in the governing equations for the problem.

The mixed boundary conditions which arise make such an incorporation more difficult

to realize for cracks. However, the advantages are perhaps even greater: the crack edge

singular behavior and traction-free crack surface conditions are automatically built into a

complete wave propagation problem based on superposition of the concentrated force

solution.

This article, therefore, considers an exact 2D dynamic analysis of a concentrated force

near a semi-infinite stationary crack in an unbounded, isotropic, linearly elastic plane.

Crack problems can be treated [7] as the superposition of two problems: Problem 1

considers the disturbance in a crack-free geometry, here the concentrated force in the

unbounded plane. Problem 2 considers only the crack, but with surfaces subjected to the
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negatives of the Problem 1 tractions induced over the region corresponding to the crack.

This superposition approach is adopted here, but with some care; the crack edge-con-

centrated force separation give Problem 2 a characteristic length, thus complicating a

standard solution approach.

The concentrated force problem is formally stated in Sec. 2. Subsequently, Problem 1 is

stated and the solution given. Problem 2 is then addressed as a series of simpler problems.

As an example of the resulting solution behavior, the crack edge stress field is then

studied.

2. Concentrated force problem. Consider the crack defined in the xi'-plane as y = 0,

x > 0. The plane is at rest for s < 0, where i is the time multiplied by the dilatational

wave speed. As 5 = 0 a unit concentrated force is applied as shown in Fig. la, where

d > 0, |<£, »//| < tt. The governing equations in the plane are then

»s0(s<0), (2.1)

V2u+(w2— 1)va + — B = m2ii (s > 0) (2.2)

where u(x, y) is the displacement vector with x and y-components (ux, ur), a is the

dilatation, V is the gradient operator, (•) denotes ^-differentiation, ju is the shear modulus,

V2 is the Laplacian and 1 /m is the non-dimensionalized rotational wave speed. Here all

speeds are non-dimensionalized by division with the dilatational wave speed, so that

m > 1. The body force in (2.2) is

B = (cos <£, sin <J>)5( jt 4- d cos ip)8(y + sin i//) H(s) (2.3)

where S( ) and H( ) are the Dirac and Heaviside functions. The dimension of the unit

concentrated force is that of force/length. Along both crack surfaces the traction T

vanishes, i.e.

T±=0 (2.4)

along y = ±0, x > 0, where its components are given by

1 Ju, . , 3w i 3 m 3«
-Tv = m2^+ m2-2yi, -Tx = —^ + —^, 2.5
ju 1 3j 3* ju 9x ay

In addition, appropriate radiation conditions as s -» oo are required [8], It should be

noted that, in the sense of a Green's function, this problem is often [3, 8] defined by

replacing the Heaviside function in (3) with 8(s — £),£> 0- Clearly, the solution for that

definition will follow from the present solution by ^-differentiation and then replacing 5

with ,v — £.

3. Problem 1. The governing equations for Problem 1 are identical to those presented

above, except that (2.4) is deleted. That is. Problem 1 is essentially a 2D dynamic free

space Green's function problem [3]. The solution written as a function of s and the
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Fig. la. Point force-crack edge geometry. Fig. lb. Polar coordinates (r, 0) along craek surface.

coordinates (r, 6) shown in Fig. la can be obtained from general results for an arbitrary B

[9], In particular

2 T* = 2//12sin(<f> — 36) — H1 sin20cos(<£ — 6) — //2cos20sin(<£ — 6), (3.1)

2T* = 2//12cos(<f> — 36) — H{(m2 — cos2 6) cos(<£ — 6)

— H2 sin 26 sin(<£ — 6), (3-2)

where ( )* denotes a free-space Green's function variable and

2 u _ zH(z — l) 2 u zH(z - m)
m~-nHx =   , m itH2 =

y(z2-\) ' ~ r/z2 - m2)'

Hu=(z2-\)Hl+[\-^)H2, z = Sz. (3.3)
nr r

4. Problem 2. The governing equations follow from those for the concentrated force

problem by replacing (2.3) with B = 0 and (2.4) with the conditions

T±= -T* (4.1)

for j' = ±0, x > 0. Figure lb shows that r = r(x) and 6 = 6(x) in (4.1), where

r(x) = y(x2 + d2 + 2xJcos \p), rsin0(x) = J sin ip,

rcos 6( x) = x + dcos \p. (4.2)

The characteristic length d in (4.2) complicates a direct attempt to solve Problem 2 by

transform [10] and Wiener-Hopf [11] techniques because the sectionally analytic functions

in the transform space will not be related in a standard manner.

