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THE DYNAMIC PROGRAMMING EQUATION FOR SECOND
ORDER STOCHASTIC TARGET PROBLEMS∗

H. METE SONER† AND NIZAR TOUZI‡

Abstract. Motivated by applications in mathematical finance [U. Cetin, H. M. Soner, and
N. Touzi, “Options hedging for small investors under liquidity costs,” Finance Stoch., to appear]
we continue our study of second order backward stochastic equations. In this paper, we derive
the dynamic programming equation for a certain class of problems which we call the second order
stochastic target problems. In contrast with previous formulations of similar problems, we restrict
control processes to be continuous. This new framework enables us to apply our results to a larger
class of models. Also the resulting derivation is more transparent. The main technical tool is the
geometric dynamic programming principle in this context, and it is proved by using the framework
developed in [H. M. Soner and N. Touzi, J. Eur. Math. Soc. (JEMS), 8 (2002), pp. 201–236].
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1. Introduction. The stochastic target problems were introduced in [17] as a
natural extension of the superhedging problem in financial mathematics. In this initial
study, only target sets which are epigraphs were considered. General target sets were
then studied by the authors in [18] and stochastic representations for geometric flows
were derived. In particular, some front propagation problems and extensions of the
classical mean curvature flow were studied in [18]. Bouchard [2] and then Saintier [15]
extended these results to a more general class of processes, including Levy processes.

Stochastic target problems are also closely connected to the theory of backward
stochastic differential equations (BSDEs) initiated in [13, 14]. The theory of BSDEs
has applications in many diverse fields, especially in mathematical finance [8]. In par-
ticular, recently BSDEs have been used to obtain stochastic representations for the
solutions of quasi-linear PDEs. This connection also provides novel probabilistic nu-
merical methods for these equations. In [6], a class of second order BSDEs (2BSDEs)
is introduced to extend this stochastic representation to the class of fully nonlinear
PDEs. In this connection second order stochastic target problems were also introduced
and used critically in the uniqueness result for 2BSDEs.

This paper continues the study of second order stochastic target problems. In
[6] the minimal value is proved to be a viscosity supersolution of the corresponding
dynamic programming equation. The main results of this paper, Theorems 3.1 and
3.2, are similar. Indeed, Theorem 3.2 states that the value function of the second order
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stochastic target problem is a viscosity solution of the dynamic programming equation.
This result is analogous to the classical Perron’s method in harmonic analysis and in
viscosity solutions which states that the minimal supersolution is a solution.

The authors studied a closely related problem in [4]. However, in contrast to [4],
in this paper the control processes are continuous. Precise formulation of the control
space is given in section 2. Technically, this restriction to continuous control processes
implies a more involved proof of the dynamic programming principle, as reported in
this paper. However, it induces a considerable simplification of the derivation of the
dynamic programming equation.

This paper is motivated by a pricing problem in an illiquid market [3] and the
earlier work of the authors on gamma constraints [16, 17]. Indeed, in the related work
of the authors with Cetin [3], the continuity of the control processes is crucial.

The paper is organized as follows. The second order stochastic target problem is
formulated in section 2. The main results are collected in section 3. Sections 4 and
5 are dedicated, respectively, to the derivation of the viscosity property of the value
function and the proof of the geometric dynamic programming principle. Finally, in
section 6 we prove the properties of the value function at final time.

Notation. We use the following notation throughout the paper.
• d ≥ 1 is an integer denoting the dimension.
• Md is the set of all d× d matrices with real components.
• B′ is the transpose of a matrix B ∈ Md and Tr[B] its trace.
• Md

inv is the set of all invertible matrices in Md.
• Sd is the set of all symmetric matrices in Md.
• Sd

+ are all positive semidefinite matrices in Md.
• For x ∈ R

d, |x| := (x2
1 + · · · + x2

d)1/2.
• B ∈ Md, |B| :=

(∑d
i,j=1 B

2
ij

)1/2.
Equalities and inequalities between random variables are always understood in the
almost sure sense.

2. Problem formulation.

2.1. Uncontrolled state variable. Throughout this paper, we fix a finite time
horizon T ∈ (0,∞), and we consider a d-dimensional Brownian motion {Wt}t∈[0,T ] on
a complete probability space (Ω,F , P ). For t ∈ [0, T ], we denote by F = (Ft)t∈[0,T ]

the augmented filtration generated by {Wt}t∈[0,T ].
Let μ : R

d → R
d and σ : R

d → Md
inv be two functions satisfying the standard

Lipschitz and growth conditions for all x, y ∈ R
d,

|μ(x) − μ(y)| + |σ(x) − σ(y)| ≤ K|x− y|, |μ(x)| + |σ(x)| ≤ K(1 + |x|),
for some constant K. Then, for every initial condition (s, x) ∈ [0, T ] × R

d, the
stochastic differential equation

Xt = x+
∫ t

s

[μ(Xu)du + σ(Xu)dWu] , t ∈ [s, T ],

has a unique strong solution {Xs,x
t }t∈[s,T ]; see, for instance, Theorem 5.2.9 in Karatzas

and Shreve [11]. To introduce our notation, we also recall the classical Itô’s formula
which holds for all ϕ ∈ C1,2([0, T ] × R

d) and t ∈ [0, T ]:

ϕ (t,Xs,x
t ) = ϕ(s, x) +

∫ t

s

Lϕ (r,Xs,x
r ) dr +

∫ t

s

Dϕ (r,Xs,x
r )′ dXs,x

r ,
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where

Lϕ(t, x) =
∂ϕ

∂t
(t, x) +

1
2
Tr[D2ϕ(t, x)σ(x)σ(x)′ ] ,

and Dϕ, D2ϕ are the partial gradient and Hessian matrix of ϕ with respect to the
x-variables.

2.2. Controlled state variable. This class of controls is very similar to the
one introduced in [6]. The main difference is the new relaxed restriction (2.2), below,
placed on the drift process A and on the modulus of continuity of Γ. In [6] an L∞

bound was placed on the drift At, and Γ was assumed to be Lipschitz.
To state the control space, first we need to define a norm-like function. For

B, b ≥ 0 and (s, x) ∈ [0, T ]×R
d, we define the norm of an F-progressively measurable

process {Ht}t∈[s,T ] by

‖H‖B,b
s,x :=

∥∥∥∥ sup
s≤t≤T

|Ht|
1 + |Xs,x

t |B
∥∥∥∥

Lb(Ω,P )

.

Fix B ≥ 0, b ∈ (0, 1). For all (s, x) ∈ [0, T ] × R
d and m > 0, let As,x

m,b be the class of
all (control) processes of the form

Zt = z +
∫ t

s

Ardr +
∫ t

s

ΓrdX
s,x
r , t ∈ [s, T ],

Γt = γ +
∫ t

s

ardr +
∫ t

s

ξrdX
s,x
r , t ∈ [s, T ],

where {Zt}t∈[s,T ] is R
d-valued and {Γt}t∈[s,T ] is Sd-valued. Notice that both Z and

Γ are continuous functions of time. Further, all the above processes are assumed to
be F-progressively measurable and satisfy the following inequalities:

(2.1) ‖Z‖B,∞
s,x ≤ m, ‖Γ‖B,∞

s,x ≤ m, ‖ξ‖B,2
s,x ≤ m,

(2.2) ‖A‖B,b
s,x ≤ m, ‖a‖B,b

s,x ≤ m.

Set As,x :=
⋃

b∈(0,1]

⋃
m≥0 As,x

m,b. It is clear that As,x :=
⋃

m≥0 As,x
m , where As,x

m :=
As,x

m,(1/m).
Notice that these classes of controls also depend on the parameter B, but this

dependence is suppressed. We will always fix B ≥ 1 larger than any exponent that
will appear in our assumptions.

