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Abstract—Thermal power unit is an energy conversion 
system consisting of the boiler, the turbine and their auxiliary 
machines respectively. It is a complicated multivariable system 
with strong nonlinearity, uncertainty and multivariable 
coupling. These characters will be more evident with the unit 
tending to large-capacity and high-parameter. It is expensive to 
build the model of the unit using conventional method. The 
paper presents modeling of a 1000MW ultra supercritical 
once-through boiler unit. Based on these field data, two 
different neural networks are used to model the thermal power 
unit. The simulation results validate the efficiency of the neural 
networks in modelling the ultra supercritical unit. 

I. INTRODUCTION 

LTRA super-critical (USC) coal fired plant technology 
is one of the leading options in today’s power generation 

industry, with improved efficiency and hence reduced CO2 
emissions per unit of electrical energy generated. In addition 
to higher energy efficiency, lower emission levels for 
supercritical plants are achieved by better conversion of fuel 
and using well-proven emission control technologies. In 
China, there has been near twenty 1000 MW-steam-boiler 
generation units in operation, ever since the first operation of 
1000MW steam boiler generation in Yuhuan Power Plant in 
December 2006. 

Accurate power plant modelling is most important in the 
assessment and prediction of performance, and in constituting 
advanced control strategies. Power plant modelling 
approaches are mainly composed of two groups, e.g., the 
experimental modelling and the first-principal-based 
modelling. The experimental modeling approach [1-2] 
reflects the major nonlinear dynamics and is frequently used 
for control strategy design. The modelling based on 
first-principals [3-7] can represent the relationship among the 
physics links and true plant parameters, which is more fitful 
for control algorithm evaluation.  

Generally speaking, the basic tool for derivation and 
validation of plant models is by system identification, 
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commonly using recursive least squares (RLS) method. The 
linear RLS performs well around the plant operating point, 
where the plant can be approximated by a linear model. 
However, as the USCs are highly nonlinear, nonminimum, 
and subject to various types of uncertainties and load 
disturbances, the performance of the RLS may deteriorate, 
and suitable nonlinear modeling techniques need to be used. 

Neural networks offer a framework for nonlinear 
modelling and control based on their ability to learn complex 
nonlinear functional mappings. Consequently, they are useful 
tools for modelling large-scale power plant steam-boiler 
system. Irwin originally designed neural network model for a 
200MW boiler system [8]. Later on, the authors developed 
modelling and control technique using neuro-fuzzy networks 
[9]. Recently, the group of Kwang presented several research 
progresses concerning modelling and control of USC [10], 
mainly using neural networks.  

This paper presents two types of neural network modelling 
techniques on a 1000 MW ultra super-critical coal fired 
boiler-turbo generator unit. Based on the on-site measured 
data, neural networks with different structures are used. The 
simulation results demonstrated the efficiency and the 
advantage of the neural network modeling approach over the 
linear models. 

II. THE ULTRA SUPER-CRITICAL COAL FIRED BOILER-TURBO 
GENERATOR UNIT 

The power plant considered in this paper is a pulverized 
coal firing, once-through type, steam-boiler generation unit 
rated at 1000 MW. The maximum steam consumption of the 
power plant is 2980 T/h at a superheated steam pressure and 
temperature of 26.15 MPa and 605 ◦C, respectively.  

Compared with the ordinary subcritical boiler power plants, 
the ultra super-critical coal fired plant is more complicated in 
the following aspects:  

1) Strong coupling effect. In drum boilers, the total system 
is usually decoupled into three simplified subsystems, e.g., 
the fuel system, the feedwater system and the steam 
temperature system. In USC, situations are quite different. 
The fuel system and the feedwater system directly decide 
steam temperature, resulting in the strong coupling effect 
among boiler parameters.  

2) Strong  nonlinearity. Load-cycling operation of the ultra 
super-critical generation leads to the change of operating 
point right across the whole operating range, with 
steam-pressure mostly ranging between 10-25Mpa. As a 

The Dynamic Neural Network Model of a Ultra Super-critical Steam 
Boiler Unit 

Xiangjie Liu, Xuewei Tu, Guolian Hou and Jihong Wang 

U 

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2474



  

result, the nonlinearity of the plant variables becomes more 
serious. Moreover, the USC runs under the two modes: the 
super-critical mode and the sub-critical mode. The 
super-critical contains three phase: the heating, the 
evaporation and the super-hearting. In the super-critical, the 
density of the water and steam is equal. Water changes to 
steam instantly.  

Under the once through operation of USC, the feed-water 
will directly affect the main steam parameters. Consequently, 
keeping the fuel\water ratio at a desired value is a major task. 
In this way, the coordinated system can be modeled as a 
three-input-three-output system, with the three outputs to be 
the electric power, the steam pressure and the separator outlet 
steam temperature, and the three input variables to be the fuel 
flow, the governor valve input and the feedwater flow, 
respectively.  

For identification purpose, it is necessary to collect the data 
resulting from scheduled changes of operating points, to 
ensure that the data is representative of the dynamic behavior 
of the steam-boiler generation unit. In this way, 2000 sets of 
input data were selected for testing. Another 900 sets of input 
data were chosen for validating. These data were used to 
establish the linear and neural network models. The data are 
plotted  in Fig.1. 

