
Journal of Hydraulic Research Vol. 43, No. 1 (2005), pp. 56–70

© 2005 International Association of Hydraulic Engineering and Research

The dynamic effect of pipe-wall viscoelasticity in hydraulic transients.
Part II— model development, calibration and verification
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ABSTRACT
A state-of-the-art mathematical model has been developed to calculate hydraulic transients in pressurized polyethylene (PE) pipe systems. This
hydraulic transient solver (HTS) incorporates additional terms to take into account unsteady friction and pipe-wall viscoelasticity. Numerical results
obtained were compared with the classic waterhammer solution and with experimental data collected from a PE pipe-rig at Imperial College (London,
UK). Unlike the classical model, the developed HTS is capable of accurately predicting transient pressure fluctuations in PE pipes, as well as
circumferential strains in the pipe-wall. The major challenge was the distinction between frictional and mechanical dynamic effects. First, the HTS
was calibrated and tested considering these two effects separately: if only unsteady friction was considered, a major disagreement between collected
data and numerical results was observed; when only the viscoelastic effect was considered, despite the good agreement between data and numerical
results, the calibrated creep function depended on the initial flow rate. In a second stage, the combination of these dynamic effects was analysed: creep
was calibrated for laminar flow and used to test the solver for turbulent conditions, and a good agreement was observed. Finally, the HTS was tested
using creep measured in a mechanical test, neglecting unsteady friction, and a good agreement was obtained.

RÉSUMÉ
Un nouveau modèle mathématique a été développé pour calculer les régimes transitoires hydrauliques des systèmes de conduites pressurisées en
polyéthylène (PE). Ce modèle hydraulique (nommé HTS) intègre des termes additionnels pour simuler la friction pendant le régime transitoire et
l’effet de la viscoélasticité de la conduite. Les résultats numériques obtenus ont été comparés avec la solution classique du coup de bélier et avec
les résultats expérimentaux collectés à partir d’un système de conduites simples en PE construit au Imperial College (Londres, Royaume Unit).
Contrairement au modèle classique, le modèle HTS est capable de prédire rigoureusement les fluctuations transitoires de pression dans la conduite
de PE ainsi que l’extension de la circonférence des parois de la conduite. Le grand challenge de ce travaille est la distinction entre l’effet dynamique
de la friction transitoire et l’effet mécanique de la déformation retardée de la conduite. Dans un premier temps, le modèle HTS a été calibré et testé
en considérant les deux effets séparément. Lorsque la friction en régime transitoire est considérée seule, de grandes différences entre les résultats
expérimentaux et numériques sont observées. Si l’effet viscoélastique de la conduite est considéré seul, même avec une bonne corrélation entre les
résultats expérimentaux et numériques, les fonctions des fluage calibrées varient avec le flux initial. Dans un deuxième temps, la combinaison de ces
deux effets a été analysée et une bonne correspondance entre les résultats expérimentaux et numériques a été observée. Enfin, le modèle HTS a été
vérifié avec succès en utilisant la fonction de fluage mesurée lors d’un test mécanique négligeant la friction en régime transitoire.
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1 Introduction

Hydraulic transient analysis is important in the design of water
pipeline systems for selection of pipe materials and pressure
classes, and for specification of surge protection devices. Classic
waterhammer theory based on the assumptions of linear elas-
tic behaviour of pipe walls and quasi-steady-state friction losses
is typically used to predict the maximum and minimum pressure
surges in the fluid systems (Chaudhry, 1987; Almeida and Koelle,
1992; Wylie and Streeter, 1993). This approach is relatively
accurate to describe hydraulic transients in metal or concrete
pipes; however, it is considerably imprecise for plastic pipes (e.g.
polyethylene), particularly in surges generated by rapid changes
in flow conditions. Plastic pipes, such as polyethylene (PE) and
polyvinyl chloride (PVC), have been increasingly used in water
supply systems due to their high resistant properties (mechani-
cal, chemical, temperature and abrasion) and cost-effective price.
Polymers, in general, exhibit a viscoelastic mechanical behaviour
(Ferry, 1970; Aklonis et al., 1972; Riande et al., 2000) that influ-
ences the pressure response of the pipe system during transient
events. This behaviour is not usually properly accounted for in
systems design, as transient events are evaluated either by rules
of thumb or by classical transient simulators. The assumptions
associated with these formulations are unrealistic in plastic pipe
systems, particularly for fast transient events.

In this context, a novel Hydraulic Transient Simulator (HTS),
which incorporates additional terms to take into account unsteady
friction and two types of mechanical behaviours of the pipe-
wall (linear-elastic or linear-viscoelastic), has been developed.
This HTS was calibrated and tested using transient pressure and
circumferential strain data. These data were collected from a sin-
gle high-density PE pipe-rig at Imperial College as described
in the companion paper (Covas et al., 2004). In an attempt to
distinguish unsteady friction from the effect of pipe-wall vis-
coelasticity, four different approaches were used to test the
developed HTS. First, the HTS was tested considering only
unsteady friction effects. Second, creep function was calibrated
neglecting unsteady friction. Third, the transient solver was cal-
ibrated for laminar flow considering Trikha’s (1975) unsteady
friction formulation and the calibrated solver was tested for turbu-
lent conditions. Finally, the HTS was tested neglecting unsteady
friction and using the creep-function determined experimentally
in an independent mechanical test in the companion paper (Covas
et al., 2004). Conclusions are drawn concerning the importance
of the incorporation of this mechanical behaviour in a hydraulic
transient model in plastic pipes.

2 Background review

2.1 Unsteady friction

Unsteady-friction losses have been widely studied for the last
50 years. These losses are particularly evident in linear elastic
materials, like concrete, metal and asbestos cement during fast
transient events or high-oscillating frequencies. Whilst unsteady
friction can be reasonably well described for laminar flow (Zielke,

1968; Trikha, 1975), no universally accepted formula has been
developed yet for turbulent conditions. Several formulations for
unsteady friction calculation have been presented, in the liter-
ature, assuming that these losses depend on: (i) instantaneous
mean velocity (Hino et al., 1976, 1977); (ii) instantaneous accel-
eration (Daily et al., 1956; Carstens and Roller, 1959; Safwat
and Polder, 1973; Shuy, 1996); (iii) weights of past time local
accelerations (Zielke, 1968; Trikha, 1975; Suzuki et al., 1991;
Vardy, 1992; Vardy et al., 1993; Vardy and Brown, 1995, 1996);
(iv) local and convective acceleration (Brunone et al., 1991, 1995;
Vitkovsky et al., 2000; Bergant et al., 2001); and (v) velocity
profiles (Bratland, 1986; Vardy and Hwang, 1991; Eichinger and
Lein, 1992; Silva-Araya and Chaudhry, 1997; Pezzinga, 1999,
2000).