Remark 2.1. Any element Z ∈ As,x may be identified by the initial data (z, γ)
and the processes A, a, ξ. When we allow the controller to choose an element from
As,x, we implicitly allow her to determine the initial datum as well as the processes.
However, in section 5 below, we will allow the controller to choose only the process but
not the initial datum. So for future reference, we define the set As,x,z,γ to be the set of
all processes Z and Γ as above with fixed initial data Zs = z and Γs = γ. The control
set As,x,z,γ

m is defined analogously. Then it is clear that As,x,z,γ :=
⋃

m≥0 As,x,z,γ
m .

Remark 2.2. The above control processes are defined through the restrictions
(2.1) and (2.2). First condition (2.1) is analogous to the growth conditions used in
the PDE literature and seems to be quite general. However, the structure of the second
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restriction (2.2) is technically very important. First, without any assumption of this
type, the separation between the processes A,Γ and a, ξ is not clear. Moreover, the
uniform approximation results of Leventhal and Skorohod [12] and Bank and Baum
[1] apply to our problem, rendering the Γ process irrelevant. For this reason, in our
previous studies, we always placed this type of a restriction on the portfolio process.
Condition (2.2) used in this paper is the weakest restriction employed in these studies.
Indeed, the minimal assumptions on a and ξ are such that the conclusions of Lemma
4.3 below still hold and (2.2) is very close to this minimal assumption. We chose not
to state this technical minimal assumption and used (2.2) for simplicity. We next
consider a continuous function f : [0, T ) × R

d × R × R
d × Sd → R satisfying the

following Lipschitz and growth assumptions.

(A1) For every N ≥ 1 there exists a constant FN such that

|f(t, x, y, z, γ)− f(t, x, ỹ, z, γ)| ≤ FN |y − ỹ|

for all (t, x, y, z, γ) ∈ [0, T ]× R
d × R × R

d × Sd, ỹ ∈ R satisfying

max {|x| , |y| , |ỹ| , |z| , |γ|} ≤ N.

(A2) There exist constants F and p ≥ 0 such that

|f(t, x, y, z, γ)| ≤ F (1 + |x|p + |y| + |z|p + |γ|p)

for all (t, x, y, z, γ) ∈ [0, T ]× R
d × R × R

d × Sd.

Now consider the stochastic differential equation

dYt = f(t,Xs,x
t , Yt, Zt,Γt) dt+ Zt ◦ dXs,x

t , t ∈ [s, T ),

with initial data Ys = y. Here ◦ denotes the Fisk–Stratonovich integral. Due to the
form of the Z process, this integral can be expressed in terms of standard Itô integral,

Zt ◦ dXs,x
t = Zt · dXs,x

t +
1
2
Tr[σtσΓt]dt.

Under the above assumptions (A1), (A2) and (2.1) on Z, it follows that for all y ∈ R

and Z ∈ As,x, this equation has a unique strong solution {Y s,x,y,Z
t }t∈[s,T ]. This can

be shown, for instance, with the arguments in the proofs of Theorems 2.3, 2.4, and
3.1 in Chapter IV of Ikeda and Watanabe [10].

We also assume the following control on the monotonicity condition.

(A3) There exists a constant c0 > 0 such that

f(t, x, y′, z, γ) − f(t, x, y, z, γ) ≥ −c0(y′ − y) for every y′ ≥ y,

and (t, x, z, γ) ∈ [0, T )× R
d × R

d × Sd.

2.3. The second order stochastic target problem. Let g : R
d → R be a

continuous function satisfying the following growth condition.

(A4) Terminal condition g is continuous and there exist constants G and p such that

|g(x)| ≤ G(1 + |x|p) ∀ x ∈ R
d .
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We are now in a position to define the key object of our study. For (s, x) ∈ [0, T ]×R
d,

(2.3) V (s, x) := inf{y ∈ R | ∃Z ∈ As,x so that Y s,x,y,Z
T ≥ g(Xs,x

T ) a.s.}.
For the benefit of the reader, we recall the dynamics of all the processes used in the
above definition. Also recall that the class of admissible processes As,x is given in the
previous subsection. We use the short notation X := Xs,x, Y := Y s,x,y,Z . Then, for
all t ∈ [s, T ],

Xt = x+
∫ t

s

μ(Xr)dr +
∫ t

s

σ(Xr)dWr,

Yt = y +
∫ t

s

f(t,Xr, Yr, Zr,Γr)dr +
∫ t

s

Zr ◦ dXr

= y +
∫ t

s

f(t,Xr, Yr, Zr,Γr)dr +
∫ t

s

[
Zt · dXt +

1
2
Tr[σtσΓt]dt

]
,

Zt = z +
∫ t

s

Ardr +
∫ t

s

ΓrdXr,

Γt = γ +
∫ t

s

ardr +
∫ t

s

ξrdXr.

The main objective of our study is to derive a dynamic programming equation for
this problem. As it is classical, we will use the theory of viscosity solutions for this
derivation. For this theory, we refer the reader to the survey article of Crandall, Ishii,
and Lions [7] and to the book of Fleming and Soner [9].

Notice that this problem does not fit into the class of stochastic target problems
studied by Soner and Touzi [17], as the dynamics of the controlled process Y are
affected by the process Γ in the spirit of [6]. For this reason, we shall refer to the
above control problem as a second order stochastic target problem.

Under the standing assumptions (A1)–(A4), it follows from Proposition 4.5 in [6]
that the value function V is bounded from below. To ensure that V is finite we need
the following assumption.

(A5) For each (t, x), there exists a portfolio Z ∈ At,x and an initial data y so that
Y t,x,y,Z

T ≥ g(Xt,x
T ) a.s.

Under the above assumption, V < ∞. Then, by a minor modification of the
proof of Theorem 4.2 in [6], we show in section 4 that the value function is a viscosity
supersolution of the corresponding dynamic programming equation

(2.4) − ∂

∂t
v(t, x) + f̂

(
t, x, v(t, x), Dv(t, x), D2v(t, x)

)
= 0

on [0, T ) × R
d, where

f̂ (t, x, y, z, γ) := sup
β∈Sd

+

f (t, x, y, z, γ + β) .(2.5)

The function f̂ is the smallest majorant of f which is nonincreasing in the γ argument
and is called the parabolic envelope of f ; see [5].

In section 4, we also prove that the value function is a viscosity subsolution, and
thus a solution of the above equation.
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In our previous papers [4, 5], the viscosity subsolution property was proved after
enlarging the set of control processes As,x and also by allowing for jumps in the Z
process. This control relaxation was used for the formulation of the geometric dynamic
programming principle, which is the main ingredient for the derivation of the dynamic
programming equation. However, the inclusion of the jumps made the proof of the
viscosity supersolution property technical. Moreover, the problems studied in these
papers consider only specific functions f related to certain pricing problems.

The main technical contribution of this paper is to prove that the value function
V is a viscosity solution of the dynamic programming equation (2.4) without any
control relaxation and any jump components.

3. Main results. Assumptions (A1)–(A5) are assumed to hold throughout the
paper.

This section collects the statements of the main results of this paper. We first
state the geometric dynamic programming principle in the context of the second order
stochastic target problem (2.3). Notice that the following result is not included in
previous studies as we restrict the control processes to be continuous.

Theorem 3.1 (geometric dynamic programming principle). For any (s, x) ∈
[0, T )× R

d, and a stopping time θ ∈ [s, T ],

(3.1) V (s, x) = inf{y ∈ R | ∃Z ∈ As,x so that Y s,x,y,Z
θ ≥ V (θ,Xs,x

θ ) a.s.}.

Then the dynamic programming equation (2.4) is the infinitesimal analogue of
the above geometric dynamic programming principle. Equation (2.4) is obtained in
two steps. The supersolution property is deduced from the following consequence of
(3.1) in subsection 4.2.

(GDP1) For every ε > 0, there exist yε ∈ [V (s, x), V (s, x) + ε] and Zε ∈ As,x such
that

(3.2) Y s,x,yε,Zε

θ ≥ V (θ,Xs,x
θ ) .