 
(a) 

 
(b) 

Fig.1 The data pattern selected for testing.(a) and validating(b)  

III. IDENTIFICATION OF ARMAX MODELS USING RLS 
In order to utilize the RLS method for identification 

purpose, the system structure needs to be defined first.  A 
third-order, three-input three-output, ARMAX model of the 
form 

1 2 3
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was identified from the I/O data, where 
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In using RLS, persistency of excitation conditions should 
be satisfied in order to guarantee the exponential convergence 
of the parameter estimation process. In real-time power plant 
situation, this persistency excitation may be difficult to 
realize for security purpose. Since the dynamics of the plant is 
well understood by the operators, sufficiently reliable 
estimate of the parameters of the plant model can be obtained 
if the collected data covers sufficient dynamic behaviors of 
the steam-boiler generation unit. With the testing data shown 
above, the resulting identified model is as follows:  
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Figs. 2 show the resulting model output and the plant 
output over the test. It can be seen that the linear model 
matches the plant quite closely around this range.  
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Fig .2 Comparison of boiler system and linear model(test) 

Fig. 3 shows the resulting model output and the plant 
output over the validating using another 900 sets of data. The 
poorer responses are obtained. When using a different 
operating data, the dynamics of the plant will change and the 
original linear model is no longer able to represent the whole 
process working at different operating conditions, which 
indicates that the plant is quite nonlinear. This motivated the 
authors to investigate other nonlinear modeling techniques. 

IV. NEURAL NETWORK MODELLING 
The neural network shown in Fig.4 is called the radial basis 

function (RBF) network, if the activation function ( )g •  is 
choosen to be Gaussian function. The mapping is described 
by 

 ( )
1

M
m

l lm
m

y w G X X
=

= −∑    （3） 

where M is the number of hidden unit, m nX R∈  is the 
center of the mth hidden unit and can be regarded as a 
weight vector from the input layer to the mth hidden unit, G 
is the mth radial basis function or response function, and lmw  
is the weight from  the mth hidden unit to the lth output unit. 

The Gaussian type functions, given by, 
2

2( ) exp( )
2

mX X
G X

σ

−
= −  offers a desirable property 

making the hidden units to be locally tuned, where the 
locality of the ( )G X is controlled by σ .  
 

 

 

 
Fig .3 Comparison of boiler system and linear model(validating) 
 

 
Fig.4. Multi layer perceptron(MLP) network 

  
  

A three-input three-output third-order dynamic nonlinear 
model was simulated using a 18-30-3 RBF as shown in Fig.5, 
under the same I/O data as used with the RLS method, to 
make a fair comparison.  
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Fig.5. Neural network dynamic model structure 

 
The initial network weights were chosen to be a random in 

[-1，1], let 1σ = . Fig.6 shows the resulting model output and 
the plant output over the test. 

 

 

 
Fig .6 Comparison of boiler system and RBF network  model(test) 

Fig.7 shows the resulting model output and the plant output 
over the validating. The better responses are obtained. When 
moving to a different set of operating data, the neural network 
can still well represent the plant dynamics. 

 

 

 
Fig .7 Comparison of boiler system and  BP network  model(validating) 
 

V. IDENTIFICATION OF NEURAL FUZZY NETWORK MODELS 
A typical schematic diagram of the fuzzy neural network 

(FNN) structure is shown in Fig. 8, which consists of five 
layers.  

 
Fig. 8 The schematic diagram of the fuzzy neural network (FNN) structure  

 

A. Reasoning method 
For an n-input-r-output system, let ix  be the ith input 
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linguistic variable and define jα  as the firing strength of rule 
j, which is obtained from the product of the grades of the 
membership functions j

iμ  in the antecedent. The proposed 
fuzzy neural network realizes the inference as follows[11] 

jR ： if 1x  is 1
jR  ,…, and nx  is j

nR , then 

1 1 2 2
1

n
i i i i

ij j j nj n kj k
k

y p x p x p x p x
=

= + + + = ∑  

1, 2, , ; 1,2, ,j m i r= =                                                  (4) 
In the second layer, each node performs a membership 

function. The Gaussian function is adopted here as a 
membership function.  
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=                                     (5) 
where ijc  and ijσ  are, respectively, the mean (or center) and 
the variance (or width) of the Gaussian function in the jth 
term of the ith input linguistic variable. The number of nodes 

in this layer is 2
1

n

i
i

N m
=

= ∏ . 

Each node in the third layer represents a product of the 
grades of the membership functions of the fuzzy rule: 
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the rules. 
1

n

i
i

m m
=

≤ ∏ . The number of nodes in this layer is 

N3=m. The fourth layer realizes the unitary function: 

1

j
j m

j
j

α
α

α
=

=

∑
                                 (7) 

In the consequence links, the output of the model is:  

1

m

i j ij
j

y yα
=

= ∑   1,2, ,i r=                 (8) 

B. Test results 
Models were formed using the same I/O structure and 

training data as that used in RBF network. The membership 
functions, after training, are shown in Fig.9.  