To minimize the complication of the characteristic length in the solution of Problem 2,

we first consider a related problem, Problem 3, which is identical to Problem 2 except that

(4.1) is replaced by

T±=NS(x - h)S(s - t), (h,t)>0, (4.3)
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Fig. 2. Geometry for Problem 3.

along y = ±0, x > 0. As seen in Fig. 2, Problem 3 defines a crack with both surfaces

subjected to tangential (Nx) and normal (Nr) concentrated forces at a fixed distance h

from the crack edge at an instant t > 0. Clearly, the solution to Problem 2 can be obtained

by substituting -T* for N with (h,t) replacing (x, s) in (3.3) and (4.2) and then

integrating the Problem 3 solution over the lit-plane region defined by h > 0, 0 < t < s

and the Heaviside arguments in (3.3). Problem 3 also has a characteristic length, h. Unlike

Problem 2, however, it is isolated in the Dirac function argument in (4.3). As will be seen

below, this isolation allows Problem 3 to be solved readily by an indirect approach [12,13]

based on superposition.

5. Problem 3 solution approach. Separation of the unbounded plane everywhere along

the crack axis y = 0 would reduce Problem 3 to a pair of Lamb's problems [14] for

concentrated forces applied on the surfaces of half-planes ±y > 0. It follows, then, that

Problem 3 can be viewed as the superposition of the two Lamb's problems with the

problem of an unbounded cracked plane with no crack surface loading, but a displace-

ment discontinuity extending ahead of the crack edge. The discontinuity is chosen to

cancel out the surface displacements generated on the regions x < 0 of the two half-planes

by the Lamb's problem solutions. This latter problem will be designated as Problem 4.

The Lamb's problem-generated surface displacements are presented in Sec. 5.1. Their

form suggests the method by which Problem 4 is solved in Sec. 5.2.

5.1. Surface displacements in Lamb's problem. Equations (2.1), (2.2) and B = 0. (2.5)

and the radiation conditions govern the Lamb's problems when^ ¥= 0 while (4.3) holds for

ail y = +0. Solution of these equations [15] for the surface displacement it for ±(h — x)

> 0,— t > 0 in the half-plane y < 0 yields

(j — /)u"= U (q)H(q — 1), \x — h\q = s — t, (5.1a,b)

77 /i.lT(<7) = NJmi-m2q^, ± ^q2 j + 7Vv,Im|+ ^q2, (5-2)
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P = J — lab, J = m2 — 2q2, R = 4q2ab — J2,

a = A1 - <?)2, b = j(m2 — q2), (5.3)

while u* for >> > 0 follows from (5.2) by reversing the (a, 6)-term signs. The function R is

the Rayleigh function, and the r.h.s. of (5.2) is evaluated for Im(<7) = -0.

5.2. Problem 4 and its solution. Equations (5.1)—(5.3) indicate that, for a given value of

the ratio \x — h\/(s - t) - say c, the corresponding values U ^l/c) in effect radiate from

the point x = h with the non-dimensionalized speed c. Since (j — t)/\x — h\ > 1, the

speeds for all U ^values on the half-plane surface regions jc < 0 at a given s — i > 0 will

lie in the range h/(s — t) < c < 1. This suggests that Problem 4 be solved by first

considering the cracked half-plane disturbed by a point displacement discontinuity of

constant value e which appears at the crack edge at s = 0 and subsequently travels over

the crack surface with a constant non-dimensionalized speed c.

The governing equations for this problem when y + 0 are (2.1), (2.2) with B = 0, (2.5)

and the radiation conditions, while for j' = 0

u-—u + = e8(jv: + ci) (x > 0), T±= 0 (x < 0). (5.4a,b)

These equations have no characteristic length, and are easily solved by

transform/Wiener-Hopf techniques in a standard [12,13] fashion. It can be shown that

any scalar field variable in the solution has the general form e • f(;c, y, s, c), where (•)

denotes the scalar product.

Now, if the discontinuity appears at the crack edge at s = t + h/c instead of s = 0 and

e is replaced by [U+(l/c) - U (1/c)] dc, the general form can be integrated w.r.t. c over

the range h/(s — t) < c < lto give the corresponding field variable for Problem 4.