The numerical results obtained by these formulations were,
in most cases, compared with data collected in metal or con-
crete pipes, typically with a linear-elastic mechanical behaviour.
Transient data collected by Holmboe and Rouleau (1967) in a
steel pipe and in a copper pipe embedded in concrete were used
as benchmark tests over many years. More recently, Brunone
et al. (1999, 2000) carried out experimental tests in a 350-m PE
pipe-rig and attributed the observed pressure wave dampening
to unsteady friction losses. These authors attempted to describe
the observed pressure dampening by using an extremely high
decay coefficient used in Brunone’s unsteady friction formula
(Brunone et al., 1995). The obtained numerical results presented
large discrepancies with experimental data both in terms the gen-
eral shape of the pressure signal and of the amplitude and phase
of the pressure wave. It is believed that the reason for these results
was that these authors neglected the dynamic effect of pipe-wall
viscoelasticity.

2.2 Pipe-wall viscoelasticity

Although the viscoelastic behaviour of polymers is well known,
this behaviour tends to be forgotten in hydraulic transient analysis
in plastic pipes. The viscoelastic behaviour is characterized by an
instantaneous elastic strain followed by a gradual retarded strain
for an applied load. This retarded behaviour of pipe-wall causes
a significant attenuation of the transient pressure oscillation and
increases the dispersion of the pressure wave. Two different
approaches have been proposed to describe this behaviour in
hydraulic transient solvers: a frequency-dependent wave speed
and an additional viscoelastic term added to the mass balance
fluid equation.

The concept behind the frequency-dependent wave speed is
that the viscoelastic behaviour of the pipe-wall is time (or fre-
quency) dependent, and, in the frequency domain, it can be
reasonably well described in terms of the angular frequency
(ω = 2π/t). Consequently, the modulus of elasticity E0 of
the pipe material used in the wave speed calculation is replaced
by the inverse of the creep function, J (Covas et al., 2004)
(the creep-function is equal to the inverse modulus of elastic-
ity, J0 = 1/E0 in time-independent phenomena). Meißner and
Franke (1977) investigated the damping of steady-oscillatory
flows in PVC and steel pipes. The viscoelastic attenuation of
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the pressure surges was much higher than the friction damping
(although they did not account for unsteady skin friction). These
authors derived the wave speed and the damping factor formu-
lae for an oscillating pressure in a thin-walled viscoelastic pipe.
Rieutford (1982) analysed laminar transient flow in viscoelas-
tic pipes and proposed a “one Kelvin–Voigt element” model to
describe the creep-function and to include in the wave speed
formula. Franke and Seyder (1983) incorporated Meißner and
Franke’s wave speed formulas in unsteady fluid equations, and
solved these by the Impedance Method, for steady-oscillatory
flows, and by the Impulse Response Method, for non-periodic
flows. Suo and Wylie (1990a) modelled pipe-wall viscoelasticity
in both oscillatory and non-periodic flows. Suo andWylie (1990b)
analysed frequency-dependent wave speed in a rock-bored tunnel
due to the dynamic effect of the surrounding rock mass.

The use of the additional viscoelastic term is related to
the rheology of the viscoelastic materials in which there is
an instantaneous-elastic response (accounted for in the elastic
wave speed) and a retarded-viscoelastic response. This retarded
behaviour is described by an additional time-dependent term that
is incorporated into the mass-balance equation. This formula-
tion has been proposed by Rieutford and Blanchard (1979) and
Gally et al. (1979). Rieutford and Blanchard (1979) described
this model in viscoelastic pipes and theoretically analysed the
effect of the relaxation times of a “three Kelvin–Voigt element”
model. Gally et al. (1979) experimentally determined the creep-
function by dynamic tests and verified the model with pressure
and circumferential-strain data collected in a single PE pipeline.
A slight disagreement in the strain data and numerical results
was observed. Ghilardi and Paoletti (1986) showed that the vis-
coelastic dampening could be usefully used to reduce pressure
surges. Rachid and Stuchenbruck (1990) modelled viscoelas-
tic pipe behaviour coupled and uncoupled with fluid–structure
interaction. Rachid et al. (1992) implemented several types of
non-elastic rheological behaviour. Pezzinga (2002) analysed the
effect of an additional PE pipe downstream of a pump to reduce
induced pressure surges.

3 Model development

3.1 Linear-elastic model

The theoretical fundamentals of transient analysis are com-
mon to pressurized and open-channel unsteady-state flows. The
flow movement, when temperature changes are negligible, is
described by the mass-balance and the momentum-conservation
principles. The continuity and momentum equations that describe
one-dimensional transient flow in pressurised conduits are a set of
two differential equations (Chaudhry, 1987; Almeida and Koelle,
1992; Wylie and Streeter, 1993):

dH

dt
+ a2

0

gS

∂Q

∂x
= 0 (1)

∂H

∂x
+ 1

gS

dQ

dt
+ hf = 0 (2)

where Q is the flow rate, H the piezometric head, a0 the elastic
wave speed, g the gravity due to acceleration, S the pipe cross-
sectional area, x the coordinate along the pipeline axis, t the
time, hf the head loss per unit length. Several simplifying assump-
tions are considered in the derivation of these equations (Almeida
and Koelle, 1992), and the most important are the following:
(i) pseudo-uniform velocity profile (consequently, friction losses
are described by steady-state formulae and coriolis and momen-
tum coefficients are constant); (ii) the rheological behaviour of
the pipe material is linear-elastic; (iii) the fluid is one-phase,
homogenous and compressible; and (iv) the pipe is uniform and
completely constrained from any axial or lateral movement.

In order to take into account unsteady friction losses and fluid
inertial effects, corresponding to the non-verification of assump-
tion (i), the head loss per unit length hf is decomposed into
two terms, a steady-state component hfs, and an unsteady-state
component, hfu:

hf = hfs + hfu (3)

The steady-state component hfs is calculated for turbulent and
laminar flow, respectively, by:

hfs = fs

2gD

Q|Q|n−1

Sn
and hfs = 32ν ′

gD2

Q

S
(4)

where fs is the Darcy–Weisbach friction factor, D the pipe inner
diameter, n the exponent of flow in the friction loss equation and
ν ′ the kinematic fluid viscosity.

