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ABSTRACT

This paper describes an analytical investigation of the dy-

namic response and performance of impact vibration absorbers

fitted to flexible structures that are attached to a rotating hub.

This work was motivated by experimental studies at NASA,

which demonstrated the effectiveness of these types of absorbers

for reducing resonant transverse vibrations in periodically-

excited rotating plates. Here we show how an idealized model

can be used to describe the essential dynamics of these systems,

and used to predict absorber performance. The absorbers use

centrifugally induced restoring forces so that their non-impacting

dynamics are tuned to a given order of rotation, whereas their

large amplitude dynamics involve impacts with the primary flex-

ible system. The linearized, non-impacting dynamics are first

explored in detail, and it is shown that the response of the sys-

tem has some rather unique features as the hub rotor speed is

varied. A class of symmetric impacting motions is also analyzed

and used to predict the effectiveness of the absorber when op-

erating in its impacting mode. It is observed that two differ-

ent types of grazing bifurcations take place as the rotor speed

is varied through resonance, and their influence on absorber per-

formance is described. The analytical results for the symmetric

impacting motions are also used to generate curves that show

how important absorber design parameters—including mass, co-

efficient of restitution, and tuning—affect the system response.

These results provide a method for quickly evaluating and com-

paring proposed absorber designs.

∗Address all correspondence to this author.

1 Introduction
This paper describes an analysis of a model for a rotating

flexible structure fitted with a tuned impact absorber. The ab-

sorber is tuned so that at small amplitudes it effectively absorbs

vibrations at a given order of rotation, while at larger amplitudes

it transitions to an impact damper, wherein it impacts with the

structure and utilizes the attendant energy losses to reduce vibra-

tion levels. Absorbers of this type have recently been proposed

as a means of attenuating vibrations in turbine blades. Their lin-

ear response has been analyzed in [1, 2] and the impacting re-

sponse has been investigated in a series of experiments at NASA

[3], where the effectiveness of such absorbers has been clearly

demonstrated. In this work we carry out a systematic analysis of

the response of an idealized system that captures the essential dy-

namics of the rotating structure and the impact damper, and we

focus on the development of methods for predicting the effec-

tiveness of the impact damper for reducing vibration levels. The

analytical and simulation results obtained herein can serve as a

guide for the selection of absorber parameters in these systems.

Order-tuned absorbers are widely used in rotating machin-

ery, primarily to attenuate torsional vibrations that arise from

fluctuating torsional loads. For example, they have a rich his-

tory in piston aircraft engines [4], and have more recently been

proposed as a method for handling vibrations in advanced-

technology automotive engines [5]. In these applications, the

absorbers typically consist of masses suspended from the rotor

using a bifilar suspension, such that their center of mass travels

along a given path (usually circular) relative to the rotor. The

selection of the absorber path and its placement on the primary

system determine its tuning, both linear and nonlinear. In prac-

tice circular paths are used, and the absorbers are linearly tuned

to an order slightly higher than that of the dominant order of exci-

tation in order to avoid undesirable nonlinear behavior caused by
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the softening nature of the system, which can result in jump in-

stabilities that turn the absorbers into vibration amplifiers [6, 7].

More recently, it has been proposed to use nonlinear path tun-

ing to avoid these behaviors, and it has been shown that a certain

epicycloidal path has some desirable features [8], although it still

exhibits certain undesirable instabilities when systems of multi-

ple absorbers are employed [9, 10]. Cycloids have also been pro-

posed, for example, in helicopter applications, with considerable

success [11]. A thorough investigation of a wide range of paths

shows that slightly overtuned cycloids offer good performance,

including avoidance of instabilities and localization of absorber

responses, over a wide range of torques [7, 12]. In contrast, in

this work these absorbers are used to reduce vibrations in flexi-

ble structures that are attached to a rotor that spins at a constant

rate.

The basic model for the flexible rotating structure employed

here is composed of a pendulum that is attached to a rotating hub

via a torsional spring. Thus, the restoring force on the pendu-

lum consists of the elastic component from the spring, as well as

centrifugal effects from rotation. In this manner the system has

a basic feature required for the present analysis, specifically, a

natural frequency that increases as a function of the rotation rate,

i.e., it experiences centrifugal stiffening. A pendulum absorber

is attached to this primary structure, and is tuned (as described

below) to a given order of rotation, as shown in Fig. 1a. Its am-

plitude is assumed to be limited by stops which are fixed to the

primary pendulum, representing the absorber’s rattle space con-

straints. Upon contact with the stops, momentum is transferred

between the absorber and the primary system, and energy is dis-

sipated. This simplified model allows one to analytically predict

both the linear (non-impacting) response and the desired type

of non-linear response, that is, one in which the absorber mass

bounces back and forth between its limits in a symmetric man-

ner. Parameter studies are conveniently carried out by analyzing

the steady-state responses of this idealized model, and the results

are compared with simulations of the system.

The paper is organized as follows. In Section 2 the model

is described, the equations of motion are presented in dimen-

sionless form, and the nondimensional system parameters are

defined. Section 3 contains an analysis of the linearized (non-

impacting) response, explores some interesting features of the

linear system response, and shows how the absorber is tuned to

function at small amplitudes. A nonlinear analysis of the de-

sired symmetric impacting motions is given in Section 4. Sec-

tion 5 shows sample results for various parameter conditions in

the form of plots of structural response amplitude versus rotation

speed. These results, which are verified by numerical simula-

tions, demonstrate the effectiveness of the absorber in attenuating

the structural resonance that occurs as the speed passes through

the resonance of the flexible structure. The paper closes with

some remarks and directions for future work in Section 6.

2 Equations of Motion
An idealized model is developed here, but, as shown in Sec-

tion 5, it possesses the important features required to mimic ac-

tual implementations of these absorbers. The model to be con-

sidered is shown in Fig. 1a. The primary system consists of a

rigid massless bar of length L and end-mass M that is attached

via a linear torsional spring of stiffness Kt to a hub at a distance

R from the hub center. The hub is assumed to be rotating about

a fixed axis at a constant rate Ω. It is also assumed that when

the pendulum has a purely radial configuration, that is, θ = 0,

the torsional spring is unstressed. This primary system pendu-

lum is periodically excited by a transverse force applied at the

end-mass, with a frequency that is linked to the rotation rate,

i.e., F(t) = F0 sin(nΩt) where n is the so-called engine excita-

tion order, typically an integer or a simple fraction [13]. Reduc-

ing the vibratory response of this primary system, especially at

resonance conditions, is the main objective of this work.

The absorber can be conveniently modeled by another pen-

dulum, taken to be of length d and mass m (typically m ≪ M)

that is attached to the primary pendulum bar at a distance αL

from its pivot, where 0 < α < 1. The absorber pendulum an-

gle ψ has its amplitude limited to a value of ψ0 by stops, which

represents the rattle space limits found in typical turbine blades.