In subsection 4.1, the subsolution property is proved using the following claim,
again implied by (3.1).

(GDP2) For every y < V (s, x) and every Z ∈ As,x,

(3.3) P

[
Y s,x,y,Z

θ ≥ V (θ,Xs,x
θ )
]
< 1.

Notice that (3.1) is equivalent to (GDP1)–(GDP2).
Next, we introduce the semicontinuous envelopes.

V∗(t, x) := lim inf
(t′,x′)→(t,x)

V (t′, x′) and V ∗(t, x) := lim sup
(t′,x′)→(t,x)

V (t′, x′)

for (t, x) ∈ [0, T ]× R
d.

Theorem 3.2. The value function V is finite and is a viscosity solution of the
dynamic programming equation (2.4) on [0, T ]×R

d; i.e., V∗ and V ∗ are, respectively,
the viscosity supersolution and subsolution of (2.4).

Our final result is on the behavior of the value function at the final time T . Under
our assumptions, we will show that V∗(T, x) ≥ g(x). To prove the reverse inequality,
we need an assumption stronger than (A5). Let f̂ be as in (2.5).
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(A5)’ For every ε ∈ (0, 1] and x0 ∈ R
d, there exist t(ε, x0) < T and a smooth super-

solution Uε,x0 ∈ C([t(ε, x0), T ]×R
d) of (2.4) with f = f̂ on [t(ε, x0), T ]×R

d

and satisfying
(3.4) lim

ε↓0
Uε,x0(T, x0) = g(x0), Uε(T, x) ≥ g(x) ∀ x ∈ R

d.

In section 6, we derive several conditions on the functions g, f that are sufficient
for (A5)’.

Theorem 3.3. Assume (A5)’. Then the value function V satisfies the terminal
condition V (T, x) = g, i.e.,

V∗(T, x) ≥ g(x) , V ∗(T, x) ≤ g(x) ∀ x ∈ R
d.

Clearly the above viscosity properties need to be complemented by a comparison
result in order to provide a characterization of the second order stochastic control
problem. Indeed, several deep comparison results are available in the theory of vis-
cosity solutions (see, for instance, [7]). Moreover, this issue is discussed in detail in [6].
We refer the reader to these articles for this very important point. Such a comparison
result is in fact an implicit assumption on the nonlinearity f .

4. Proof of Theorem 3.2. In this section, we prove the sub- and supersolu-
tion properties separately in the following two subsections. Our proof assumes the
geometric dynamic programming principle (3.1). The proof of (3.1) will be given in
section 5.

4.1. The viscosity subsolution property. In this subsection, we prove that
V ∗ is a subsolution of the dynamic programming equation (2.4).

Lemma 4.1. V ∗ is a viscosity subsolution of (2.4).
Proof. Set

Q := [0, T )× R
d.

Let (t0, x0) ∈ Q and ϕ ∈ C∞ (Q) be such that

(4.1) 0 = (V ∗ − ϕ)(t0, x0) > (V ∗ − ϕ)(t, x) for Q � (t, x) �= (t0, x0).

In order to show that V ∗ is a subsolution of (2.4), we assume the contrary, i.e., suppose
that there is β ∈ Sd

+ satisfying

(4.2) −∂ϕ
∂t

(t0, x0) + f
(
t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0) + β

)
> 0.

We will then prove the subsolution property by contradicting (GDP2).
Step 1. Set

ψ(t, x) := ϕ(t, x) + β(x − x0) · (x− x0),

h(t, x) := −∂ψ
∂t

(t, x) + f
(
t, x, ψ(t, x), Dψ(t, x), D2ψ(t, x)

)
.

In view of (4.2), h(t0, x0) > 0. Since the nonlinearity f is continuous and ϕ is smooth,
the subset

N := {(t, x) ∈ Q ∩B1(t0, x0) : h(t, x) > 0}
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is an open bounded neighborhood of (t0, x0). Here B1(t0, x0) is the unit ball of Q
centered at (t0, x0). Since (t0, x0) is defined by (4.1) as the point of strict maximum
of the difference (V ∗ − ϕ), we conclude that

(4.3) −η := max
∂N

(V ∗ − ϕ) < 0.

Next we fix λ ∈ (0, 1), and choose
(
t̂, x̂
)

so that

(
t̂, x̂
) ∈ N , |x̂− x0| ≤ λη, and

∣∣V (t̂, x̂)− ϕ
(
t̂, x̂
)∣∣ ≤ λη.(4.4)

Set X̂ := X t̂,x̂ and define a stopping time by

θ := inf
{
t ≥ t̂ : (t, X̂t) �∈ N

}
.

Then θ > t̂. The pathwise continuity of X̂ implies that (θ, X̂θ) ∈ ∂N . Then, by (4.3),

V ∗(θ, X̂θ) ≤ ϕ(θ, X̂θ) − η.(4.5)

Step 2. Consider the control process

ẑ := Dψ
(
t̂, x̂
)
, Ât := LDψ(t, X̂t)1[t̂,θ)(t), and Γ̂t := D2ψ(t, X̂t)1[t̂,θ)(t)

so that, for t ∈ [t̂, θ],
Ẑt := ẑ +

∫ t

t̂

Ârdr +
∫ t

t̂

Γ̂rdX̂r = Dψ(t, X̂t).

Since N is bounded and ϕ is smooth, we directly conclude that Ẑ ∈ At̂,x̂.
Step 3. Set ŷ < V (t̂, x̂), Ŷt := Y t̂,x̂,ŷ,Ẑ

t , and Ψ̂t := ψ(t, X̂t). Clearly, the process
Ψ is bounded on [t̂, θ]. For later use, we need to show that the process Ŷ is also
bounded. By definition, Ŷt̂ < Ψt̂. Consider the stopping times

τ0 := inf
{
t ≥ t̂ : Ψt = Ŷt

}
and, with N := η−1,

τη := inf
{
t ≥ t̂ : Ŷt = Ψt −N

}
.

We will show that for a sufficiently large N , both τ0 = τη = θ. This proves that as
Ψ, Ŷ is also bounded on [t̂, θ].

Set θ̂ := θ ∧ τ0 ∧ τη. Since both processes Ŷ and Ψ solve the same stochastic
differential equation, it follows from the definition of N that for t ∈ [t̂, θ̂]

d
(
Ψt − Ŷt

)
=
[
∂ψ

∂t
(t, X̂t) − f

(
t, X̂t, Ŷt, Ẑt, Γ̂t

)]
dt

≤
[
f
(
t, X̂t,Ψt, Ẑt, Γ̂t

)
− f
(
t, X̂t, Ŷt, Ẑt, Γ̂t

)]
dt

≤ FN

(
Ψt − Ŷt

)
dt
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by the local Lipschitz property (A1) of f . Then

0 ≤ Ψθ̂ − Ŷθ̂ ≤
(
Ψt̂ − Ŷt̂

)
eFN T ≤ 1

2
‖β‖λ2eFN T η2,(4.6)

where the last inequality follows from (4.4). This shows that, for λ sufficiently small,
θ̂ < τη, and therefore the difference Ψ − Ŷ is bounded. Since Ψ is bounded, this
implies that Ŷ is also bounded for small η.

Step 4. In this step we will show that for any initial data

ŷ ∈ [V (t̂, x̂) − λη, V (t̂, x̂)),

we have Ŷθ ≥ V (θ,Xθ). This inequality is in contradiction to (GDP2) as Ŷt̂ = ŷ <
V (t̂, x̂). This contradiction proves the subsolution property.