The unsteady component hfu is usually neglected in the
classic waterhammer analysis. Whilst this assumption is reason-
ably accurate for slow transients and low pulsating frequencies,
rapid transient events and high pulsating frequencies require a
more accurate representation of unsteady skin friction. Several
unsteady friction formulations were implemented in the devel-
oped HTS: Trikha’s (1975), Vardy et al.’s (1993) and Brunone
et al.’s (1995).

Trikha’s (1975) formula is a simplification of Zielke’s (1968)
and is quite accurate for laminar flows (Fig. 1a):

hfu ≈ 16ν

gD2
[Y1 + Y2 + Y3] with

Yi(t) = Yi(t − �t)e−ni (4ν/D2)�t + mi[V (t) − V (t − �t)]
(5a)

Parameters ni and mi are null for steady state, and m1 = 40,
n1 = −8000, m2 = 8.1, n2 = −200, m3 = 1 and n3 = −26.4,
during the transient event.

Vardy et al.’s (1993) formula has a similar form as Trikha’s,
though with only two terms Yi and it was developed for smooth-
wall turbulent flows:

hfu ≈ 16ν

gD2
[Y1 + Y2] with

Yi(t) = Yi(t − �t)e−Bi(4ν/D2)�t + Ai[V (t) − V (t − �t)]
(5b)
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Figure 1 (a) Comparison between Zielke’s and Trikha’s weighting
functions for laminar flows. (b) Family of weighting functions for
smooth wall flows with low Re (Vardy et al., 1993).

Parameters Ai and Bi depend on the product of friction and
Reynolds number (f × Re) and the respective weighting func-
tions are presented in Fig. 1b. Zielke’s (1968) exact formulation
for laminar flows is an upper bound of these weighting functions
developed for smooth-wall turbulent flows. The values of f ×Re

of transient tests carried out in this work are within the range of
suggested values by the authors, i.e. f × Re ≤ 2000 (Fig. 1b):

Brunone et al.’s (1995) formula, with Vitkovsky et al.’s
improvement (Vitkovsky et al., 2000), provides better results
for turbulent flows:

hfu = k′

gS

(
∂Q

∂t
+ a0SGN(Q)

∣∣∣∣∂Q

∂x

∣∣∣∣
)

(6)

where k′ is Brunone’s decay coefficient and SGN the opera-
tor for the sign of the average velocity. This formula relies
on the calibration of the decay coefficient based on collected
transient data.

The elastic wave speed, a0, is a parameter that depends on the
fluid compressibility, and on the physical properties and external
constraints of the conduit. Assuming a linear-elastic behaviour

of the pipe-wall (described by Hooke’s law), wave speed can be
estimated by (Chaudhry, 1987):

a0 =
√

K/ρ

1 + (αD/e)(K/E0)
(7)

where E0 isYoung’s modulus of elasticity of the pipe, K the bulk
modulus of elasticity of the fluid, ρ the fluid density, e the pipe-
wall thickness and α the dimensionless parameter that depends
on the cross-section dimensions and on pipe axial constraints
(Chaudhry, 1987; Wylie and Streeter, 1993). The calculation of
parameter α is presented in the companion paper for a thick-
walled pipe.

3.2 Linear-viscoelastic model

Polyethylene pipes have a different rheological behaviour in com-
parison to metal and concrete pipes. When subjected to a certain
instantaneous stress σ0, polymers do not respond according to
Hooke’s law: plastics have an immediate-elastic response and a
retarded-viscous response. In this way, strain can be decomposed
into an instantaneous-elastic strain, εe, and a retarded strain, εr

(Fig. 2a):

ε(t) = εe + εr(t) (8a)

According to “Boltzmann superposition principle”, for small
strains, a combination of stresses that act independently in a sys-
tem result in strains that can be added linearly. This is presented
in Fig. 2(b) for the particular case of two stresses. Thus, the
total strain generated by a continuous application a stress σ(t) is
(Aklonis et al., 1972):

ε(t) = J0σ(t) +
∫ t

0
σ(t − t ′)

∂J (t ′)
∂t ′

dt ′ (8b)

in which J0 is the instantaneous creep-compliance and J (t ′) the
creep function at t ′ time. For linear-elastic materials, creep-
compliance J0 is equal to the inverse modulus of elasticity,
J0 = 1/E0.

Assuming that the pipe material is (i) homogeneous and
isotropic, (ii) it has linear viscoelastic behaviour for small strains,

�(t)
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Figure 2 (a) Stress and strain for an instantaneous constant load. (b)
Boltzmann superposition principle for two stresses applied sequentially.
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(iii) Poisson’s ratio ν is constant so that the mechanical behaviour
is only dependent on a creep-function, and (iv) circumferential-
stress σ is given by σ = α�pD/2e, the total circumferential
strain, ε = (D − D0)/D0, is described by:

ε(t) = α0D0

2e0
[p(t) − p0]J0

+
∫ t

0

α(t − t ′)D(t − t ′)
2e(t − t ′)

[p(t − t ′) − p0]∂J (t ′)
∂t ′

dt ′

(9)

where p(t) is the pressure at time t , p0 the initial pressure, J0

the instantaneous creep-compliance, J (t) the creep-compliance
function at time t , D(t) and D0 the inner diameters at time t

and t = 0, respectively, e(t) and e0 the wall thicknesses at time
t and t = 0, respectively; α(t) and α0 the pipe-wall constraint
coefficient at time t and t = 0, respectively. The first term of
Eq. (9) corresponds to the elastic strain εe and the integral part
to the retarded strain εr. The creep-compliance function J (t),
which describes the viscoelastic behaviour of the pipe material,
can be determined experimentally in an independent mechanical
test (Covas, 2003; Covas et al., 2004), or calibrated based on
collected transient data. Afterwards, this function should be rep-
resented by a mathematical expression that can be implemented
numerically.

In order to take into account the viscoelastic behaviour of
the pipe-wall, the continuity equation (Eq. 1) has to be obtained
again from the Reynolds transport theorem. Taking into account
the relationship between cross-sectional area, S, and total strain,
ε (i.e. dS/dt = 2Sdε/dt), and the two components of strain,
ε = εe + εr (εe is the elastic strain and εr the retarded strain), the
continuity equation yields (Covas, 2003):

dH

dt
+ a2

0

gS

∂Q

∂x
+ 2a2

0

g

dεr

dt
= 0 (10)

Whilst the third term represents the retarded effect of pipe-wall,
the elastic strain is included in the piezometric head time deriva-
tive and in the elastic wave speed, a0. The elastic wave speed
is calculated by Eq. (7) considering E0 = 1/J0. Equation (10)
solved with Eq. (2) and the second term of Eq. (9) describes
the pressure-flow fluctuations along a pressurized pipe. For vis-
coelastic pipes, a new concept of wave speed, a, can be defined in
terms of the creep-compliance function (Covas, 2003). This wave
speed is a time-dependent parameter that decreases during the
transient event, as a result of the increase of the creep-function.
This justifies the pressure wave dampening and phase shift during
the propagation of the transient event.