Note that this pendulum is dynamically equivalent to the hard-

ware implemented in practice, which consists of a mass moving

along a machined surface [3] that impacts the blade at a certain

amplitude.1 The absorber length d will be selected to provide

small amplitude tuning at the desired order, exactly as for the

centrifugal pendulum absorbers used to attenuate torsional oscil-

lations in rotating systems [7]. When the absorber makes contact

with a stop, momentum is exchanged between the absorber and

the primary system, and energy dissipation is modeled using a

coefficient of restitution.

Damping ratios for the structures of interest are very low,

typically in the range 0.1% or less of critical damping. In addi-

tion, it is desired to keep the absorber damping as small as pos-

sible, since it remains tuned to the desired order at all rotation

speeds. Thus, energy dissipation in this system is dominated by

impacts.

2.1 Motion Between Impacts
The equations of motion for this system between impacts

are derived using a Lagrangian approach and linearized for small

angles of both the primary and absorber pendulums, that is, for

small θ and ψ. They are divided through by their respective in-

ertia terms and time is rescaled using the mechanical natural fre-

quency of the isolated primary system at zero rotor speed, ω0

1It should be noted that in [3] spherical balls are used for the absorber mass,

and these presumably roll without slipping, in which case their effective mass

will include rotational effects; see [8] for a similar analysis involving the rollers

of bifilar torsional absorbers.
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Figure 1. (a) Schematic diagram of the pendulum-type blade model with

attached pendulum absorber. (b) System attached to the rotating hub.

(defined below). This yields a pair of dimensionless linear equa-

tions that describe the motion between impacts, as follows,

Mz̈ + Cż+ Kz = f (1)

where an overdot indicates a derivative with respect to dimen-

sionless time τ (defined below), and the dynamic variables are

defined to be z = (x,y)T = (θ/ψ0,ψ/ψ0)
T, and have been chosen

such that impacts occur at |y|= 1. The dimensionless symmetric

mass and stiffness matrices have elements given by

M11 = 1 + µ(α +γ)2,
M12 = M21 = µγ(α +γ),
M22 = µγ2,
K11 = 1 +δσ2 (1 + µ(α +γ)),
K12 = K21 = δµγσ2,
K22 = µγσ2(α +δ),

and the force vector is given by

f = ( f cos(nστ),0). (2)

A number of dimensionless system parameters have been intro-

duced, which are now described. There are three length ratios:

the pendulum length γ = d/L, the hub radius δ = R/L, and the

absorber pendulum pivot location along the primary system α
(recall that α was initially defined as a length ratio in terms of

L). The ratio of absorber to primary system mass is described

by µ = m/M. The normalized amplitude for the applied mo-

ment due to the force acting on the primary mass is given by

f = FL/(Ktψ0), and the rescaled time is given by τ = ω0t where

ω0 =
√

Kt/M/L is the natural frequency of the isolated primary

system at zero rotational speed, that is, Ω = 0. The rotational

speed has also been nondimensionalized using this frequency and

is described by the parameter σ = Ω/ω0. Of primary interest is

the response of the primary system as σ varies, especially near

resonance conditions.

The parameter γ is a measure of the effective absorber pen-

dulum length (or, equivalently, the curvature of the absorber

path), while (α +δ) is a measure of the distance from the center

of rotation to the absorber attachment point. These two geomet-

ric quantities will be central to the order tuning of the absorber.

In practice the absorber mass is small compared to that of the pri-

mary system, such that µ is typically of the order 10−2 − 10−3.

Similarly, due to the scaling used, the dimensionless force am-

plitude f will also be small. In terms of the frequency scaling,

note that resonance will nominally occur when one of the ex-

citation orders nσ matches a natural frequency of the system.

In the absence of centrifugal stiffening of the primary system,

this occurs for the primary system without the absorber when-

ever nΩ = ω0, which corresponds to σ = 1/n. This resonance

condition is shifted slightly by centrifugal stiffening effects, as

described below. Finally, note that in the absence of rotation

(σ = 0), the stiffness matrix has only one nonzero element, re-

lated to Kt .

The system damping can be modeled in a number of ways,

but in general the details are not crucial since the damping ratios

of the primary system and the absorber are both very small. In

fact, damping is ignored in most of the present analysis, where

3
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Figure 2. Normalized linear natural frequencies versus normalized ro-

tation rate σ. The dashed line is the primary system frequency with the

absorber locked, ω11, showing centrifugal stiffening; the dashed-dotted

line is the absorber frequency with the primary system locked, ω22 = ñσ;

the solid and dotted lines represent the in-phase and out-of-phase system

natural frequencies, ω1 and ω2, respectively. Note the veering that oc-

curs for small absorber mass. Parameter values: µ = 0.024, δ = 0.67,

α = 0.84, ñ = 3.007.

the dominant source of energy dissipation are losses incurred by

the impacts of the absorber with the primary system. However,

when primary system and absorber damping are to be included in

the analysis or simulations, we do so by adopting simple modal

damping, rather than using a particular form for the damping ma-

trix C.

Figure 2 shows the following four frequencies as functions

of the rotation rate σ: the two natural frequencies, ω1 and ω2

(obtained in the usual manner from the mass and stiffness ma-

trices given above); the natural frequency of the primary system

with the absorber locked, ω11 (derived below); and the natural

frequency of the absorber with the primary system locked, ω22

(also derived below). It is interesting to note that for small val-

ues of the mass ratio, the two natural frequencies lie close to ω11

and ω22, and exhibit a classical eigenvalue veering behavior [14].

The close proximity of a natural frequency to the absorber tuning

frequency ω22 can be of concern when designing absorbers, an

issue considered subsequently.

Figure 3 shows the modal amplitude ratios versus σ, ex-

pressed in terms of the ratio ri = (x/y)i (= θ/ψ)i for the i = 1,2
modes. Note that the in-phase mode starts at σ = 0 as a rigid

body mode, near the “primary system locked” mode, while the

out-of-phase mode starts near the “absorber locked” mode (due

to µ << 1). As σ increases, the eigenvalue veering takes place

near the resonant rotor speed σ ∼= 1/n, and as σ → ∞ the roles

of the modes switches such that the in-phase mode is asymptotic

to the “absorber locked” mode while the out-of-phase mode is

asymptotic to the “primary system locked” mode. It is interest-

ing to note that the first natural frequency of the full system ω1

0.1 0.2 0.3 0.4 0.5

-0.2

-0.1

0.1

0.2

σ

ri

r1

r2

Figure 3. Modal amplitude ratios as a function of σ; line types and para-

meters are the same as those in Fig. 2.

follows ω22 for small σ values and then switches branches and

approaches ω11 as σ → ∞. Similarly, ω2 follows ω11 for small

σ values and then switches branches and tracks closely ω11 as σ
becomes large. However, numerical plots show that in this lat-

ter case the two branches have a very slight difference in their

large-σ asymptotic slopes. This effect has some interesting con-

sequences that are more fully explored in [15].