Indeed, using ŷ ≥ V (t̂, x̂)−λη and V ≤ V ∗ ≤ ϕ together with (4.3) and (4.4), we
obtain the following sequence of inequalities:

Ŷθ − V (θ, X̂θ) ≥ Ŷθ − ϕ(θ, X̂θ) + η,

= [ŷ − ϕ(t̂, x̂) + η] +
∫ θ

t̂

[
dŶt − dϕ(t, X̂t)

]
,

≥ η(1 − 2λ) +
∫ θ

t̂

[
f
(
t, X̂t, Ŷt, Ẑt, Γ̂t

)
dt+ Ẑt ◦ dX̂t − dϕ(t, X̂t)

]
≥ η(1 − 2λ) +

1
2
β
(
X̂θ − x̂

)
·
(
X̂θ − x̂

)

+
∫ θ

t̂

[
f
(
t, X̂t, Ŷt, Ẑt, Γ̂t

)
dt+ Ẑt ◦ dX̂t − dψ(t, X̂t)

]

≥ η(1 − 2λ) +
∫ θ

t̂

[
f
(
t, X̂t, Ŷt, Ẑt, Γ̂t

)
dt+ Ẑt ◦ dX̂t − dψ(t, X̂t)

]
,

where the last inequality follows from the nonnegativity of the symmetric matrix β.
We next use Itô’s formula and the definition of N to arrive at

Ŷθ − V (θ, X̂θ) ≥ η(1 − 2λ) +
∫ θ

t̂

[
f(t, X̂t, Ŷt, Ẑt, Γ̂t) − f(t, X̂t,Ψt, Ẑt, Γ̂t)

]
dt.

In the previous step, we proved that Ŷ and Ψ are bounded, say by N . Since the
nonlinearity f is locally bounded, we use the estimate (4.6) to conclude that

Ŷθ − V
(
θ, X̂θ

)
≥ η(1 − 2λ) − 1

2
‖β‖TFNe

FN Tλ2η2 ≥ 0

for all sufficiently small λ. This is in contradiction to (GDP2). Hence, the proof of
the viscosity property is complete.

4.2. The viscosity supersolution property. The proof is almost as in [6].
First we approximate the value function by

Vm(s, x) := inf{y ∈ R | ∃Z ∈ As,x
m so that Y s,x,y,Z

T ≥ g(Xs,x
T ), a.s.}.

Then, following the proof of (3.3) in section 5, we can prove the following analogue
statement of (GDP1) for V m.
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(GDP1m) For every ε > 0 and stopping time θ ∈ [s, T ], there exist Zε ∈ As,x
m and

yε ∈ [Vm(s, x), V m(s, x) + ε] such that Y s,x,yε,Zε

θ ≥ V m (θ,Xs,x
θ ).

Lemma 4.2. V m
∗ is a viscosity supersolution of (2.4). Consequently, V∗ is a

viscosity supersolution of (2.4).
Proof. This proof of the viscosity property of V m∗ is exactly the same as the

proof of Theorem 4.2 in [6], with one difference. This difference is due to the different
assumption (2.2). In [6], instead of (2.2) a uniform L∞ bound was assumed. This
change only affects the proof of Lemma 4.4 in [6]. Thus, we follow the proof of
Theorem 4.2 in [6] but replace Lemma 4.2 of [6] by Lemma 4.3 below. But for
completeness, we will give the proof in detail.

Choose (t0, x0) ∈ [s, T )× R
d and ϕ ∈ C∞([s, T ) × R

d) such that

0 = (V m
∗,s − ϕ)(t0, x0) = min

(t,x)∈[s,T )×Rd
(V m

∗,s − ϕ)(t, x) .

Let (tn, xn)n≥1 be a sequence in [s, T )×R
d such that (tn, xn) → (t0, x0) and V m(tn, xn)

→ V m
∗,s(t0, x0). There exist positive numbers εn → 0 such that for yn = V m(tn, xn) +

εn, there exists Zn ∈ Atn,xn
m with

Y n
T ≥ g(Xn

T ),

where we use the compact notation (Xn, Y n) = (Xtn,xn , Y tn,xn,yn,Zn

) and

Zn
r = zn +

∫ r

tn

An
udu +

∫ r

tn

Γn
udX

n
u ,

Γn
r = γn +

∫ r

tn

an
udu +

∫ r

tn

ξn
udX

n
u , r ∈ [tn, T ].

Moreover, |zn|, |γn| ≤ m(1 + |xn|p) by assumption (2.1). Hence, by passing to a
subsequence, we can assume that zn → z0 ∈ R

d and γn → γ0 ∈ Sd. Observe that
αn := yn−ϕ(tn, xn) → 0. We choose a decreasing sequence of numbers δn ∈ (0, T−tn)
such that δn → 0 and αn/δn → 0. By (GDP1m),

Y n
tn+δn

≥ V m
(
tn + δn, X

n
tn+δn

)
,

and therefore,

Y n
tn+δn

− yn + αn ≥ ϕ
(
tn + δn, X

n
tn+δn

)− ϕ(tn, xn) ,

which, after two applications of Itô’s formula, becomes

αn +
∫ tn+δn

tn

[f(r,Xn
r , Y

n
r , Z

n
r ,Γ

n
r ) − ϕt(r,Xn

r )]dr

+ [zn −Dϕ(tn, xn)]′[Xn
tn+δn

− xn]

+
∫ tn+δn

tn

(∫ r

tn

[An
u − LDϕ(u,Xn

u )] du
)′

◦ dXn
r

+
∫ tn+δn

tn

(∫ r

tn

[
Γn

u −D2ϕ(u,Xn
u )
]
dXn

u

)′
◦ dXn

r ≥ 0.(4.7)
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It is shown in Lemma 4.3 below that the sequence of random vectors

⎛
⎜⎜⎜⎜⎜⎝

δ−1
n

∫ tn+δn

tn
[f(r,Xn

r , Y
n
r , Z

n
r ,Γ

n
r ) − ϕt(r,Xn

r )]dr

δ
−1/2
n [Xn

tn+δn
− xn]

δ−1
n

∫ tn+δn

tn

(∫ r

tn
[An

u − LDϕ(u,Xn
u )] du

)′
◦ dXn

r

δ−1
n

∫ tn+δn

tn

(∫ r

tn

[
Γn

u −D2ϕ(u,Xn
u )
]
dXn

u

)′
◦ dXn

r

⎞
⎟⎟⎟⎟⎟⎠ , n ≥ 1,(4.8)

converges in distribution to⎛
⎜⎜⎜⎝

f(t0, x0, ϕ(t0, x0), z0, γ0) − ϕt(t0, x0)
σ(x0)W1

0
1
2W

′
1σ(x0)′[γ0 −D2ϕ(t0, x0)]σ(x0)W1

⎞
⎟⎟⎟⎠ .(4.9)

Set ηn = |zn − Dϕ(tn, xn)|, and assume δ−1/2
n ηn → ∞ along a subsequence. Then,

along a further subsequence, η−1
n (zn −Dϕ(tn, xn)) converges to some η0 ∈ R

d with

|η0| = 1 .(4.10)

Multiplying inequality (4.7) with δ−1/2
n η−1

n and passing to the limit yields

η′0σ(x0)W1 ≥ 0 ,

which, since σ(x0) is invertible, contradicts (4.10). Hence, the sequence (δ−1/2
n ηn) has

to be bounded, and therefore, possibly after passing to a subsequence,

δ−1/2
n [zn −Dϕ(tn, xn)] converges to some ξ0 ∈ R

d .

It follows that z0 = Dϕ(t0, x0). Moreover, we can divide inequality (4.7) by δn and
pass to the limit to get

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), γ0) − ϕt(t0, x0)

+ ξ′0σ(x0)W1 +
1
2
W ′

1σ(x0)′[γ0 −D2ϕ(t0, x0)]σ(x0)W1 ≥ 0 .
(4.11)

Since the support of the random vector W1 is R
d, it follows from (4.11) that

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), γ0) − ϕt(t0, x0)

+ ξ′0σ(x0)w +
1
2
w′σ(x0)′[γ0 −D2ϕ(t0, x0)]σ(x0)w ≥ 0

for all w ∈ R
d. This shows that

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), γ0) − ϕt(t0, x0) ≥ 0 and β := γ0 −D2ϕ(t0, x0) ≥ 0 ,

and therefore,

−ϕt(t0, x0) + sup
β∈Sd

+

f(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0) + β) ≥ 0 .