3.3 Numerical scheme for the viscoelastic model

The set of differential equations (10) and (2) is solved by the
Method of Characteristics (MOC). The stability of this method
requires the verification of a numerical restriction for the time
and space steps, given by the Courant–Friedrich–Lewy stability
condition, dx/dt = V ±a0, which corresponds to the propagation
of flow features along curved characteristic lines. This condition

allows the transformation of Eqs (9) and (2) into a set of total
differential equations:

dH

dt
± a0

gS

dQ

dt
+ 2a2

0

g

(
∂εr

∂t

)
± a0hf = 0 (11)

valid along the characteristic lines dx/dt = V ± a0. For the
linear-elastic case, the retarded strain–time derivative is null. The
numerical resolution of these complete equations (including con-
vective terms) requires the use of a characteristic grid (Gally et al.,
1979), or interpolations in a rectangular double grid. Whilst the
characteristic grid is difficult to compactibilize at nodes in sys-
tems with multiple pipes, the rectangular grid requires the use of
interpolations that introduce artificial numerical damping in the
pressure response (Wylie and Streeter, 1993).

In most engineering problems when the fluid is water, the fluid
velocity is negligible compared to elastic wave speed (V � a0).
Thus, the set of Eqs (11) is further simplified by neglecting con-
vective terms, leading to approximately straight characteristic
lines dx/dt = ±a0. These simplified equations can be solved by
the following numerical scheme:[

H(x, t) − H(x ∓ �x, t − �t)
]

± a0

gS

[
Q(x, t) − Q(x ∓ �x, t − �t)

]
+ 2a2

0�t

g

(
∂εr

∂t

)
± a0�thf = 0 (12)

valid along the characteristic lines dx/dt = ±a0. In these equa-
tions, there are two terms that cannot be directly calculated and
that require further numerical discretization: the retarded strain
time-derivative and the slope of the energy line.

The time-derivative of the retarded strain is calculated by
deriving the second term of Eq. (9). The creep function of the
pipe-wall should be represented by a mathematical expression
in order to be able to analytically calculate this derivative. The
mechanical model of a generalized viscoelastic solid (Fig. 3)
is typically used to describe the creep function (Aklonis et al.,
1972):

J (t) = J0 +
N∑

k=1

Jk(1 − e−t/τk ) (13)

where J0 is the creep-compliance of the first spring defined
by J0 = 1/E0, Jk the creep-compliance of the spring of the
Kelvin–Voigt k-element defined by Jk = 1/Ek , Ek the mod-
ulus of elasticity of the spring of k-element, τk the retardation
time of the dashpot of k-element, τk = ηk/Ek , ηk the the vis-
cosity of the dashpots of k-element. The parameters Jk and τk

of the viscoelastic mechanical model are adjusted to the creep-
compliance experimental data. According to this mathematical

E0

E1 E2 E3 EN

µ1 µ2 µ3 µN

Figure 3 Generalized Kelvin–Voigt Model (viscoelastic solid).
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model, the terms ∂εr/∂t and εr are calculated as the sum of these
factors for each Kelvin–Voigt element k:

εr(x, t) =
∑

k=1,...,N

εrk(x, t)

=
∑

k=1,...,N

{
αD

2e
γ

∫ t

0

[
H(x, t − t ′) − H0(x)

]Jk

τk

e
−t ′
τk dt ′

}

(14)

∂εr(x, t)

∂t
=

∑
k=1,...,N

∂εrk(x, t)

∂t

=
∑

k=1,...,N

{
αD

2e

Jk

τk

γ
[
H(x, t) − H0(x)

] − εrk(x, t)

τk

}

(15)

Considering the creep function defined by the generalized vis-
coelastic solid model (Eq. 13) and introducing the time-derivative
of this function J (t) in the second term of Eq. (9), it yields for
each Kelvin–Voigt element k:

εrk(x, t) =
∫ t

0
F(x, t − t ′)

Jk

τk

e−t ′/τk dt ′ (16)

where the function F(x, t) is defined by:

F(x, t) = αD

2e
γ
[
H(x, t) − H0(x)

]
(17)

The strain time-derivative derivative can be directly calculated
by the analytical differentiation of Eq. (16). After mathemati-
cal manipulations of each of these integrals (Eq. (16) and its
time-derivative), for each Kelvin–Voigt element k, it yields the
following numerical approximations (see Appendix):

∂εrk(x, t)

∂t
= Jk

τk

F (x, t) − ε̃rk(x, t)

τk

(18)

ε̃rk(x, t) = JkF (x, t) − Jke−�t/τkF (x, t − �t)

− Jkτk(1 − e−�t/τk )
F (x, t) − F(x, t − �t)

�t

+ e−�t/τk ε̃rk(x, t − �t) (19)

Parameters Jk and τk are adjusted to the creep experimental
data. The pipe diameter, wall-thickness and pipe-wall constraints
coefficient are assumed constant and equal to initial values.
Regarding the friction term hf in Eq. (12), a second-order implicit
scheme was used to calculate the steady-state component (Wylie
and Streeter, 1993), and unsteady friction formulations were
used to compute the unsteady component (Trikha’s, Vardy’s and
Brunone’s). Trikha’s and Vardy’s formulae are straightforwardly
implemented by Eqs. (5a) and (5b). Brunone’s formula requires
the calculation of derivatives. A first-order explicit scheme was
used to calculate the space derivative and a second-order implicit
scheme for the time derivative, defined as follows, for the C+

and C− characteristic lines:
Local term

∂Q

∂t

∣∣∣∣
C±

= θ
Q(x, t) − Q(x, t − �t)

�t

+ (1 − θ)
Q(x ∓ �x, t − �t) − Q(x ∓ �x, t − 2�t)

�t

(20)

Convective term

∂Q

∂x

∣∣∣∣
C±

= Q(x, t − �t) − Q(x ∓ �x, t − �t)

�x
(21)

Sign term

SGN(Q)|C± = SGN(Q(x ∓ �x, t − �t)) (22)

where θ is the relaxation coefficient. If θ = 0, the flow time-
derivative becomes explicit and, therefore, unstable for certain
combinations of parameters; if θ > 0, the numerical scheme is
implicit and, thus, unconditionally stable. To minimize computer
storage and increase computational speed, θ = 1 was considered.