The steady-state response of these linear equations of mo-

tion is considered in detail in Section 3.3.

2.2 Impact Dynamics
The linear differential equations of motion are valid for

|y|< 1 and impacts occur at |y|= 1. Using conservation of angu-

lar momentum about the rotation center and a simple Newtonian

impact law involving the relative normal velocities of the pri-

mary system and the absorber, it can be shown that, for small

angles, the angular velocities before (superscript −) and after

(superscript +) impact are related as follows,

ẋ+ = ẋ− + Eẏ−

ẏ+ = −eẏ−

}

, (3)

where e is the usual coefficient of restitution, 0 ≤ e ≤ 1, and

E =
γµ(1 + e)(α +δ+γ)

1 +δ+ µ(α +γ)(α +γ+δ)
. (4)

Note that the impact rule for the absorber mass is very simple due

to the fact that it is measured relative to the angular displacement

of the primary system. Also note that the velocity of the primary

system undergoes a jump at impact, and that the magnitude of the

jump is proportional to the mass ratio µ, as expected from such

a momentum transfer. Similar models for translational impact
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absorbers have been the subject of previous investigations; see,

for example, [16, 17].

The equations of motion between impacts and these impact

relations form the basis of the analysis to follow. We begin by

analyzing the linear response of the system, which is valid for

steady-state amplitudes below the impact threshold. This analy-

sis sets the stage for the dynamics with impacts, which are con-

sidered in Section 4.

3 Response of the Linear System
Some special cases of interest are considered first, after

which we turn to the general situation. The first special case is

the system wherein the absorber is locked in place at its zero po-

sition relative to the primary system. The steady-state response

from this case is used to provide a baseline for assessing the ef-

fectiveness of the absorber.2 We then consider the primary sys-

tem locked at its zero position, with the absorber free to move.

From this free vibration situation one can determine the natural

frequency of the isolated absorber, which is directly related to the

linear tuning the absorber. Finally, we consider the response of

the general system in which the primary system and the absorber

are both free to move. From this we determine the motions that

do not involve impacts, describe the rather interesting resonance

structure of the system, and determine conditions under which

impacts must occur.

3.1 The Absorber Locked
Consider the response of the primary system, that is, the x–

dynamics, with the absorber locked at its zero position, y = 0.

The response of this periodically forced single degree of freedom

system will be used for comparisons when evaluating the effec-

tiveness of the absorber. This system also allows one to consider

the isolated primary system, simply by taking µ = 0.

The equation of motion for the primary system with the ab-

sorber mass fixed to it is found by setting y ≡ 0 in the equations

of motion and including a constraint force acting on the absorber

to hold it in place. (See the appendix for a more complete dis-

cussion of this force, which is utilized in the simulations.) The

resulting equation for the motion of the primary system is given

by

M11ẍ+ K11x = f cos(nστ), (5)

which is a harmonically forced simple harmonic oscillator with a

natural frequency ω11 =
√

K11/M11 that depends on the rotation

rate through σ. An example of this frequency versus the spin rate

2This system is used for reference since it includes the inertia of the absorber

as fixed to the primary system, but not its dynamics relative to the primary system.

0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

σ

ω11

n = 1

n =
 2

n =
 3

n =
 4

Figure 4. Campbell diagram. Primary system frequency (with no ab-

sorber) versus σ along with order excitation lines for µ = 0, δ = 0.67,

and orders n = 1, 2, 3, and 4.

σ is shown in Fig. 2. Note that when µ = 0, that is, when the ab-

sorber is removed, this frequency is given simply by
√

1 +δσ2,

which demonstrates in a simple form the centrifugal stiffening

effects of the primary system (for small µ this is, in fact, a very

good approximation for ω11). The term δσ2 = (RML/Kt )Ω2 cap-

tures these effects.

A resonance for the primary system occurs whenever nσ =
ω11, which can be solved to determine the rotational speeds at

which resonances occur. A typical diagram showing resonance

conditions for a few values of the excitation order n is shown in

Fig. 4 (for µ = 0). Note that only the n = 3 and 4 orders (of those

shown) excite the primary system over the spin range depicted.

Without the absorber present (µ = 0), this resonance condition

is given simply by σ =
√

1/(n2 −δ), which is slightly shifted

upwards from σ = 1/n, due to centrifugal stiffening effects. Note

that since the primary system is modeled by a single mode, there

exists a single resonance speed for each excitation order, as can

be verified by considering the intersections points in Fig. 4. The

resonance situation for the system with the absorber free to move

is significantly more subtle, as described subsequently.

The response of this baseline system as one varies the ro-

tational speed σ is that of a linear oscillator (whose natural fre-

quency depends on the spin rate), forced by harmonic excitation

at a frequency proportional to the spin rate. (Examples of these

response curves are given later, when used for comparison pur-

poses.) At resonance the response will be limited in amplitude by

the (typically very small) damping in the primary system, and/or

by nonlinear effects. The impact absorbers are designed to han-

dle precisely these resonances. In the numerical examples that

follow, we focus on the n = 3 resonance.

3.2 The Primary System Locked
Here we take x = 0 and consider the y–dynamics. These

are free vibrations of the absorber acting under the influence of

5



the constant rotation rate of the hub, which are governed by the

equation of motion

M22ÿ + K22y = 0. (6)

This system has a dimensionless natural frequency of

ω22 = σ

√

α +δ
γ

= σñ, (7)

where

ñ =

√

α +δ
γ

(8)

is the tuning order of the absorber, determined by selecting the

length of the pendulum absorber γ (dimensionally d), and the dis-

tance of its attachment point from the center of rotation (α + δ)
(dimensionally αL + R). It is important to note that the sole

restoring force for the absorber arises from centrifugal effects,

and this results in a natural frequency that is directly proportional

to the rotation rate σ. This frequency is shown in Fig. 2 for a case

where it is tuned to ñ = 3.007, which will be used to address ex-

citation forces of order n = 3 in the subsequent parameter study.

This restoring force allows the absorber to be tuned to a given or-

der, rather than to a given frequency. Just as in the case of trans-

lational absorbers, one selects the isolated absorber frequency to

meet a certain tuning condition. In the present case, in order to

address an excitation of order n, absorber parameters are selected

such that ñ ≈ n. In fact, linear theory would dictate ñ = n, but

it is known that such absorbers should be slightly detuned in or-

der to avoid finite amplitude and localization effects [6, 7, 12].

In addition, it is known that if one can maintain the absorber

frequency close to the excitation frequency, an absorber is most

effective when lightly damped. For these order-tuned absorbers

this is precisely the situation.