This proves that V m is a viscosity supersolution.
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Since by definition

V = inf
m

V m,

by the classical stability property of viscosity solutions, V∗ is also a viscosity super-
solution of the dynamic programming equation (2.4). The detailed argument is iden-
tical to the proof of Corollary 5.5 in [4].

Lemma 4.3. The sequence of random vectors (4.8), on a subsequence, converges
in distribution to (4.9).

Proof. Define a stopping time by

τn := inf{r ≥ tn : Xn
r /∈ B1(x0)} ∧ (tn + δn) ,

where B1(x0) denotes the open unit ball in R
d around x0. It follows from the fact

that xn → x0 that

P [τn < tn + δn] → 0 .

Thus in (4.8) we may replace the upper limits of the integrations by τn instead of
tn + δn.

Therefore, in the interval [tn, τn] the process Xn is bounded. Moreover, in view
of (2.2) so are Zn, Γn, and ξn.

Step 1. The convergence of the second component of (4.8) is straightforward and
the details are exactly as in Lemma 4.4 of [6].

Step 2. Let B be as in (2.1). To analyze the other components, set

An,∗ := sup
u∈[tn,T ]

|An
u|

1 + |Xn
u |B

,

so that, by (2.2),

(4.12) ‖An,∗‖L(1/m)(Ω,P) ≤ m.

Moreover, since on the interval [tn, τn], Xn is uniformly bounded by a deterministic
constant C(x0) depending only on x0,

|An
u| ≤ C(x0) An,∗ ≤ C(x0)m ∀ u ∈ [tn, τn].

(Here and below, the constant C(x0) may change from line to line.) We define an,∗

similarly. Then it also satisfies the above bounds as well. In view of (2.2), an,∗ also
satisfies (4.12). Moreover, using (2.1), we conclude that ξn

u is uniformly bounded by
m.

Step 3. Recall that dΓn
u = an

udu+ ξn
udX

n
u , Γn

tn
= γn. Using the notation and the

estimates of the previous step, we directly calculate that

sup
t∈[tn,τn]

|Γn
t − γn| ≤ C(x0)δnan,∗ +

∣∣∣∣
∫ τn

tn

ξn
u · μndu

∣∣∣∣+
∣∣∣∣
∫ τn

tn

ξn
uσ(Xn

u )dWu

∣∣∣∣
:= In

1 + In
2 + In

3 .

Then

E[(In
3 )2] ≤ E

(∫ τn

tn

|ξn
u |2|σ|2du

)
≤ δn m

2C(x0)2.
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Hence, In
3 converges to zero in L2. Therefore, it also converges almost surely on a

subsequence. We prove the convergence of In
2 using similar estimates. Since an,∗

satisfies (4.12),

E[(In
1 )(1/m)] ≤ (C(x0)δn)(1/m) E[|an,∗|(1/m)] ≤ (C(x0)δn)(1/m) m.

Therefore, In
1 converges to zero in L(1/m) and consequently almost surely on a subse-

quence.
Hence, on a subsequence, Γn

t is uniformly continuous. This together with standard
techniques used in Lemma 4.4 of [6] proves the convergence of the first component of
(4.8).

Step 4. By integration by parts,∫ τn

tn

∫ t

tn

An
ududX

n
t = (Xn

τn
−Xn

tn
)
∫ τn

tn

An
udu−

∫ τn

tn

(Xn
u −Xn

tn
)An

udu.

Therefore, ∣∣∣∣ 1
δn

∫ τn

tn

∫ t

tn

An
ududX

n
t

∣∣∣∣ ≤ C(x0) sup
t∈[tn,τn]

|Xn
t −Xn

tn
| An,∗.

Also Xn is uniformly continuous and An,∗ satisfies (4.12). Hence, we can show that
the above terms, on a subsequence, almost surely converge to zero. This implies the
convergence of the third term.

Step 5. To prove the convergence of the final term it suffices to show that

Jn :=
1
δn

∫ τn

tn

∫ t

tn

[Γn
u − γn]dXn

u ◦ dXn
t

converges to zero. Indeed, since γn → γ0, this convergence together with the standard
arguments of Lemma 4.4 of [6] yields the convergence of the fourth component.

Since on [tn, τn] Xn is bounded, on this interval |σ(Xn
t )| ≤ C(x). Using this

bound, we calculate that

E[(Jn)2] ≤ C(x0)4

δ2n

∫ tn+δn

tn

∫ t

tn

E
[
1[tn,τn] |Γn

u − γn|2
]
du dt

≤ C(x0)4E

[
sup

t∈[tn,τn]

|Γn
u − γn|2

]
=: C(x0)4E

[
(en)2

]
.

In step 3, we proved the almost sure convergence of en to zero. Moreover, by (2.1),
|en| ≤ m. Therefore, by dominated convergence, we conclude that Jn converges to
zero in L2, and thus almost everywhere on a subsequence.

5. Geometric dynamic programming. This section is dedicated to the proof
of Theorem 3.1.

The main difficulty is related to the continuity of the optimal processes Z∗, Γ∗.
Indeed, for a stopping time θ and control Z ∈ At,x, set (ξ, ζ) := (Xt,x

θ , Y t,x,y,Z
θ ).

Then there exists a control process Ẑ ∈ Aθ,ξ such that Y θ,ξ,ζ,Ẑ
T ≥ g(Xt,x

T ) (technical
measurability issues are resolved in [18]). To prove the dynamic programming, we need
to extend the control process to [t, T ] by the natural concatenation Ẑ := Z1[t,θ) +
Ẑ1[θ,T ]. However, this construction might lead to a discontinuous control process at θ.



DPE FOR A STOCHASTIC TARGET PROBLEM 2357

Therefore, Ẑ is not guaranteed to be in At,x. Similar difficulty exists for the Γ process
as well. We will resolve this difficulty by modifying the concatenation properly.

We start our analysis by recalling the dynamic programming principle proved by
the authors in [18]. Recall that, for s ∈ [0, T ], x, z ∈ R

d, γ ∈ Sd, the control set
As,x,z,γ is defined in Remark 2.1. Set

V(t) :=
{

(x, y, z, γ) | ∃Z ∈ At,x,z,γ s.t. Y t,x,y,Z
T ≥ g(Xt,x

T ) a.s.
}
.

In the above definition, the dependence on the initial conditions z, γ is given implicitly
through the processes Z and Γ. Indeed, we suppressed this dependence of Z,Γ on the
initial data and the further dependencies on the control processes A, a, ξ. Moreover,
implicitly the processes Z and Γ are assumed to be continuous in time. Therefore, to
apply the general result proved in [18], we have to include the initial conditions z and
γ in the reachability set V(t) defined above. Then, by Theorem 3.1 in [18],

V(t) =
{

(x, y, z, γ) | ∃Z ∈ At,x,z,γ s.t. (Xt,x
θ , Y t,x,y,Z

θ , Zθ,Γθ) ∈ V (θ) a.s.
}

for any stopping time θ ∈ [t, T ]. Set

V̂ (t, x, z, γ) := inf{ y | (x, y, z, γ) ∈ V(t)}.
Then the dynamic programming principle satisfied by V translates into an analogous
relation for V̂ . Indeed,

V̂ (t, x, z, γ) = inf{ y | ∃Z ∈ At,x,z,γ s.t. Y t,x,y,Z
T ≥ g(Xt,x

T ) a.s.},
= inf{ y | ∃Z ∈ At,x,z,γ s.t. Y t,x,y,Z

θ ≥ V̂ (θ,Xt,x
θ , Y t,x,y,Z

θ , Zθ,Γθ) a.s.}.
Therefore to prove Theorem 3.1 or equivalently (3.1), it suffices to show that

V̂ (t, x, z, γ) is independent of z and ξ. This is exactly what we will prove in the
remainder of this section.