The flow parameters at section x and time t , Q and H , are cal-
culated based on Eq. (12) for all interior sections of the pipes. At
the ends of each pipe, additional equations (boundary conditions)
have to be specified.

4 Model calibration and testing

4.1 Introduction

The developed mathematical model was calibrated and tested
using with transient data collected from a PE pipe-rig at Imperial
College (London, UK). The pipe has a length of 277 m and an
inner diameter of 50.6 mm. There is a pressurized air vessel at
the upstream end and a globe valve at the downstream. Transient
events were generated by the fast closure of this valve. A complete
description of the experimental facility and of the collected data
can be found in the companion paper (Covas, 2004).

Four main approaches were followed to calibrate and test
the developed transient solver. In the first two, the model
was calibrated considering only one of the dynamic effects,
either unsteady friction or pipe-wall viscoelasticity. In the third
approach, the creep function was calibrated for laminar con-
ditions using Trikha’s formula and calibrated creep was used
to calibrate and test the model for turbulent conditions. At
last, the model was tested using the creep data experimentally
determined in mechanical tests in the companion paper (Covas
et al., 2004).

With regard to steady state friction losses, the pipe-wall sur-
face is smooth and the Darcy–Weisbach friction factor fs is
independent of pipe roughness. Friction is determined by the
Hagen–Poiseuille formula for laminar flow, and by the Bla-
sius formula for smooth-wall turbulent flows. Local head losses
at elbows were estimated in 5% of friction losses (based on
steady-state conditions).
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4.2 Unsteady friction calibration neglecting pipe-wall
viscoelasticity

In the first attempt to calibrate the transient solver, it was assumed
that the pressure damping was only due to steady and unsteady
friction (i.e. pipe-wall viscoelasticity was neglected). This is the
normal procedure when using linear-elastic models. The tran-
sient event was simulated for laminar conditions (Q0 = 0.056 l/s;
Re = 1400) using Trikha’s formula and the results are presented
in Fig. 4. The classic waterhammer solution is presented in the
same figure (for a wave speed, a0 = 385 m/s). A major disagree-
ment is observed between collected data and numerical results in
terms of shape and extreme values of transient pressures. Trikha’s
formulation, which was considered a reasonable approximation
of frictional dynamic effects in laminar flow, was not capable
of describing the observed transient damping of the pressure
surge. This meant that another phenomenon (not described by
this formula) was occurring during the transient event.

A second attempt was made to describe the transient events
for turbulent flow, both using Vardy’s and Trikha’s formulae and
calibrating Brunone’s decay coefficient (Fig. 5). In the same fig-
ure, the classic waterhammer solution is represented (for a wave
speed, a0 = 385 m/s).

Neither Trikha’s nor the Reynolds dependent Vardy’s formula
could describe the observed damping of transient pressures in
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Figure 4 Piezometric head at Location 1. Experimental data ver-
sus numerical results considering only unsteady friction, for laminar
conditions Q0 = 0.056 l/s (T = 20◦C).
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Figure 5 Piezometric head at Location 1. Experimental data ver-
sus numerical results considering only unsteady friction, for turbulent
conditions Q0 = 1.0 l/s (T = 20◦C).

smooth-wall turbulent flows. Comparing Trikha’s with Vardy’s
numerical results, it can be seen that unsteady friction effects are
less important for turbulent conditions (if not negligible) than for
laminar flows. This is according to what is expected, as Trikha’s
(or Zielke’s) weighting function is an upper bound of Vardy’s
functions (Fig. 1b).

With regard to Brunone’s formulation, an extremely high
decay coefficient was calibrated to fit the numerical results with
the observed extreme pressures. However, the shape of the pres-
sure wave was still significantly different and, in no way, it could
be represented by Brunone’s formulation.

The general conclusion is that unsteady friction cannot thor-
oughly describe the attenuation and dispersion of transient
pressures in polyethylene pipes.

4.3 Creep calibration neglecting unsteady friction

The use of the viscoelastic transient solver requires as input
data the description of the creep compliance function represented
by the generalized Kelvin–Voigt model. This model is described
by a set of parameters: the instantaneous elastic creep J0 (i.e. a0)
and the retarded components, τk and Jk (k = 1, . . . , NKV and
NKV = number of Kelvin–Voigt elements). If the creep J (t) is
unknown (the most probable case in engineering), this function
has to be estimated (or calibrated) by adjusting the results of the
numerical model to the transient data.

Unsteady-friction effects were neglected. Calibrations were
carried out for several transient tests from laminar for smooth-
wall turbulent flows (Q0 = 0.054 l/s to Q0 = 1.98 l/s). The
creep function J (t) was represented by several combinations of
Kelvin–Voigt elements. The parameters τk and J0 (i.e. a0) were
fixed before calibration. The parameters Jk were estimated by
minimising the Least Square Error (LSE) between the calculated
and measured piezometric head at transducer T1 located at the
downstream end (Covas, 2003). Levenberg–MaquardtAlgorithm
was used to carry out the optimisation (Press et al., 1988). A
preliminary sensitivity analysis permitted to draw the following
conclusions.

First, the wave speed a0 was varied between 385 and 450 m/s
according to the reference values presented in the companion
paper. The higher the wave speed was, the smaller the low-
est retardation time τk (i.e. τ1) had to be to achieve the same
accuracy (quantified by the LSE), and, consequently, the smaller
the time-step �t and the higher the computational time. Whilst,
considering a0 < 400 m/s, a good adjustment was obtained for
τ1 = 0.05 s, when a0 = 425 m/s was assumed, it would be nec-
essary a τ1 = 0.001 s. The wave speed was fixed in 395 m/s as a
compromise between accuracy and computational time.