In the following analysis, the pendulum length parameter γ
is replaced by the tuning parameter ñ, using the substitution

γ= (α +δ)/ñ2. (9)

This allows one to see more directly the effects of absorber tun-

ing in the analytical results.

3.3 The General System
For |y| < 1 the two degree of freedom system with the pri-

mary system and the absorber free to move has a steady-state

response of the form

[

xss

yss

]

=

[

X

Y

]

cos(nσt), (10)

where

X =
− f

(

α +δ−γn2
)

Γ

Y =
f
(

δ− (α +γ)n2
)

Γ















(11)

with

Γ = α3µn2σ2 +α2µ
(

2γn2 +δ
(

−1 + n2
))

σ2

−
(

δ−γn2
)(

1 +δσ2 −n2σ2
)

+α
(

−1−δ2µσ2 +
(

1 +γ2µ
)

n2σ2

+ δ
(

−1 +γµ
(

−1 + n2
))

σ2

)

.

Note that the phases are automatically accounted for in this un-

damped system by the signs of (X ,Y ). This result can also be

expressed in terms of the absorber tuning by replacing γ using

Eq. (9). This yields

X =
f ñ2

(

ñ2 −n2
)

(α +δ)

Γ̃

Y =
f ñ2

(

δ
(

n2 − ñ2
)

+αn2
(

1 + ñ2
))

Γ̃



















, (12)

where Γ̃ is simply Γ with γ replaced using Eq. (9).

It is interesting to note that this system experiences at most

a single resonance as the rotor spins up, that is, as σ varies. This

is due to the fact that the natural frequencies depend on σ, and

if one considers a straight line representing an order excitation

superimposed in Fig. 2, it is seen that it will cross at most one

of the system natural frequency curves. Especially interesting is

the situation when the absorber is tuned to be close to the or-

der of the excitation, as is typically the case in practice. In this

case the order excitation line nσ lies very close to the absorber

frequency line ñσ, and thus the resonance condition is very sen-

sitive to small changes in the absorber tuning. (In Fig. 2 this is
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Figure 5. System resonance frequency versus ñ. Parameter values:

µ = 0.024, δ = 0.67, α = 0.84, n = 3.

precisely the situation, where the absorber is tuned to ñ = 3.007

in order to address order n = 3 excitation). As one varies the

absorber tuning ñ around n, the intersection point between the

order excitation line nσ and the natural frequency curves ω1 and

ω2 moves in a complicated manner, and even has a range of val-

ues for which no intersection exists, leading to a discontinuity

in the resonance condition. This dependence can be determined

by solving for the σ values at which Γ̃ = 0, corresponding to the

system natural frequencies. The result is shown graphically in

Fig. 5, which depicts the resonance frequency ωr as a function

of ñ for n = 3. By examination of this plot, along with Fig. 2

and Fig. 3, it is seen that when ñ > n the in-phase mode is ex-

cited at resonance, while for ñ < n the out-of-phase mode is ex-

cited at resonance below a certain threshold, but that between this

threshold and perfect tuning no resonance will occur. (For the pa-

rameters given this threshold occurs at ñ ∼= 2.9665.) Therefore,

one must take note that distortions due to stress, thermal effects

and/or wear may have a significant effect on the system response

when the absorber is tuned to be very close to the excitation or-

der. If the absorber is designed to operate in a non-impacting

manner, one can make the absorber design robust to nonlinear

effects and small uncertainties by selecting the absorber tuning

to be slightly higher than the ideal value [6, 7, 12]. This is in di-

rect contrast to order-tuned absorbers used for reducing torsional

vibrations, which should be slightly undertuned [7].

The desired tuning of the absorber is achieved by selecting

absorber parameters such that X is as small as possible over a

range of excitation parameters. For this undamped model, the

state X = 0 can be achieved over all rotation rates by selecting

the system geometric parameters to satisfy ñ = n. If one takes

the pendulum length γ to be the physical parameter of choice, the

perfect tuning condition is given by,

γ= γ̄=
α +δ

n2
or, equivalently, ñ = n. (13)

This fixes the absorber pendulum length d to be a specific propor-

tion of the distance of its pivot point from the center of rotation,

(αL + R). The constant of proportionality is given by 1/n2, that

is, it is dictated by the desired tuning order n in such a manner

that higher order absorbers will have smaller effective lengths.

This tuning is the same as the case when these absorbers are used

to attenuate rotor torsional vibrations of order n [7, 18].

It is important to note that this tuning is valid at all rota-

tion speeds, which is made possible since the frequency of the

absorber is proportional to the rotation speed σ. When tuned in

this manner, the absorber moves at the frequency of the applied

force, and exactly out of phase with respect to it. The absorber

amplitude at this condition, and with ñ = n, is given by

Ȳ = Y (ñ = n) =
− f n2

αµσ2 (α +δ)(1 + n2)
. (14)

This absorber amplitude results in an absorber moment acting on

the primary system that precisely cancels the applied moment.

Note that if small damping is considered in the absorber, the con-

dition X = 0 cannot be met, and there will be a small residual

vibration in the primary system, accompanied by a phase shift.

Also, the condition X = 0 cannot be met when small intentional

mistuning is employed, although the residual vibrations are the

tradeoff for significantly more robust operation.

Note also that the amplitude of the absorber is inversely pro-

portional to the mass ratio µ, which is generally small. This

leads to a limited range of force amplitudes over which the sys-

tem dynamics remain linear. Beyond the linear range, one must

consider nonlinearities in the absorber motion. These can in-

clude effects from the absorber path, as is done for torsional ab-

sorbers [7], or, as in the current work, the effects of impacts with

motion-limiting barriers [19].

As the force amplitude is increased, the absorber will even-

tually run out of rattle space, at which point the impact function-

ality of the absorber takes over. A force level above which the

absorber mass will necessarily impact in steady-state can be de-

rived from the linear results by taking |Y | = 1 in Eq. (12) and

solving for f = fcr. The results of fcr versus σ for three values

of absorber tuning are depicted in Fig. 6. It is noted that there

is a zero force threshold at a particular value of σ in the case

ñ = 3.007; this corresponds to a system resonance, at which point

the undamped system amplitude is unbounded for any (nonzero)

level of force. For the perfectly tuned case, ñ = 3, the zero

force threshold occurs only for zero rotor speed. In contrast, for
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Figure 6. Excitation force amplitude thresholds above which impacts

must occur, depicted as f versus σ, for absorber tuning values ñ =
2.993 (dashed line), ñ = 3 (solid line), and ñ = 3.007 (dotted line).

The non-impacting steady-state response exists below these curves, and

impacting motions must occur above them. Note that impacting and non-

impacting steady-state responses can co-exist below these curves. Para-

meter values: µ = 0.024, δ = 0.67, α = 0.84, n = 3.