Theorem 5.1. Suppose (x0, y0, z0, γ0) ∈ V(t0). Then (x0, y, z, γ) ∈ V(t0) for any
y > y0, z ∈ R

d, γ ∈ Sd. In particular, V̂ (t, x, z, γ) = V (t, x) and (3.1) holds.
The proof of this result will be completed in several lemmas. Let c0 be as in (A3).
Lemma 5.1. Let (x0, y0, z0, γ0) ∈ V(t0). Then, for every y > y0, there exists

Z ∈ At0,x0,z0,γ0 so that almost surely

Y t0,x0,y,Z
t ≥ Y t0,x0,y0,Z

t + (y − y0)e−c0(t−t0) ∀ t ∈ [t0, T ],

and Y t0,x0,y0,Z
T ≥ g(Xt0,x0

T ). In particular, (x0, y, z0, γ0) ∈ V(t0).
Proof. To simplify the notation, set A0 :=At0,x0,z0,γ0 , X :=Xt0,x0 . Since (x0, y0,

z0, γ0) ∈ V(t0), there exists a control process Z ∈ A0 so that

Y 0
T := Y t0,x0,y0,Z

T ≥ g (XT ) a.s.

Set Y := Y t0,x0,y,Z so that the error process is given by δ := Y − Y 0. Clearly,
δt0 = y − y0 > 0. Let τ := T ∧ inf {t ≥ t0 : δt ≤ 0}. Then, for all u ∈ [t0, τ ], we have

dδu =
[
f (u,Xu, Yu, Zu,Γu) − f

(
u,Xu, Y

0
u , Zu,Γu

)]
du ≥ −c0δudu,

where the last inequality follows from (A3). We now use Gronwall’s inequality to
conclude that δu ≥ (y − y0)e−c0(u−t0) for u ∈ [t0, τ ]. Hence τ = T and

Yt = Y 0
t + δt ≥ Y 0

t + (y − y0)e−c0(t−t0).
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Lemma 5.2. Let (x0, y0, z0, γ0) ∈ V(t0). Then (x0, y, z, γ0) ∈ V(t0) for any y > y0
and z ∈ R

d .
Proof. Fix (x0, y0, z0, γ0) ∈ V(t0), y > y0 and z ∈ R

d. We need to construct
Z∗ ∈ At0,x0,z,γ0 so that the corresponding Y ∗ = Y t0,x0,y,Z∗

process is superreplicating.
Set X := Xt0,x0 .

Step 1. The building block for Z∗ is as follows. As in the previous lemma, let
Z ∈ A0 = At0,x0,z0,γ0 be chosen so that Y 0 := Y t0,x0,y0,Z is superreplicating. Fix a
constant M > 2/(T − t0) and define a control process Ẑ by

Ẑu := Zu + [(1 −M(u− t0)) (z − z0)]1[t0,t0+
1

M ).

Note that since Z ∈ At0,x0,z0,γ0 , Zt0 = z0. Let Â, Γ̂ be defined through Ẑ. Then this
control process has the following properties: Ẑt0 = z, Γ̂ = Γ everywhere, Ẑ = Z on
[t0 + 1/M, T ], and

Âu := Au +M1[t0,t0+
1

M ).

In particular, Ẑ ∈ At0,x0,z,γ0 .
As in the proof of the preceding lemma, let Y 0 = Y t0,x0,y0,Z . Further set

Ȳu := Y 0
u +

1
2
(y − y0)e−c0(t−t0),

Ŷ = Y t0,x0,y,Ẑ , and R0 = 1. Define a stopping time τ by

τ :=
(
t0 +

1
M

)
∧ inf

{
u ≥ t0 : Ŷu ≤ Ȳu

}
∧ inf {u ≥ t0 : |Xu −Xt0 | ≥ R0} ,

since Ŷt0 = y > Ȳt0 = y0 + (y − y0)/2, τt0.
The main property of this construction is as follows. If τ = t0 + (1/M), then

Ŷt0+(1/M) = y > Ȳt0+(1/M). Also recall that Ẑ = Z on [t0 + (1/M), T ]. Hence, when
τ = t0 + (1/M),

ŶT = Y t0,x0,y,Ẑ
T = Y τ,Xτ ,Ŷτ ,Z

T

≥ Y τ,Xτ ,Ȳτ ,Z
T Y τ,Xτ ,Yτ ,Z

T

≥ g(XT ).

Since Ẑ ∈ At0,x0,z,γ0 , the above implies that (x0, y, z, γ0) ∈ V(t0).
Step 2. The probability of the event {τ < t0+1/M} depends on several quantities.

However, we will be mainly interested in its dependence on M . So we define

Ψ(M) := Ψ(M : t0, x0, y, y0, z, R0, Z) = P

(
τ < t0 +

1
M

)
.

In Lemma 5.3, below, we will prove that for any λ < 1,

lim
M→∞

Mλ Ψ(M) = 0.

Step 3. Let Ẑ be as in the preceding step. Then Z ∈ At0,x0,z0,γ0 and Ẑ ∈
At0,x0,z,γ0 . Moreover, there exists m0 so that Z ∈ At0,x0,z0,γ0

m0
and Ẑ ∈ At0,x0,z,γ0

m0
.
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Step 4. Choose M1 > 1/(T − t0) so that

M
(1/m0)
1 Ψ(M1) ≤ 1

2
.

Let Ẑ, τ be as in Step 1 with M1. On the set {τ = t0 + (1/M1) }, we define
Z∗ = Ẑ.

Step 5. On {τ < t0 + (1/M1) }, set

τ1 := τ, Ẑ1 := Ẑ, Ȳ 1 := Ȳ , Ŷ 1 := Ŷ .

Then we reiterate the procedure of Step 1 starting at time τ1. Indeed, set R1 = 1/2
and choose M2 ≥M1 as an Fτ1-measurable random variable so that

M
(1/m0)
2 Ψ

(
M2 : τ1, Xτ1 , Ȳ

1
τ1
, Y 0

τ1
, Ẑ1

τ1
, R1, Z

)
≤ 1

4
.

Set

Ẑ2
u :=

⎧⎪⎨
⎪⎩

Ẑ1
u on u ∈ [t0, τ1],[
Zu + (1 −M2(u− τ1)) (Ẑ1

τ1
− Zτ1)

]
on u ∈ [τ1, τ1 + (1/M2)],

Zu on u ∈ [τ1 + (1/M2), T ],

Ŷ 2 := Y τ1,Xτ1 ,Ŷ 1
τ1

,Ẑ2
, Ȳ 2

u := Y 0
u +

1
4
(y − y0)e−c0(u−t0).

Finally, define the stopping time τ2 by

τ2 :=
(
τ1 +

1
M2

)
∧ inf

{
u ≥ τ1 : Ŷ 2

u ≤ Ȳ 2
u

}
∧ inf {u ≥ τ1 : |Xu −Xτ1 | ≥ R1} .

Step 6. On {τ2 = τ1 + (1/M2) }, we define Z∗ = Ẑ2 and stop the procedure. On
the complement of this set, we iterate this procedure to obtain a sequence{

Mk, τk, Ẑ
k, Ŷ k, Ȳ k

}
k=1,2,...,N

,

so that Rk = 2−k, Mk+1 ≥Mk,

M
(1/m0)
k+1 Ψ

(
Mk+1 : τk, Xτk

, Ȳ k
τk
, Y 0

τk
, Ẑk

τk
, Rk, Z

)
= M

(1/m0)
k+1 P

(
τk+1 < τk +

1
Mk+1

)
≤ 1

2k+1
.(5.1)

Then define Ẑk+1 as before with Mk+1. Also, set

Ŷ k+1 := Y τk,Xτk
,Ŷ k

τk
,Zk+1

, Ȳ k+1 := Y 0 +Rk+1(y − y0)e−c0(u−t0),

τk+1 :=
(
τk +

1
Mk+1

)
∧ inf

{
u ≥ τk : Ŷ k+1

u ≤ Ȳ k+1
u

}
∧ inf {u ≥ τk : |Xu −Xτk

| ≥ Rk} .
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The random integer N is the step at which this procedure stops, i.e., {τN = τN−1 +
(1/MN)}. As before, on this set we define Z∗ := ẐN . Then Y ∗ = Y t0,x0,y,Z∗

= Ŷ N .
By construction, Y ∗

T ≥ g(XT ) a.s. Hence, we may conclude that (x0, y, z, γ0) ∈ V(t0),
provided that N < ∞ a.s. and that Z∗ ∈ At0,x0,y,z. These will be shown in the next
two steps.