For a0 = 395 m/s (i.e. J0 = 0.70E − 9 Pa−1 by Eq. (7) for
α = 1.07, D = 50.6 mm and e = 6.3 mm) and parameters
τ1 to τ5 equal to 0.05, 0.5, 1.5, 5 and 10 s, respectively, a sen-
sitivity analysis was carried out to obtain the optimal number
of elements Kelvin–Voigt elements. Data corresponding to the
initial flow Q0 = 1.0 l/s were used. It was concluded that (see
Table A-1), (i) the values of the calibrated Jk parameters varied
with NKV and the sample size �T , (ii) using NKV ≥ 4 did not
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Figure 6 Calibrated creep functions for several flow rates neglecting
unsteady friction.

improve the accuracy of the results (providing simply a differ-
ent combination of Jk parameters), and (iii) the calibrated creep
functions were significantly different from the experimental creep
curve determined in the companion paper, but the higher NKV the
closer these were to the experimental creep function. NKV = 5
was used in order to better fit calibrated creep with measured
creep function and not to improve the accuracy of the transient
solver.

For the same set of parameters referred in the previous para-
graph, calibration was carried out for different initial flows Q0.
Calibrated creep functions are presented in Fig. 6, as well the
experimental creep function (Set I) determined in the companion
paper. Each combination of parameters is one possible mechan-
ical representation of the pipe creep. Different creep functions
were obtained for each flow, though only one was supposed to
exist. This is because unsteady friction (which is not accounted
for in these simulations) has a similar dynamic effect on the
pressure wave as pipe-wall viscoelasticity, as it attenuates the
maximum pressure fluctuations and increases the dispersion of
pressure wave. The only numerical way that the optimisation
algorithm has to describe friction is by including it in the creep
function (increasing the total creep). In fact, there is a resem-
blance between the frequency-dependent friction hf u defined
by Zielke (1968) and the frequency-dependent creep (Aklonis
et al., 1972), as both depend on the past-time histories of the
fluid:

hfu(t) = 16v′

gD2

∫ t

0

∂V (u)

∂t
ω(t − u)du and

εr(t) = αD

2e

∫ t

0

∂p(u)

∂t
J (t − u)du

where ω(t) is the weighting function and J (t) the creep function.
The first term is incorporated in the momentum equation, whereas
the second is in the continuity equation.

Numerical results obtained forQ0 = 1.0 l/s are compared with
the collected piezometric head and circumferential-strain time
variation at Locations 1, 5 and 8 corresponding to distances from
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Figure 7 Piezometric head at Locations 1, 5 and 8 for Q0 = 1.0 l/s
(T = 20◦C). Collected data versus numerical results for calibrated creep
neglecting unsteady friction.

the upstream end of ∼271 m, ∼197 m and ∼116.5 m, respec-
tively (Figs 7 and 8). Two numerical solutions for the piezometric
head are presented. The first (dashed-line) was calculated using
the ‘elastic’waterhammer equations and the second (continuous-
thin-line) the ‘viscoelastic’ equations. The classic waterhammer
solution shows large discrepancies in both the pressure amplitude
and phase with experimental data. These increase substantially
with time and distance from the valve. The viscoelastic solution
fits perfectly with the collected data. The retarded and the total
strains are calculated as well by the numerical model considering
the ratio inner/outer strain equal to 66% as determined in the com-
panion paper. The retarded strain is one-fourth of the total strain.
Calculated total strain agrees well with measured data (Fig. 8).

4.4 Calibration for laminar flow and verification / calibration
for turbulent conditions

This approach can been classified as a two-step procedure: the
first step consists of the creep function calibration for laminar
conditions using Trikha’s (1975) formula for unsteady friction
effects, and the second step is the model verification for turbulent
conditions by using Vardy’s (1993) formulation or by calibrating
Brunone’s (1995) formula.
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4.4.1 Calibration for laminar flow
The creep-function was calibrated for laminar conditions (Q0 =
0.056 l/s; Re = 1,400) considering unsteady friction effects
described by Trikha’s formula (as this formula is considered to
describe reasonably well the frictional dynamic effects). Though
not accurate, Trikha’s formula can be considered a good approx-
imation of Zielke’s exact formula for laminar conditions. The
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Figure 8 Circumferential strain at locations 1, 5 and 8 for Q0 = 1.0 l/s
(T = 20◦C). Collected data versus numerical results for calibrated creep
neglecting unsteady friction.
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Figure 9 Piezometric head at Location 1 for laminar conditions, Q0 = 0.056 l/s (T = 20◦C). Collected data versus numerical results.

creep-function was calibrated for three sample sizes, �T = 5,
10 and 20 s (see Table A-2 and Fig. 6). The larger the sample
size, the higher calibrated creep is in time. This is possibly due to
the increase in error of Trikha’s formula with time, error that the
calibrated creep function tends to compensate. Numerical results
obtained for �T = 10 s calibration are compared with collected
data (Fig. 9).

Three numerical solutions are presented: (i) classic waterham-
mer solution; (ii) results of the implementation of Trikha’s for-
mula only; and (iii) results of combination of pipe-viscoelasticity
and unsteady friction. The latter results show good agreement
with experimental data, which does not happen with the results
of (i) and (ii).

4.4.2 Verification/calibration for smooth-wall turbulent
conditions

Assuming a good approximation of the creep-function was
achieved with the calibration for the laminar conditions for
�T = 10 s, this function was used for smooth-wall turbulent con-
ditions (Q0 = 1.0 l/s; Re = 25,000). Numerical results for six
different cases are presented in Fig. 10: (i) the classic waterham-
mer solution; (ii) the implementation of Vardy’s formula only;
(iii) the implementation of Trikha’s formula only; (iv) the imple-
mentation of Brunone’s formula only with k′ = 0.03; (v) Vardy’s
formula and viscoelasticity; and (vi) Brunone’s formula and
viscoelasticity. The following conclusions can be drawn:

• Unsteady friction cannot per se generate the total damping,
phase-shift and curve-shape observed in transient pressures, as
it can be seen in the solutions obtained without viscoelasticity
using Trikha’s, Vardy’s and Brunone’s formulations.

• Numerical results obtained combining unsteady friction mod-
els and viscoelasticity (calibrated for laminar conditions) fit
very well with observed data. Brunone’s formulation with
k′ = 0.03 combined with viscoelasticity lead to slightly higher
damping than the observed data, whereas results obtained com-
bining Vardy’s with viscoelasticity fit very well with transient
data.
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Figure 10 Piezometric head at Location 1 for smooth turbulent conditions, Q0 = 1.0 l/s (T = 20◦C). Collected data versus numerical results.

4.5 Model verification using creep data

Unsteady friction losses have a similar dynamic effect on pressure
transients as the viscoelastic behaviour of the pipe-wall. The solu-
tion to distinguish these two overlapping phenomena is to isolate
one of them and measure it in an independent test. With regard to
unsteady friction, this phenomenon cannot be straightforwardly
measured, particularly in PE pipes. Possible solutions could be
the measurement of velocity profiles (Brunone et al., 2000) or
running the same transient tests in a metal or concrete pipe with
linear-elastic walls. Concerning the viscoelastic behaviour of the
PE, the creep function that characterizes this effect could be mea-
sured in mechanical tests with samples of pipe. This was the
approach followed herein.