ñ = 2.993, a case for which no resonance occurs, there is a finite

critical force amplitude for all rotor speeds.

In general, one must note that above this threshold impacts

must occur in steady-state operation, but that steady-state im-

pacting motions can also exist below this critical force level.

In these situations the non-impacting steady-state response co-

exists with one or more impacting steady-state responses, leading

to hysteresis in the response as parameters are varied across this

threshold. The overall picture of the nonlinear system response

is considered more fully next.

4 Periodic Impact Response
We now turn to the response of the system when the absorber

undergoes impacts. Systems with impacts have been widely

studied, and much is known about their dynamics, which can

be quite rich in terms of complicated bifurcation patterns, the

existence of chaos, multiple coexisting steady-state responses,

and bifurcations that are unique to such systems, such as grazing

bifurcations [16, 20–23]. The equations of motion that govern

the impacts are derived above, and can be used for simulation

studies. In this section we focus on the steady-state impacting

motions in which the absorber moves in a symmetric manner be-

tween its limits with a period equal to that of the excitation. An

example of such a motion, shown as trajectories in the individ-

ual (y, ẏ) and (x, ẋ) phase planes, is presented in Fig. 7. This is

the simplest of the many possible impacting steady-states, and it

lends itself naturally to analytical treatment. In addition, it is the

desired motion of the absorber, since it represents the nonlinear

continuation of the linear response of the absorber, and, in fact,

it is the most widely observed type of steady-state encountered

-0.01 -0.005 0.005 0.01

-0.004

0.004

x

x
.

0.008

-0.008

(a)

-1 -0.5 0.5 1

-0.4

-0.2

0.2

0.4

y

y
.

(b)

Figure 7. A typical symmetric periodic impacting response. (a) ẋ versus

x. (b) ẏ versus y. Parameter values: µ = 0.024, δ = 0.67, α = 0.84,

ñ = 3.007, n = 3, e = 0.5, f = 0.01, σ = 0.17 and modal damping

ratios of 1.0%.

in simulations.

Before starting the analysis, it is worthwhile to point out

where such motions are expected to occur. Figure 6 provides a

useful guide for this issue. First, consider an absorber system that

is undertuned, such as ñ = 2.993, corresponding to the dashed

line in Fig. 6. If the force amplitude is small, below approx-

imately f = 0.004 in this case, the nonimpacting steady-state

response is feasible and should dominate the system behavior.

For f & 0.004 the response will be dominated by impacts, since

the nonimpacting steady-state response exceeds the rattle-space

limits. If one considers the perfectly tuned absorber, ñ = 3, cor-

responding to the solid line in Fig. 6, it is seen that there exists

a critical rotor speed above which the nonimpacting steady-state

response exists. Coexisting with this response over at least part of

this region are a pair of symmetric impacting responses, one sta-
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ble and one unstable. As the rotor speed is decreased from above

the threshold curve, the absorber non-impacting response am-

plitude approaches unity and only impacting motions will occur

below the threshold. In fact, at the threshold curve the linear non-

impacting response joins with the unstable symmetric impacting

response via a grazing type of saddle-node bifurcation, annihi-

lating them both [21].3 For rotor speeds less than the threshold,

the stable symmetric impacting continues to exist. This situa-

tion, wherein there are two possible stable steady-state responses

beyond the threshold, leads to that hysteresis in the response as

the rotor speed varies. The most interesting case is that of over-

tuned absorbers, such as the dotted curve in Fig. 6, corresponding

to ñ = 3.007. In this case a system resonance occurs at a rotor

speed of approximately σ = 0.24, corresponding to the vertex of

the V-shaped wedge in the force threshold curve. In this case

the nonimpacting steady state exists in rotor speed zones both

below and above the resonance, and impacting is guaranteed to

occur only in a range about the resonance. As the rotor speed

is increased from zero, the nonimpacting response initially ex-

ists, and at the first threshold crossing it transitions to a stable

symmetric impacting motion via a grazing contact. As the rotor

speed is further increased, the second threshold is encountered,

and the behavior about this curve is qualitatively the same as that

described for the perfectly tuned case.

The symmetric impacting motions can be investigated using

analytical techniques. The approach taken here is to use match-

ing conditions to determine conditions for which this response

exists and examine how it affects the vibration of the primary

structure. (See, for example, [16, 17, 20] for similar analyses.) In

particular, it is of interest to know whether or not the absorber

serves to reduce the resonance of the primary system when re-

sponding with impacts, and if so, to determine its effectiveness.

With such results, one can carry out parameter studies to deter-

mine absorber parameters that lead to good performance.

A symmetric periodic response of the absorber will satisfy

certain matching conditions, and these can be used to analyti-

cally determine the response and its stability. In this section we

analytically determine the conditions for the existence of such

solutions, and leave the determination of stability to simulations.

To this end, the system response displacements during free flight,

that is, between impacts, are expressed as

x(t) = x(t;t0,x0, ẋ0,y0, ẏ0)
y(t) = y(t;t0,x0, ẋ0,y0, ẏ0)

}

, (15)

where the initial conditions are taken to be (x, ẋ,y, ẏ)|t=t0 =
(x0, ẋ0,y0, ẏ0). Now consider a response which starts at time

3Grazing refers to a zero-velocity impact. As will be demonstrated in the

simulations below, another type of grazing bifurcation occurs in this system, one

that leads directly to chaos.

t = t0 with the absorber at its right limit, y(t0) = y0 = 1, with

negative absorber velocity, ẏ(t0) = ẏ0 < 0, along with initial con-

ditions (x(t0), ẋ(t0)) = (x0, ẋ0) for the primary system. The ab-

sorber will move to the left and strike the left limit at a time t1,

whereupon y(t1) = −1 with velocity ẏ(t1) < 0 and (x(t1), ẋ(t1))
for the position and velocity of the primary system. The system

dynamical states immediately after the impact are determined

from those immediately before the impact by applying the im-

pact rule given in Eq. (3). In order for this response to be peri-

odic and symmetric between subsequent impacts, the following

conditions must hold: the time of flight t1− t0 equals one-half the

period of the excitation (or N times one-half the period for an or-

der N subharmonic response), and the system states just after an

impact at y = −1 (y = 1, respectively) are the negative of those

just after the preceding impact at y = 1 (y = −1, respectively).