6. Problem 3 solution. The discussion above implies that if F2 and are corresponding

field variables for Problem 3 and the Lamb's problems for ±y > 0, then

F3 = F* + f1 [U~(l/c) - U + (l/c)] • f(x, y, s - t - h/c, c) dc (6.1)

for ±y ^ 0, where the integration is the Problem 4 contribution. As a demonstration,

consider F3 = — u~ alongy = 0, x < 0: From (5.1) and (5.4) we have

fx = «[c(j ~ t) + x-h], /,. = 0, Ft -F[ =j^-t[Ux+(q)~ !//(?)]

(6.2a — c)

in (6.1). The sifting property of the Dirac function and (5.1) show that the integral in (6.1)

yields the negative of (6.2c) and thus u* — u~ appropriately vanishes.

Subsequent interest will focus on the crack edge stress field for the concentrated force

problem. It is readily shown that TL is not singular near the crack edge but that

f 1 , *(V*' ■ I"1. (6.3)
277w ^(.y) Jx| (^ + n)G + (k) c

<a+= v/(l ± A), b±= j(m ± k), (6.4)

In G
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for T when y = 0, x -> -0, where the integrand terms in (6.5) as defined by (5.3) are

functions of w. Here \/n is the non-dimensionalized Rayleigh wave speed, where

n > m > 1 and R(±n) = 0. Thus, substituting (5.1) and (6.3) into (6.1) yields a formal

result for T3 just ahead of the crack edge. Following [12,13], the integrations in this result

can be simplified by introducing the integration variable k = 1/c and, in some cases,

performed explicitly by the Cauchy residue theorem. Then, iox y = 0, x -» -0 (6.1) yields

 l*|T3 = (NXKX, NyKy) (6.6)

where the x and ^-components of the r.h.s. are the Mode II and Mode I dynamic stress

intensity factors. For s — t > nh K = 0, while for h < s — t < mh

M? K = f
AU~k)' (6.7)

g(*0 = m ^ + w> G+\u_\(2l<2bb a+,-J2)

772m2 \R\2

where hv = s — t, while for mh < s — t < nh

AhfK = ——=—^—(,/(«-w),2;(« - 1)). (6.8)
j(n-v) G-(">

In (6.7) the integrand terms as defined by (5.3), (6.4) and (6.5) are functions of k.

7. Concentrated force problem solution: crack edge stresses. With the Problem 3 solution

in hand, the Problem 2 solution follows by integration w.r.t. (h, t) as already indicated in

Sec. 4. The concentrated force solution is then obtained by superposing the Problem 1

solution. To illustrate the process involved while showing some solution behavior aspects,

we examine T just ahead (y = 0, x -» -0) of the crack. The Problem 1 contributions to T

are in general bounded at (jc, y) = 0 so that only the Problem 2 component is required.

To obtain this component, Nx and Nv in (6.6) must be replaced by -T* and -T* with

(/i, t) playing the role of (x, s) in (3.3) and (4.2), and the result integrated w.r.t. (h, t) as

indicated in Sec. 4. From (6.3) and (6.1) the ht-plane integration areas for the H1 and

//^-contributions are found to have the forms illustrated schematically in Figs. 3a and 3b,

respectively. The cross-hatchings (|||) and (///) show the regions where, respectively,

(6.7) and (6.8) govern. The actual computation of the h, t and /c-integrations is made more

efficient as follows:

The fan-shaped ftr-regions are more simply described in terms of the polar coordinates

(p, w) defined by

pcosu = s — t, psinw = /*. (7.1)

The resulting (p, w^integrations can then be more efficiently performed and the branch-cut

singularities in the H--terms extracted analytically by introducing the dimensionless

integration variables (X, £2) and the dimensionless independent variable t defined by

tanu = X, pcos co = rjd( 1 + sin £2),

p sin w = riXd(\ + sin £2), r = s/d (7.2)
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in those terms involving //,, where

2(1 - X2)rx = r + Acos ip — (/[(tX + cos ip)2 + (1 - A'2) sin2 ^], (7.3)

2(1 — m2X2)r2 = t + m2Xcos \p — mv/[(T^r + cos ip)2 + (1 — m2X2) sin21//]. (7.4)

Finally, the branch-cut singularities arising in (6.7) and (6.8) can be extracted analytically

by introducing the variable changes

k = 1/c, 2 mX = mc + 1 +(mc — l)sinfix (7-5)

in the integrations involving (6.7) and

2mX = /; + m + (n — m) sin o>x (7-6)

in the integrations involving (6.8). It follows that for^ = 0, x —> -0,

 l*|T = K (7.7)

where the mode II and mode I dynamic stress intensity factors Kx and Ky are

A = /' isMIf L.W-L.M daJev A /„, JC J c - X

+

1 /m <JC

ca f La(X) - La(l/n)
T>J  lA^X da*- (7"8)

j(nfJ Vn~X

Here a = jc or>', g and C are defined in (6.7) and (6.8). The vector L is given by