One of the creep functions, Set I, experimentally determined
in Covas et al. (2004) has been used to test the model. Unsteady
friction was neglected. The curve of the viscoelastic solid (Eq. 13)
for the first 20 s was fitted to this creep function. A six-element
Kelvin–Voigt model was considered with the following relax-
ation times τk: 0, 0.05, 0.50, 1.50, 5 and 10 s. The creep tests could
not determine the elastic component J0 of the creep function, nor
precisely define the shape of the creep curve for (t < 0.1 s). Thus,
several initial creep values J0 were considered with wave speeds
a0 between 375 and 410 m/s. Calibrated creep coefficients are
presented in TableA-3 and corresponding creep curves in Fig. 11.
The results of the numerical simulations of the transient solver as
well as collected data at transducer T1, for the steady-state flow
Q0 = 1.0 l/s, are presented in Fig. 12. Unsteady friction losses
were neglected. Four main conclusions can be drawn from the
analysis of these results.

First, the use of any of the experimentally determined creep
curves improves the accuracy of the transient solver in compar-
ison with the classic waterhammer solution for the linear elastic
pipe. Second, the lower the initial J0 is (the higher a0), the higher
is the viscoelastic component of creep, and, consequently, the
more dissipation the pressure wave has and the more scatter of
the numerical and measured results. Third, the best results are
obtained for a0 = 395 m/s (J0 = 0.7 GPa−1), which means that
this initial value is very close to the elastic component of creep.
This value is consistent with the results of instantaneous wave
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Figure 11 Representation of creep functions for several initial J0 for
data Set I (T = 20◦C).

speed obtained in the companion paper (Covas et al., 2004).
Finally, none of the curves accurately represents the observed
transient pressures, tending to generate lower pressure fluctua-
tions. The PE in the pipe samples seems to be more flexible than
the PE in the pipe-rig. The fact is that the pipe samples cannot
accurately describe the overall constraints and stress-time history
of the PE pipe-rig. These functions are good reference values of
the real creep of the pipe, though they should be used with par-
simony, as, in the current case, the generated overpressures are
less severe than the observed values.

5 Summary and conclusions

The current paper presented a mathematical model for the calcu-
lation of waterhammer in PE pipes taking into account unsteady
friction effects and the viscoelastic behaviour of pipe walls.
The model was tested with experimental data. The strain-stress
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Figure 12 Piezometric head at Location 1 (Q0 = 1 l/s): collected data versus numerical results (T = 20◦C) based on creep data Set I.

relationship was determined by a creep-function. The numerical
results obtained by the linear elastic and the linear viscoelas-
tic models were compared with experimental data, neglecting
and taking into account unsteady friction effects. The pressure-
fluctuation obtained with the linear viscoelastic model showed a
good agreement with the experimental data. Conversely, the pres-
sure obtained by the classic solution showed a large discrepancy
with the observed data. The circumferential strain was monitored
and the results of the viscoelastic model fitted well with the data.

The major challenge of the current and the future work
is the distinction between frictional and mechanical dampen-
ing. The viscoelastic behaviour of pipe walls has a dissipative
and dispersive effect on the pressure wave, similar to unsteady
friction losses. First, the two phenomena were analysed indepen-
dently. Whilst unsteady friction could not represent the observed
transient pressure, the creep function when calibrated without
considering unsteady friction varied with the flow-rate. It was
necessary to account for these two phenomena simultaneously.
The distinction between these two effects can be achieved by mea-
suring or calculating as accurately as possible one of them by:
(i) calibrating creep-function based on collected data for laminar
conditions considering Trikha’s formulation and, later, testing
the model for turbulent flows, (ii) determining the creep-function
in an independent creep or dynamic mechanical test, or (iii) using
more accurate models to simulate unsteady friction. The first two
were followed herein. The main conclusion is that the developed
viscoelastic solver is capable of accurately predicting transient
pressures in PE pipes as long as creep is reasonably well described
by the calibration based on laminar flows, or by mechanical tests.
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Appendix

Time-derivative of the retarded strain for each
Kelvin–Voigt element k

The time-derivative of the retarded strain (Eq. 18) can be directly
calculated by the analytical differentiation of Eq. (16) for each
Kelvin–Voigt element k, as follows:

∂εrk(x, t)

∂t
= d

dt

∫ t

0
F(x, t − t ′)

Jk

τk

e−t ′/τk dt ′

= d

dt

(
−Jk

τk

∫ 0

t

F (x, y)e
y−t
τk dy

)

= d

dt

(
Jk

τk

e−t/τk
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F(x, y)ey/τk dy

)

= − Jk

τ 2
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e−t ′/τk

τk

(−1)dt ′ + Jk

τk

F (x, t)

= − 1

τk
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F (x, t) (A1)
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Finite-difference scheme of the retarded strain
for each Kelvin–Voigt element k

The numerical approximation of the retarded strain in Eq. (A1)
can be defined by dividing the integral in Eq. (16) into two
components and calculating these separately, as follows:

εrk(x, t) =
∫ �t

0
F(x, t − t ′)

Jk

τk

e−t ′/τk dt ′︸ ︷︷ ︸
A

+
∫ t

�t

F (x, t − t ′)
Jk

τk

e−t ′/τk dt ′︸ ︷︷ ︸
B

(A2)

Term A

A =
∫ �t

0
F(x, t − t ′)

Jk

τk

e−t ′/τk dt ′

A = −
∫ t−�t

t

F (x, t ′′)
Jk

τk

e(t ′′−t)/τk dt ′′

A = − F(x, t ′′)Jke
(t ′′−t)/τk

∣∣t−�t

t

+
∫ t−�t

t

∂F (x, t ′′)
∂t ′′

Jke
(t ′′−t)/τk dt ′′

Table A-1 Best fitted creep coefficients Jk for several K–V elements and sample sizes. Calibration for Q0 = 1.008 l/s neglecting unsteady
friction (a0 = 395 m/s)

Sample Number of Creep coefficients Jk (Pa−1) Least
Size �T K–V elements for the retardation times indicated below Square
(s) (−) Error

τ = 0.05 s τ = 0.5 s τ = 1.5 s τ = 5 s τ = 10 s (m2)