These periodicity conditions hold only for special values of the

initial conditions, which are indicated here by an overbar. These

conditions are derived by using the linear free-flight solutions

and the inverse of the impact conditions, and can be expressed as

follows,

x(t̄0 + T/2; t̄0, x̄0, ¯̇x0, ȳ0 = 1, ¯̇y0) = −x̄0

ẋ(t̄0 + T/2; t̄0, x̄0, ¯̇x0, ȳ0 = 1, ¯̇y0) = − ¯̇x0 −E ¯̇y0/e

y(t̄0 + T/2; t̄0, x̄0, ¯̇x0, ȳ0 = 1, ¯̇y0) = −ȳ0 (= −1)
ẏ(t̄0 + T/2; t̄0, x̄0, ¯̇x0, ȳ0 = 1, ¯̇y0) = ¯̇y0/e

where T = 2π/(nσ) is the forcing period. Note that these equa-

tions are necessary, but not sufficient, for the existence of a sym-

metric two-impact periodic solution. In particular, one must en-

sure that the absorber response stays bounded within its limits

between impacts, that is,

|y(t; t̄0, x̄0, ¯̇x0, ȳ0 = 1, ¯̇y0) | < 1, ∀ t ∈ (t̄0, t̄0 + T/2). (16)

If this condition is violated, the mathematical solution exceeds

the limits during part of the motion, and is thus nonphysical [24].

It is interesting to note the structure of the four matching

equations. The functions for x(t), etc., are taken from the solu-

tion of the linear free-flight vibration problem. The unknowns

in the equations are the initial conditions (t̄0, x̄0, ¯̇x0, ¯̇y0) that result

in a periodic response. (Note that the initial condition on y is

known, since we start at the limit y(t0) = y0 = 1.) The unknowns

represent the phase of the forcing, the displacement and veloc-

ity of the primary system, and the velocity of the absorber, all

evaluated immediately after an impact at y = 1. The equations

can be expanded using trigonometric identities such that they are

linear in the following terms: (x̄0, ¯̇x0, ¯̇y0,sin(nσt̄0),cos(nσt̄0)).
The solution procedure involves eliminating two of the first three

terms using two of the equations, and then solving the remain-

ing two equations for sin(nσt̄0) and cos(nσt̄0). Then, using
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cos2(nσt̄0) + sin2(nσt̄0) = 1, one is left with a single quadratic

function of the remaining variable, which can be solved. The re-

maining terms are determined from the equations that were used

to eliminate them during this solution process. Note that in this

procedure one must be careful to get the correct quadrant for the

phase of (nσt̄0).

These periodicity conditions are solved using the known so-

lution of the linear vibration problem for free-flight, including

both homogeneous and particular terms. For this system, the

analytical results are sufficiently complicated that a purely ana-

lytical form is not presented. Instead, for each set of parameters

selected, the conditions are enforced, the unknowns are obtained

in the manner described above, and the non-penetration condi-

tion is checked (by direct simulation for one-half period, using

the periodic initial conditions). In this manner, the steady-state

impacting periodic response can be determined for any set of pa-

rameter values. For a typical set of response curves, one fixes all

system parameters and varies σ over a range near the resonance

of interest.

The stability of these symmetric periodic impacting re-

sponses can be determined in an analytical manner by examining

the growth/decay of the small perturbations of the periodic re-

sponses [16, 17]. However, the calculations are cumbersome and

not particularly enlightening, unless one is interested in the de-

tails of specific instabilities and bifurcations. Since the nonpen-

etrating condition (16) must be verified numerically in any case,

we also examine stability numerically. In fact, it is found that the

symmetric impacting response of interest is generally stable over

much of the rotor speed near the resonance condition under con-

sideration. However, it is observed that the system can undergo

a grazing bifurcation [21] to chaos near resonance, leading to a

situation that an analytical stability analysis is unable to handle.

As shown in the following section, near this grazing bifurcation

the absorber can undergo chatter-type responses, wherein several

impacts occur over a short duration, and the absorber will come

to rest relative to the primary structure, until the dynamic loads

release it. However, these chaotic responses have very similar

features, in terms of vibration amplitudes, to the periodic solu-

tion from which they arise, especially near resonance (the region

of interest). This feature is a general result from the class of graz-

ing bifurcation that occurs for this system [21, 25]. Therefore,

we assume that the response curves generated by the periodic

matching conditions provide an adequate approximation for eval-

uating the effects of absorber parameters on the system response

throughout the resonance speed range—a conjecture confirmed

by simulations.

We now turn to an analytical and simulation investigation of

this system using a set of parameter values taken from an exper-

imental study carried out by Duffy and co-workers at NASA [3].

5 Absorber Performance: Parameter Studies
5.1 System Parameters

For the results of this section we focus on parameter values

derived from the experimental system considered by Duffy and

co-workers [3]. Since the suppression of vibrations near reso-

nance in the primary system is the main task of the absorber, we

focus on the case where the rotor speed varies over a range that

includes the resonant speed, and examine the effectiveness of the

absorber for a range of applied torque levels. We also consider

the effects of the absorber parameters, specifically, its mass, tun-

ing, and coefficient of restitution, on the system response in order

to offer guidelines for absorber designs. Response results will be

compared for the system with the absorber locked versus the ab-

sorber free. In addition, simulations are employed to confirm the

impacting analysis, and to examine regimes where the response

is not so simple, for example, when the absorber chatters. We be-

gin by describing how one distills the dimensionless parameters

used in this study from the experimental data of Duffy [3]. Re-

sponse curves and simulations are generated for these and nearby

parameter values. From these results we draw some conclusions,

which are presented in the following section.

The experimental studies described in [3] used a spin rig

with a magnetic bearing to provide a sinusoidal excitation to the

shaft. Two cantilevered plates were resonantly excited in this

manner, and the absorbers consisted of spherical balls riding in

circular troughs such that their motion was circular relative to

the vibrating plate. The location and radius of the trough was

selected to tune the absorber to a given engine order. Absorbers

tuned to orders n = 3, 4, and 5 were tested; here we focus on

the n = 3 case. Parameter values used in the present study are

taken to be close to those taken from the n = 3 experiments. The

plate has a length of approximately L = 6.0 inches, and the ab-

sorber mass is placed essentially at the end of the plate. The

absorber is a sphere is of radius 0.0625 inches, and the trough

radius is 1.031 inches, leading to an effective pendulum length

of d = 0.968 inches. Thus, γ= d/L = 0.16. Taking the hub ra-

dius to be R = 4.0 inches (an estimate) yields δ = R/L = 0.67.

If we assume that the plate mass is an effective lumped mass at

its free end, we have L = αL+ d, or α +γ= 1 for this situation,

so that α = 0.84. By Eq. (13), this provides a tuning order of

ñ = 3.07, slightly higher than the n = 3 excitation. The absolute

mass ratio used in [3] is 0.002, but this does not account for the

effective modal mass of the plate, which is taken to be concen-

trated at the end in our model. Using 1/3 of the total plate mass

for the effective modal mass yields µ = 0.006. However, in the

subsequent analysis and simulations it is observed that this value

is too small to achieve good vibration reduction for the current

model, so the typical value used in the present study is taken to

be µ = 0.024. For steel on steel impacts, a typical coefficient of

restitution e = 0.8 is used. The plate natural frequency (at zero

spin rate) was ω0 = 282 rad/sec, so that when the rotor speed gets

near to Ω = 94 rad/sec (900 rpm), third order excitation compo-
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nents will cause a resonance in the plate. In terms of dimension-

less parameters, the nth order excitation frequency nσ = nΩ/ω0

will match the (speed-dependent) natural frequency of the pri-

mary system when nσ = ω11. For the given parameter values, it

is found that σres ≈ 0.345.