Step 7. In view of (5.1),

∞∑
k=1

P

(
τk < τk−1 +

1
Mk

)
≤

∞∑
k=1

1
2k

<∞.

Therefore, by the Borel–Cantelli lemma, P(N <∞) is equal to one.
Step 8. Recall that dZt = Atdt+ ΓtdWt and Z ∈ At0,x0,z0,γ0

m0
. Hence,

‖A‖B,(1/m0)
t0,x0

≤ m0.

Let Γ∗ and A∗ be the control processes corresponding to Z∗. Then Γ∗ = Γ, in
particular Γ∗

t0 = γ0. Moreover, by construction Z∗
t0 = z and |Ẑ−Z| ≤ |z−z0|. Hence,

to verify that Z∗ ∈ At0,x0,z,γ0 , we need to show that for some m,

‖A∗‖B,(1/m)
t0,x0

≤ m.

By definition,

A∗
u = Au +

∑
k

Mk 1[τk−1,τk)(u).

Since Mk is nondecreasing in k, the maximum over u of the summation term in the
above expression is achieved for the final k, i.e., when N = k. Hence,

sup
t0≤u≤T

|A∗
u|

1 + |Xu|B ≤ sup
t0≤u≤T

|Au|
1 + |Xu|B +

∑
k

Mk 1{N=τk}.

Since {N = τk} ⊂ {N ≥ τk} ⊂ {τk < τk−1 + 1/Mk},

‖A∗‖B,(1/m0)
t0,x0

≤ ‖A‖B,(1/m0)
t0,x0

+
∑

k

(Mk)(1/m0)
P

(
τk < τk−1 +

1
Mk

)
≤ m0 + 1.

Remark 5.1. In the proof of the above lemma, the dynamics of the processes are
not used. In fact, the above lemma is a recursive procedure to construct the control
process. The technical input for this procedure is given through two technical results,
Lemma 5.1, proved prior to the lemma, and Lemma 5.3, proved below. However, note
that Lemma 5.1 is just a simple consequence of the monotonicity assumption (A3).
Hence, for any other situation with an f satisfying (A3) to obtain the conclusions of
Lemma 5.2, it suffices to prove the technical estimate proved in Lemma 5.3 below.

Remark 5.2. In the above proof, the construction of the exit times shows that
for u ∈ [t0, τk+1],

|Xu − x0| ≤ |Xu −Xτk
| + |Xτk

−Xτk−1 | + · · · + |Xτ1 − x0| ≤ Rk + · · · +R0 ≤ 2.

Hence, for u ∈ [t0, τN ], the process X is uniformly bounded. This is the only reason
to introduce the exit times in the definition of τk. Indeed, this property will be used
in the proof of Lemma 5.4 below.
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The following technical estimate is used in the proof of Lemma 5.2.
Lemma 5.3. Let Ψ be as in Step 2 in the proof of Lemma 5.2. Then, for every

λ < 1,

lim
M→∞

Mλ Ψ(M : t0, x0, y, y0, z, R, Z) = 0.

Proof. Recall that τ := (t0 + (1/M)) ∧ τ1 ∧ τ2, where

τ1 := inf{u ≥ t0Ŷu ≤ Ȳu}, inf{u ≥ t0|Xu − x0| ≤ R}.
Clearly,

P

[
τ2 ≥ t0 +

1
M

]
≤ C(R)

M

for some C(R).
Using the notation of the previous proof, set δu := Ŷu − Ȳu. By definition,

δt0 = (y − y0)/2 := η and δu ≥ 0 on [t0, τ ]. Also, by the definition of the process Ẑ,

Ẑu − Zu = (z − z0) [1 −M(u− t0)] for u ∈ [t0, τ ],

and therefore ∣∣∣Ẑu − Zu

∣∣∣ ≤ |z − z0| for u ∈ [t0, τ ].

Recall that Ẑ and Z have the same diffusion coefficient (i.e., the same Γ). Also
Ȳu = Y 0

u + ηe−c0(u−t0). Now, set

δ̂u := δue
c0(u−t0) = ec0(u−t0)

[
Ŷu − Y 0

u

]
− η.

Then we directly compute that

δ̂u = η +
∫ u

t0

ec0(r−t0)
[
d(Ŷu − Y 0

u ) + c0(Ŷu − Y 0
u )
]

= η +
∫ u

t0

ec0(r−t0)
[(
Ẑr − Zr

)
◦ dXr

+
(
f(r,Xr, Ŷr, Ẑr,Γr) − f(r,Xr, Y

0
r , Zr,Γr) + c0(Ŷu − Y 0

u )
)
dr
]

≥ η + (z − z0)
∫ u

t0

ec0(r−t0)[1 −M(r − t0)] · dXr

+
∫ u

t0

ec0(r−t0)
[
f(r,Xr, Y

0
r , Ẑr,Γr) − f(r,Xr, Y

0
r , Zr,Γr)

]
dr,

where we used condition (A3) in the third step. Hence

δ̂u ≥ η +
∫ u

t0

φrdr +
∫ u

t0

mr · dWr,

where mr := ec0(r−t)[1 −M(r − t0)]σ(Xr)(z − z0), and

φr := ec0(r−t0)
[
f
(
r,Xr, Yr, Ẑr,Γr

)
− f (r,Xr, Yr, Zr,Γr)

]
+ ec0(r−t0)[1 −M(r − t0)](z − z0) · μ(Xr).
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Moreover, they both satisfy

|φr | + |mr| ≤ C(1 + |Xr|P )

for some C,P > 0. We now estimate that

P

[
τ1 ≥ t0 +

1
M

]
= P

[
inf

t0≤u≤t0+ 1
M

δ̂u ≥ 0

]

≥ P

[
inf

t0≤u≤t0+ 1
M

∫ u

t0

φrdr +
∫ u

t0

mr · dWr ≥ −η
]

= 1 − P

[
sup

t0≤u≤t0+ 1
M

∫ u

t0

φrdr +
∫ u

t0

mr · dWr ≥ η

]

≥ 1 − η−2
E

⎡
⎣( sup

t0≤u≤t0+
1

M

∫ u

t0

φrdr +
∫ u

t0

mr · dWr

)2
⎤
⎦

by the Chebyshev inequality. It then follows from the Burkholder–Davis–Gundy in-
equality that

P

[
τ1 < t0 +

1
M

]
≤ 2η−2

E

⎡
⎣(∫ t0+

1
M

t0

|φr|dr
)2

+

(
sup

t0≤u≤t0+ 1
M

∫ u

t0

mr · dWr

)2
⎤
⎦

≤ Cη−2E

⎡
⎣
(∫ t0+ 1

M

t0

|φr|dr
)2

+
∫ t0+ 1

M

t0

|mr|2 dr
⎤
⎦

≤ C

M η2

(
1 + E

[
sup

r∈[t0,T ]

|Xr|2P

])
,

since

Ψ(M) ≤ P

[
τ1 < t0 +

1
M

]
+ P

[
τ2 ≥ t0 +

1
M

]
≤ C

M
.

Lemma 5.4. Let (x0, y0, z0, γ0) ∈ V(t0). Then (x0, y, z0, γ) ∈ V(t0) for any y > y0
and γ ∈ Sd .