5 3 1.060E−10 9.330E−11 1.120E−10 — — 0.0618
3 1.060E−10 1.110E−10 — 2.390E−10 — 0.0591
3 1.060E−10 1.140E−10 — — 4.430E−10 0.0586

10 3 1.050E−10 1.040E−10 1.002E−10 — — 0.0482
3 1.043E−10 1.210E−10 — 2.196E−10 — 0.0474
3 1.040E−10 1.240E−10 — — 4.100E−10 0.0472

20 1 1.803E−10 — — — — 17.2006
2 8.494E−11 1.709E−10 — — — 0.1170
3 1.044E−10 1.037E−10 1.145E−10 — — 0.0611
4 1.048E−10 1.029E−10 1.134E−10 8.083E−12 — 0.0610
5 1.057E−10 1.054E−10 9.051E−11 2.617E−11 7.456E−11 0.0610
3 1.355E−10 — 2.859E−10 1.555E−10 — 0.1991
3 1.036E−10 1.230E−10 — 2.493E−10 — 0.0623
3 1.035E−10 1.259E−10 — — 4.655E−10 0.0626

A = + Jk

(
F(x, t) − F(x, t − �t)e−(�t)/τk

)
+ Jkτk

∂F (x, t ′′)
∂t ′′

e(t ′′−t)/τk

∣∣∣∣t−�t

t

−
∫ t−�t

t

∂2F(x, t ′′)
∂t ′′2

τke
(t ′′−t)/τk dt ′′︸ ︷︷ ︸

second order≈0

Ã = + Jk

(
F(x, t) − F(x, t − �t)e(−�t)/τk

)
− Jkτk

F (x, t) − F(x, t − �t)

�t

(
1 − e−(�t)/τk

)
(A3)

Term B

B =
∫ t

�t

F (x, t − t ′)
Jk

τk

e−t ′/τk dt ′

B =
∫ t−�t

0
F(x, t − �t − u)

Jk

τk

e(−u−�t)/τk du

B = εrk(x, t − �t)e(−�t)/τk (A4)

Introducing Eqs (A3) and (A4) into Eq. (A2), it yields Eq. (19).
In summary, the time-derivative of the retarded strain, ∂εr/∂t ,

in characteristic equations (Eqs 12) is calculated by the sum of
the time-derivative of the strain for each Kelvin–Voigt element
k∂εrk/∂t by Eq. (15). Each term ∂εrk/∂t is calculated by Eq. (18)
as a function of the retarded strain εrk . The numerical approxi-
mation of the retarded strain εrk for each element k is given by
Eq. (19).
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Table A-2 Best fitted creep coefficients Jk for a four-element K–V model (a0 = 395 m/s). Calibration for
laminar flow Q0 = 0.056 l/s considering unsteady friction Trikha’s formula

�T J0 a0 Creep coefficients Jk (10−9Pa−1) Least
(s) (10−9 Pa−1) (m/s) for the retardation times indicated below Square

Error
τ1 = 0.05 s τ2 = 0.5 s τ3 = 10 s (m2)

5 0.70 395 0.0804 0.1113 0.5456 0.00055
10 0.70 395 0.0805 0.1083 0.5763 0.00038
20 0.70 395 0.0801 0.1101 0.5906 0.00024

Table A-3 Best fitted creep coefficients Jk to represent experimental creep curve Set I (six-element K–V model)

J0 a0 Creep coefficients Jk (10−9 Pa−1) Least
(10−9 Pa−1) (m/s) for the retardation times indicated below Square

Error
τ1 = 0.05 s τ2 = 0.5 s τ3 = 1.5 s τ4 = 5 s τ5 = 10 s (10−9 Pa−2)

0.79 372 0.0259 0.0712 0.1361 0.0122 0.4526 0.101
0.75 381 0.0333 0.1621 0.0214 0.1972 0.2925 0.092
0.70 394 0.1394 0.0062 0.1148 0.3425 0.0928 0.110
0.64 410 0.1092 0.0912 0.1554 0.2695 0.1339 0.091
0.59 426 0.1010 0.2632 0.0101 0.2639 0.1935 0.066

Notation

a0 = elastic wave speed (m/s)
D = pipe inner diameter (m)

D0 = initial pipe inner diameter (m)
e = pipe-wall thickness (m)

e0 = initial pipe-wall thickness (m)
E0 = Young’s modulus of elasticity of the pipe (Pa)
Ek = Young’s modulus of elasticity of the springs (Pa)
fs = Darcy–Weisbach steady-state friction factor (–)
g = gravity due to acceleration (m/s2)

hf = head loss per unit length (–)
hfs = steady-state component of the head loss per unit

length (–)
hfu = unsteady-state component of the head loss per

unit length (–)
H = piezometric-head, H = p/γ + z (m)
H0 = steady-state piezometric head (m)
J = creep-compliance (Pa−1)
J0 = instantaneous or elastic creep-compliance (Pa−1)
Jk = creep of the springs of the Kelvin–Voigt

elements, Jk = 1/Ek (Pa−1)
K = bulk modulus of elasticity of the fluid (Pa)
L = length of the pipeline (m)
n = exponent of flow in the friction loss equation (–)

NKV = number of Kelvin–Voigt elements (–)
p = pressure of the fluid (Pa)

p0 = initial steady-state pressure (Pa)
Q = flow-rate (m3/s)

Q0 = initial steady-state flow-rate (m3/s)
Re = Reynolds number, Re = V D/v′ (–)
S = pipe cross-section (m2)

T = temperature of the fluid; period of pressure wave,
T = 4L/a (s)

t, t′, t′′ = time (s)
V = average velocity of the fluid (m/s)
x = coordinate along the pipe axis (m)
ρ = fluid density (kg/m3)
α = dimensionless parameter (function of pipe cross-

section dimensions and constraints) (–)
θ = weighting coefficient for the flow-time derivative

calculation (–)
ν = Poisson’s ratio (ratio between axial and

circumferential strain) (–)
ν ′ = kinematic fluid viscosity (m2/s)
ε = strain; circumferential total strain (m/m)

ε0 = initial strain (m/m)
εi = strain (m/m)
εe = instantaneous-elastic strain (m/m)
εr = retarded strain (m/m)
σ = stress; circumferential-stress (Pa)
σ0 = initial stress (Pa)
τk = retardation time of the dashpots, τk = ηk/Ek (s)
ηk = the viscosity of the dashpots (kg/sm)
�t = time-step increment (s)

�T = sample length used for calibration (s)
�x = space-step increment (m)
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