5.2 System Response and Absorber Performance
For this study we perform simulation runs for various sets of

parameter values guided by the NASA hardware. For these stud-

ies it is assumed that the excitation order, the absorber placement

parameter, and the blade length to hub radius ratio are fixed, as

follows: n = 3, α = 0.84, δ = 0.67. The design parameters are

taken to be the absorber tuning ñ (or, equivalently, the nondimen-

sional absorber effective length γ), the impact coefficient of resti-

tution e, and the mass ratio µ. These will be varied near the nom-

inal values of ñ = 3, e = 0.8, µ = 0.024. For relevant ranges of

these parameters the system response is determined over a range

of rotor speeds σ for a range of excitation amplitudes f , focusing

on the response near primary system resonance, σ = 0.345. In

this manner we are able to determine general parameter trends

that offer insight into absorber design guidelines.

We begin by showing in Fig. 8 a typical set of response

curves, depicting various response features of the primary sys-

tem and the absorber as the rotor speed is varied near resonance.

In these plots results from both the analytically predicted stable

and unstable symmetric impact motions are shown, along with

reference plots (where appropriate) taken from the primary sys-

tem with the absorber locked (the linear reference response). The

quantity of primary interest is, of course, the vibration amplitude

of the primary system, |x|, and it is seen that its resonance is re-

duced by the presence of the absorber. It should be noted that

the impact response is measured by the values of x, ẋ, ẏ and t0
at impact, and that these generally do not represent the peak am-

plitude. It is seen from the simulation results, however, that the

impacts occur when the primary system is near its peak ampli-

tude, so that this value is valid for comparing vibration ampli-

tudes with and without the absorber.4

The details of the response near resonance are quite inter-

esting, and, as noted above, may not be fully captured by the re-

sponse curves predicted by the theory. Specifically, the existence

of the symmetric impact motion depends on the non-penetration

condition, Eq. (16), and this is, in fact, often violated near reso-

nance. This arises from a grazing bifurcation, as now described.

As the rotor speed is varied through resonance, the absorber dy-

namics undergo a sequence of transitions, as depicted in Fig. 9,

which shows a series of steady-state absorber phase plane re-

sponses obtained by varying the rotor speed through resonance.

Note that the symmetric impact motion develops a pair of interior

loops which grow as the rotor speed is increased from just below

4This is a consequence of the phase relations dictated by the zero free flight

damping.

resonance. When these loops touch the |y| = 1 limits, a grazing

bifurcation takes place that dramatically alters the qualitative na-

ture of the response [21].5 Note that the response immediately

after the grazing bifurcation is chaotic, and involves a number

of small excursions near the barriers. In fact, some of these re-

sponses involve chatter, that is, the motion undergoes repetitive

impacts of continually smaller velocity such that the absorber

actually becomes stuck at the barrier in finite time and remains

there for a duration. In this case the motion of the primary sys-

tem holds the absorber in place until the constraint force goes to

zero and changes sign, at which point the absorber is released

from the barrier with zero relative velocity and continues its mo-

tion. The simulation of these events requires tracking this force,

as described in the appendix.

As the rotor speed is decreased from above resonance, the

same sequence of events is observed to occur. In fact, the upper

and lower grazing bifurcations are very close to one another, and

thus the chaos exists over a very narrow range of rotor speeds.

Some further details of a sample chaotic motion are shown

in Fig. 10. This response has some interesting features, which are

described here but not explored in detail. In particular, if one ex-

amines the chaos over a relatively short time interval, it appears

to look like the chaotic example shown in Fig. 9. However, the

long-term time behavior has a slow oscillation in the amplitude

of the primary system response, as depicted in Fig. 10a, which

shows x(t) versus t over an interval corresponding to 3000 im-

pacts, starting after 12,000 impacts have occurred. Figure 10b

and Fig. 10c show projections of the Poincaré map (the one used

to find the periodic impacting responses) for the same 3000 im-

pacts. These show the four variables (x, ẋ, ẏ,t0) at the instants of

impact at y = 1, where t0 is the phase of the forcing, that is, to
mod (2π/ω). These Poincaré maps show that x indeed oscillates

between lower and upper amplitudes, and remains bounded in an

annular region. The absorber response is likewise bounded. The

most interesting feature of this response is that there appear to

be some invariant manifolds present, which trap the response for

long periods of time, and along which the response traverses very

slowly. These appear as the groups of points that collectively

form the nearly-filled-out curves in the Poincaré map. While

this response is interesting and deserving of further investigation,

we do not pursue it here. It is sufficient for present purposes to

note that the amplitude of the primary system response remains

bounded by a value that is very near that of the underlying pe-

riodic response (which is penetrating, and thus non-physical, in

this parameter range).

Since these chaotic responses have amplitudes that are very

near those of the underlying periodic response, the absorber con-

tinues to function, even when the response is chaotic, and does

5This grazing bifurcation is quite different in nature than the one wherein

the symmetric impact motion merges with the linear non-impacting response.

See [25] for a discussion of the classification of grazing bifurcations.
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Figure 8. Symmetric impacting response versus rotor speed near primary system resonance, shown as the amplitudes of dynamic variables at impact.

Solid lines represent the stable impacting response and dashed lines represent the unstable impacting response. Parameter values: δ= 0.67 α = 0.84,

e = 0.8, µ = 0.024, ñ = 3.007, f = 0.005, n = 3. (a) Primary system amplitude log10 |x|, where the dotted line is the reference linear primary system

response with the absorber locked, showing resonance. (b) Primary system velocity ẋ; (c) Absorber velocity ẏ; (d) Excitation phase t0.

so in a manner that is reasonably described by the (non-physical)

periodic response predicted by the theory. In fact, these grazing

bifurcations are observed to be of the type which immediately

lead to chaotic responses that are closely related to their periodic

source [25]. These chaotic oscillations generally grow in ampli-

tude (relative to the underlying periodic response) as one moves

beyond the bifurcation point. However, in the present system,

another grazing bifurcation of exactly the same form takes place

just above resonance, and thus the chaos exists only in a small

range of rotor speeds near resonance. Since this is a very small

window, it is valid to use the predicted periodic response to es-

timate the general amplitudes of vibration in the chaotic region,

and thus over the entire region near resonance.

By using the predicted response curves for the impacting

motions, one can carry out a systematic parameter study to de-

termine the influence of the absorber parameters on the primary

system response. This is carried out by the following procedure.