 
Fig. 9. Final membership functions 

The resulting fuzzy rules are expressed as:   
R1：if u1 is 1

1R  and u2 is 1
2R  and u3 is 1

3R  and y1 is 1
4R  and 

y2 is 1
5R  and y3 is 1
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The neural fuzzy model was also tested and validated using 
the same data as that in the RBF network. Define the 
Root-Mean-Square-Errors (RMSE) to evaluate the modelling 
effect: 

* 2

1
( )

K

k k
k

y y
RMSE

K
=

−
=

∑
                           (9) 

where *
ky is the model output and ky is the plant output, k is 

the number of the data. Table 1 list the RMSE for these three 
methods. 

TABLE I 
THE ROOT-MEAN-SQUARE-ERRORS(RMSE) 

 power pressure temperature
test 0.061 0.083 0.0398 linear 
validate 0.2191 0.1952 0.0596 
test 0.0114 0.0068 0.0128 neural 

network validate 0.0806 0.0370 0.0083 
test 2.8e-005 3.3e-005 3.1e-005 neural 

fuzzy validate 3.1e-005 3.6e-005 3.7e-005 

VI. CONCLUSION 
The application of neural network techniques to model a 

1000MW, ultra super-critical coal fired boiler turbogenerator 
unit has been proposed in this paper. Real-time on-site 
measurement data, for testing and validating purpose, 
resulting from scheduled changes of operating point, were 
used to establish the linear and neural network models. 

Identification of multivariable linear models using RLS 
showed good predictive capabilities at the respective 
operating points, but, as expected, the performance 
deteriorated when the models were used to represent the real 
plant  at different operating conditions. The results illustrate 
clearly the limitations of linear models for representing a 
highly nonlinear plant. RBF network was then trained and 
tested using the same sets of data under the same operating 

conditions. The  results has improved dramatically for model 
fidelity, which demonstrated the advantage of  the neural 
network modeling technique on such type of complex 
nonlinear power plants. The result was further improved by 
using the neural fuzzy network approach, with local support 
functions. The modelling effectiveness was evaluated by 
comparing the calculated RMSE. The overall simulation 
results show that the neural network can well be applied for 
analyzing the dynamic characteristics of the ultra 
super-critical boiler turbogenerator unit.  

REFERENCES 
[1] K.J. Åström, and R.D. Bell, “Drum.Boiler Dynamics,” Automatica, vol. 

36, pp. 363-378, 2000. 
[2] F.P. De Mello, “Boiler Models for System Dynamic Performance 

Studies,” IEEE Transactions on Power Systems, Vol.6, No.1, pp. 66-73, 
February 1991. 

[3] R. Ray, H.F. Bowman, “A Nonlinear Dyanmic Model of a 
Once-through Subcritical Steam Generator,” Transactions of the ASME, 
Vol. 9, 1976. 

[4] M. Flynn, and M. Malley, “A drum boiler model for long term power 
system dynamic simulation,” IEEE transactions on power system, vol. 
14, no.1, pp.209-217, 1999. 

[5] J. L. Wei, J. Wang, Q.H. Wu, M., “Development of a multi-segment 
coal mill model using an evolutionary computation technique”, IEEE 
Transactions on Energy Conversion, Vol. 22. pp718-727, 2007. 

[6] J. Wang, L.Yang, X. Luo, S. Mangan, J.W. Derby, “Mathematical 
modelling study of scroll air motors and energy efficiency analysis  - 
Part I”, IEEE/ASME Trans. on Mechatronics, Vol. 16, No. 1, pp 
112-121, 2011.   

[7] J. Wang, X. Luo, L. Yang, L. Shpanin, N. Jia, S.  Mangan, J.W. Derby, 
“Mathematical modelling study of scroll air motors and energy 
efficiency analysis  - Part II”, IEEE/ASME Trans. on Mechatronics, Vol. 
16, No. 1. pp122-132, 2011 . 

[8] G. Irwin, D. Brown, B. W. Hogg, and E. Swidenbank, “Neural network 
modelling of a 200-MW boiler system,” Proc. Inst. Electr. Eng., 
Control Theory Appl., vol. 142, no. 6, pp. 529–536, Nov  1995. 

[9] X.J. Liu, and CW. Chan,  “Neuro-fuzzy generalized predictive control 
of boiler steam temperature,” IEEE Trans. Energy Conversion, vol. 21, 
no.4, pp. 900-908, September, 2006. 

[10] K.Y. Lee J. H. Van Sickel, J. A. Hoffman, W. H. Jung, and S. H. Kim, 
Controller Design for a 1000 MW Ultra Super Critical Once-Through 
Boiler Power Plant, Proc. of the 17th IFAC World Congress, July 6-11, 
2008, Seoul, Korea. 

[11] Yie-Chien Chen, and Ching-Cheng Teng, “A model reference control 
structure using a fuzzy neural network,” Fuzzy Sets and System, vol. 73, 
pp.291-312, 1995. 

 

2479