■jtL(X)

AX+l/m\ Zf + ^Q,(W - sin a)
i A ,

[t - r,.(l + sinfi)] ^

(7.9)

t = r (h)
d|sinv//|

t = mr (h)

-dcos {f/
JL-S
n m

Fig. 3a. Integration regions in /i?-plane Fig. 3b. Integration regions in /if-plane

for //.-contributions.
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r

Fig. 4. Dynamic stress intensity factors for ^ = 45°

where summation w.r.t. the index i is over the range (1,2) and

Dx y

D2 — j

/ T + X COS ib\ / . „ „ x
( 1_y2y)+M-3)r1

t + m~Xcos if/

yd - *2), (7.10)

+ (sin S2 — 3) r2 1 - w2^2|, (7.11)
1 - m2X2

= y[l + r2X2( 1 + sin £2)" + 2r, A'(1 + sin S2) cos i//]. (7.12)

In (7.9) Pj and Qj follow from (3.1) and (3.2) as

2/h2Pj(#) = cos(<f> — #)(sin 26, m2 — cos2 8), (7.13)

m2Ql{0) = —(sin( <p - 36), cos(<J> - 36)). (7.14)

for r > 1 and vanish otherwise. Similarly,

2P2(0) = sin(<#» - 0)(cos20,-sin20), Q2{6) = -Qx(6) (7.15)

for r > m but vanish otherwise. In (7.13)—(7.15). 6j follows from (5.1) and (7.2) as

R,sin 6t■ = sin ip, R^os 8t = r,X(\ + sin £2) + cos \p. (7.16)

In (7.8) and (7.9), the symbol / denotes integration over the range (-it/2, tt/2).

Equation (7.8) is plotted vs. t > 1 in Fig. 4 for the typical value m = ^3, \p = 45° and

various values of <j>. These curves indicate that the Mode I intensity factor generally

dominates the crack edge stress field.

8. Discussion. The results presented here show that exact expressions for the 2D

dynamic solution of a concentrated force near a semi-infinite crack in an unbounded

plane can be derived, even though a characteristic length is involved, by breaking the
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problem into a series of simpler problems. The resulting solution expressions for the crack

edge stress field are in the form of multiple singular integrations. However, by integration

variable changes, the singularities can be extracted analytically and the integrations

themselves kept in simple forms. For example, the formidable-appearing 12-integrations in

(7.9) are essentially of the simple type

/

1 + a, sin S2 \ / 1 + a-, sin £2 + a, sin2 £2 \±1

M   <«*• <8')1 + a3sin£2 + a4sin2£2 / \ 1 + f2sinfi

Here the a, are independent of £2, so that the integrations are easily computed by standard

Gaussian quadrature.

Modern computational methods and equipment do not necessarily require such effort in

integration preparation. However, the present results were derived with the idea that the

solution expressions might be used in the solution of transient wave-scattering problems.

Thus, they should add little to the computational and numerical precison burden, while

allowing analytical manipulation. This latter property is manifested in (7.8), for example:

the Problem 1 components (3.1) and (3.2) and the Problem 3 components are readily

discerned in the g, C and L-terms.

In summary, then, the results given here show how the dynamic 2D problem of a

concentrated force near a semi-infinite crack in an unbounded solid can be solved exactly

and in a convenient form, even though a characteristic length is involved. The solution

itself can then be used to generate transient solution representations for problems

involving in-plane loading and a stationary, external, traction-free crack. The crack, and

its attendant singularities, are automatically built into the representation.

As indicated above and in section 1, such representations are useful in wave-scattering

studies, where complicated incident wave forms and possibly irregular material boundaries

already provide formidable solution difficulties. However, an even more immediate

application is currently in preparation: Inelastic zones near crack edges can be modeled as

dislocation arrays [16], so that the study of non-purely brittle fracture becomes one of

crack-dislocation interaction.

In [17], the problem of screw dislocation motion near a Mode III crack was solved

directly. The more difficult problem of edge dislocation motion near a Mode I—11 crack

presently defies a direct approach. However, by combining the Burridge-Knopoff [6] body

force equivalents for dislocations with the results presented here, the problem solution—in

particular, the crack edge stress field—can be readily calculated. The most difficult

mathematical operation involves a convolution w.r.t. time.
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