The parameters are set, the rotor speed is swept through reso-

nance, and the peak amplitude of the primary system response

is recorded. This is repeated over a range of force amplitudes,

resulting in a curve that shows xmax versus f . Figure 11a shows

a set of such curves, generated for four values of the coefficient

of restitution. Here it is seen that, as one might expect, more

dissipation in the impacts leads to lower response amplitudes.

Figure 11b shows a similar plot for four values of the absorber

mass. Again, the expected result is obtained, showing that an

increase in absorber mass lowers the primary system response

amplitudes. Finally, in Fig. 11c, a similar plot is shown for three

values of the absorber tuning which cover a wide range of tun-

ing conditions. Here the results indicate that the peak primary

system response appears to be quite insensitive to the absorber

tuning. This may seem surprising, but it should be noted that the

absorber is not really making use of its linear tuning while in its

impact mode of operation.
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Figure 10. Some details of a typical chaotic response near resonance. Parameter values: δ = 0.67, α = 0.84, e = 0.8, µ = 0.024, ñ = 3.007,

σ = 0.343, f = 0.005, n = 3. (a) x(t) versus t ; (b) ẋ(t) versus x(t) sampled at impact times; (c) ẏ(t) versus the forcing phase, to mod (2π/ω),

sampled at impact times.

Based on the latter observation, one may use a wide range

of tunings and achieve similar performance if the absorber is to

function in an impacting mode. In such cases, the design may be

guided by other considerations, such as space constraints. How-

ever, if the absorber will function in its linear, non-impacting

mode during some situations, then it should be tuned as closely

as possible to the excitation order, but slightly below it, so that no

resonance in the linear system is encountered as the rotor spins

up.

6 Conclusions and Directions for Future Work
In this study we have offered an investigation of tuned im-

pact absorbers for reducing vibrations in rotating flexible struc-

tures. These absorbers have proven to be effective in experimen-

tal demonstrations, and the results presented here are a start to-
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force amplitude f , for δ = 0.67, α = 0.84, and n = 3: (a) µ = 0.024,
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wards the development of analytical tools for the prediction of

their response characteristics and the manner in which these de-

pend on system parameters.

The non-impacting linear response of the system is found

to have some interesting features. Specifically, this two degree-

of-freedom system will experience at most one resonance as the

rotor speed is varied, and, in fact, if the absorber is slightly

undertuned, one can avoid resonance altogether. The authors

have studied in detail the response of linear system models of

cyclicly coupled structures fitted with order-tuned absorbers in

order to determine how these features are manifested in the cou-

pled, multi-blade case [15]. Along these lines, it has been deter-

mined that the free flight damping of the primary system and the

absorber may play an important role in the general features of the

response, and this requires further study.

These absorbers, due to their small mass, are designed to op-

erate in an impacting mode, and that is the main subject of this

paper. It has been shown that the impact absorber is effective in

reducing the response of the primary system near resonance, and

that the performance of the absorber increases as one increases

the mass ratio and reduces the coefficient of restitution. However,

it was also found that the linear tuning of the absorber has little

effect on performance, as might be expected, since one could use

a simple rattling mass arrangement, with essentially zero restor-

ing stiffness (that is, zero tuning) to achieve an impact damper.

However, there is no detriment to using some linear tuning, so

one might as well employ it to handle small levels of vibration.

Future work in this area should also include investigations

that improve the model of the rotating flexible structure. These

should incorporate single and multi-mode beam and plate mod-

els, possibly using finite elements, since impacts will typically

excite higher modes. This may increase the predicted effective-

ness of the impacts in damping resonant vibrations, since more

energy can be transferred away from the resonant mode. In ad-

dition, the kinematics of the movement of the absorber relative

to the flexible structure can be accounted for in such a model,

which will allow one to account for nonlinear path effects. These

effects can be designed so as to extend the non-impacting oper-

ating range of the absorber. Also, the well-know coupling be-

tween longitudinal and transverse motions in rotating beams can

be taken into account [1]. The effects of damping in the primary

structure and the absorber can also be included in an improved

model, as can a more detailed consideration of the redistribu-

tion of blade stresses caused by the inclusion of the absorber [1].

These steps would lead to more accurate predictive tools for eval-

uating impact absorber designs for rotating structures. However,

they would not be analytically tractable, and one would need to

resort to simulation studies.

Further work could also include the use of multiple ab-

sorbers on a single flexible element. In addition, the response

of systems of rotating coupled flexible structures, such as bladed

disk assemblies and blisks (integrated blade/disk units) with ab-
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sorbers is also of interest. As localization is known to occur in

such systems when the subsystems are slightly mistuned from

one another [26], it is of interest to know how sets of order-tuned

and/or impact absorbers will perform in the face of these com-

plex responses. An intriguing idea along these lines is to use sets

of absorbers as a means of implementing intentional mistuning

of the system, which has been suggested as a means of suppress-

ing the damaging effects of localization [27]. And, of course,

systematic experimentation is required before these devices can

be proven to be of practical use.
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Appendix: The Constraint Force
It is of interest to investigate the situation when the absorber

is held fixed relative to the primary system by dynamic effects,

and the conditions for its release. This occurs in situations in

which the absorber mass is held against one of the amplitude-

limiting barriers by the motion of the primary system (typically

after a completed chatter sequence). In these situations the os-

cillating motion of the primary system will eventually result in

the release of the absorber, whereupon it continues its motion. In

these cases one takes y = ±1 as the constraint. Another situation

of interest is y = 0, which corresponds to the absorber locked

in its central position. The response of the primary system for

this reference case is considered in Section 3.1. In each of these

cases a constraint force is required to hold the absorber in place.

This force is of particular interest for the simulations, since it de-

termines conditions for the occurrence of chatter and subsequent

release of the absorber.

When the absorber is fixed at y = ŷ (ŷ = +1, −1, or 0), the

equations of motion are given by Eq. (1) with y = ŷ, ÿ = 0, and

an applied force of

F = ( f cos(nστ),Fc), (17)

where Fc is the constraint force. One can eliminate ẍ(τ) from

these equations, resulting in an expression for Fc in terms of ŷ,

x(τ), f cos(nστ), and the system parameters. Chatter can lead to

difficulties in the simulations, since a large number of impacts

occur over an arbitrarily small time duration, after which the re-

sulting system has a smaller number of degrees of freedom. In

these cases, when the absorber impacts become sufficiently close

together (as determined by a user-defined small parameter), one

can set y to the corresponding limit (±1), use the constrained

equation of motion for x(τ), and track Fc as a function of τ. At

the time when Fc goes to zero, the absorber is released from the

barrier with ẏ = 0, whereupon simulation of the full two degree

of freedom system can resume, using the system states at release

for the “reset” initial conditions.
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