Proof. Fix (x0, y0, z0, γ0) ∈ V(t0), y > y0 and γ ∈ Sd. We need to construct
Z∗ ∈ At0,x0,z0,γ so that the corresponding Y ∗ process is superreplicating.

This construction is the same as the one given in the previous proof. In view of
Remark 5.1, we need to prove Lemma 5.3 under this new construction. This proof is
also very similar to the above proof of Lemma 5.3.

Again let δ̂u := δue
c0(u−t0) and δu := Ŷu − Ȳu. Also, by the definition of the

process Ẑ, for u ∈ [t0, τ ],

Ẑu − Zu =
∫ u

t0

[
Γ̂r − Γr

]
◦ dXr = (γ − γ0)

∫ u

t0

[1 −M(r − t0)] ◦ dXr

= (γ − γ0)
[
(Xu − x0) −M(u− t0)Xu +M

∫ u

t0

Xrdr

]
.
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Since τ ≤ t0 + (1/M), for u ∈ [t0, τ ], M(u − t0) ≤ 1. Moreover, in view of Remark
5.2,

sup
t0≤r≤u

|Xt0,x0
r − x0| ≤ 2.

Therefore, there exists a constant C,∣∣∣Ẑu − Zu

∣∣∣ ≤ C |γ − γ0| [|x0| + 2] for u ∈ [t0, τ ].

Then we directly compute that

δ̂u = η +
∫ u

t0

ec0(r−t0)
[
d(Ŷu − Y 0

u ) + c0(Ŷu − Y 0
u )
]

= η +
∫ u

t0

ec0(r−t0)
[(
Ẑr − Zr

)
◦ dXr

+
(
f(r,Xr, Ŷr, Ẑr, Γ̂r) − f(r,Xr, Y

0
r , Zr,Γr) + c0(Ŷu − Y 0

u )
)
dr
]

≥ η + (z − z0)
∫ u

t0

ec0(r−t0)
(
Ẑr − Zr

)
◦ dXr

+
∫ u

t0

ec0(r−t0)
[
f(r,Xr, Y

0
r , Ẑr, Γ̂r) − f(r,Xr, Y

0
r , Zr,Γr)

]
dr,

where we used condition (A3) in the third step. Hence

δ̂u ≥ η +
∫ u

t0

φrdr +
∫ u

t0

mr · dWr,

where mr := ec0(r−t)(Ẑr − Zr) σ(Xr), and

φr := ec0(r−t0)
[
f
(
r,Xr, Yr, Ẑr, Γ̂r

)
− f (r,Xr, Yr, Zr,Γr) + (Ẑr − Zr) · μ(Xr)

]
.

Moreover, they both satisfy

|φr| + |mr| ≤ C(1 + |Xt0,x0
r |P )

for some C,P > 0. We then proceed exactly as in the proof of Lemma 5.2.

6. Terminal condition. In this section, we first prove Theorem 3.3 under as-
sumption (A5)’. Then we will show that several sets of conditions on the functions f
and g imply (A5)’.

Proof of Theorem 3.3. First we observe that under (A5), the inequality V∗(T, .) ≥
g(.) follows from Proposition 4.5 in [6].

It remains to prove that V ∗(T, .) ≤ g. Let Uε,x0(t, x) be as in (A5)’. For every
(t, x) ∈ [0, T )× R

d, set X := Xt,x. We directly calculate by Itô’s formula that for all
t ∈ [t(ε, x0), T ],

g(XT ) ≤ Uε,x0(XT ) = Uε,x0(t, x) +
∫ T

t

Uε,x0
t ds+

∫ T

t

DUε,x0 ◦ dXs.

Recall that by (A5)’, Uε,x0 is a supersolution of (2.4) with f = f̂ . Hence,

g(XT ) ≤ Uε,x0(t, x) +
∫ T

t

f(s,Xs, U
ε,x0 , DUε,x0 , D2Uε,x0)ds+

∫ T

t

DUε,x0 ◦ dXs.



2364 H. METE SONER AND NIZAR TOUZI

In addition, the process {Zs := DUε,x0(s,Xs), t ≤ s ≤ T } ∈ At,x. Therefore, by
the definition of V (t, x), Uε,x0(t, x) ≥ V (t, x) for all t ∈ [t(ε, x0), T ]. Since Uε is
continuous up to the final time, Uε,x0(T, x) ≥ V ∗(T, x). Finally, we send ε ↓ 0 and
use (3.4) at x0 to arrive at g(x0) ≥ V ∗(T, x0).

We continue by obtaining several sufficient conditions for (A5)’.
Lemma 6.1. Suppose g is bounded and that for every N there is CN so that

(6.1) f(t, x, y, z, γ) ≥ −CN [1 + |y|] ∀ |z|, |γ| ≤ N.

Then there exists Uε satisfying (A5)’.
Proof. Let gε be a smooth mollification of g. Then all derivatives of gε are

bounded by a constant depending on ε. Set

Uε(t, x) := gε(x) + C(T − t) + ‖gε − g‖∞.
We claim that for sufficiently large C, Uε is a supersolution of (2.4). Indeed, use the
above lower bound (6.1) with Nε = sup |DUε| + |D2Uε|. Set C(ε) = CNε . We then
directly estimate that

−Uε
t + f(t, x, Uε, DUε, D2Uε) ≥ C − C(ε) [1 + |Uε(t, x)|]

= C − C(ε)[1 + ‖gε‖∞ + C(T − t)].

Then

C − C(ε)[1 + ‖gε‖∞ + C(T − t)] = C[1 − C(ε)(T − t)] − C(ε)[1 + ‖gε‖∞] ≥ 0,

provided that t ≥ T − 1/(2C(ε)) and C ≥ 2C(ε)[1 + ‖gε‖∞]. Also, by definition, Uε

satisfies (3.4).
Lemma 6.2. Suppose g is growing at most linearly, i.e.,

|g(x)| ≤ C[1 + |x|].
Further suppose that there is c0, and that for every N there is CN so that

f(t, x, y, z, γ) ≥ − [c0|y| + CN ] ∀ |z|, |γ| ≤ N.

Then there exists Uε satisfying (A5)’.
Proof. Let Q(x) be a smooth function satisfying, for all x,

Q(x) ≥ Q(0) = 0, Q(x) ≥ |x| ∧ |x|2, Q(x) ≤ 2|x|.
Fix x0. Since g is continuous (assumption (A3)), for every ε > 0 there is λε > 0, so
that

g(x) ≤ gε(x) := g(x0) + ε+Q (λε(x− x0)) ∀ x ∈ R
d.

Moreover, the first two derivatives of gε are bounded by a constant, possibly depending
on ε:

cε := ‖Dgε‖∞ + ‖D2gε‖∞ <∞.

For a large constant C to be determined below, we set

Uε(t, x) = Uε(t, x;x0, C) := gε(x) ec0(T−t) + C(T − t).
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Clearly, Uε(T, x) ≥ g(x) for all C. Moreover, for every λ,C, and x0

lim
ε↓0

Uε(T, x0;λ,C) = g(x0).

Hence, Uε satisfies (3.4).
We claim that for sufficiently large C, Uε is a supersolution of (2.4). Indeed, on

[0, T ]× R
d,

‖DUε‖∞ + ‖D2Uε‖∞ ≤ cεe
c0T .

Set C(ε) := CNε , where Nε = cεe
c0T , and CN is as in our hypothesis. We directly

calculate that

−Uε
t + f(t, x, Uε, DUε, D2Uε) ≥ C + c0g

ε(x)ec0(T−t) − [c0|Uε(t, x)| + C(ε)]
= C − c0 C (T − t) − C(ε) ≥ 0,

provided that C ≥ 2C(ε) and t ≥ T − 1/(2c0).
One may construct supersolutions in the case of polynomial growing terminal

data. However, in those cases we need to assume growth in the gradient variable of f .
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